/* * uart_rx.v * * vim: ts=4 sw=4 * * Copyright (C) 2019-2020 Sylvain Munaut * SPDX-License-Identifier: CERN-OHL-P-2.0 */ `default_nettype none module uart_rx #( parameter integer DIV_WIDTH = 8, parameter integer GLITCH_FILTER = 2 )( input wire rx, output wire [7:0] data, output reg stb, input wire [DIV_WIDTH-1:0] div, // div - 2 input wire clk, input wire rst ); // Signals wire rx_val; wire rx_fall; wire go, done, ce; reg active; reg [DIV_WIDTH:0] div_cnt; reg [4:0] bit_cnt; reg [8:0] shift; // Input stage (synchronizer / de-glitch / change detect) generate // Glitch filter if (GLITCH_FILTER > 0) glitch_filter #( .L(GLITCH_FILTER), .RST_VAL(1'b1), .WITH_SYNCHRONIZER(1) ) gf_I ( .in(rx), .val(rx_val), .rise(), .fall(rx_fall), .clk(clk), .rst(rst) ); // Or simple synchronizer else begin reg [1:0] rx_sync; reg rx_fd; always @(posedge clk) begin rx_sync <= { rx_sync[0], rx }; rx_fd <= rx_sync[1] & ~rx_sync[0]; end assign rx_fall = rx_fd; assign rx_val = rx_sync[1]; end endgenerate // Control assign go = rx_fall & ~active; assign done = ce & bit_cnt[4]; always @(posedge clk or posedge rst) if (rst) active <= 1'b0; else active <= (active & ~done) | go; // Baud rate generator always @(posedge clk) if (~active) div_cnt <= { 2'b00, div[DIV_WIDTH-1:1] } - 1; else if (div_cnt[DIV_WIDTH]) div_cnt <= { 1'b0, div }; else div_cnt <= div_cnt - 1; assign ce = div_cnt[DIV_WIDTH]; // Bit counter always @(posedge clk) if (~active) bit_cnt <= 5'h08; else if (ce) bit_cnt <= bit_cnt - 1; // Shift register always @(posedge clk) if (ce) shift <= { rx_val, shift[8:1] }; // Outputs assign data = shift[7:0]; always @(posedge clk) stb <= ce & bit_cnt[4] & rx_val; endmodule // uart_rx