
TCP Socket Test Port for TTCN-3
Toolset with TITAN, Function

Specification
József Gyürüsi

Version 155 17-CNL 113 347, Rev. E, 2009-03-16

Table of Contents
How to Read This Document . 1

Scope . 1

General . 1

Function Specification. 1

Implementation . 1

Module Structure. 2

Configuration . 2

Start Procedure. 2

Server Start, Listening to Incoming Connections. 3

Client Start, Connecting to Remote TCP Ports . 3

Sending/Receiving TCP ASPs . 3

Closing Down. 3

Changing the Address Family . 3

Logging . 4

Error Handling . 4

SSL Functionality . 4

Compilation. 4

Authentication . 5

Other Features . 5

Limitations . 5

Terminology. 6

Abbreviations . 6

References . 7

How to Read This Document
This is the Function Specification for the TCP test port. The TCP test port is developed for the TTCN-3
Toolset with TITAN according to the Requirement Specification [4].

Scope
The purpose of this document is to specify the functionality of the TCP test port. The document is
primarily addressed to the end users of the product. Basic knowledge of TTCN-3 and TITAN TTCN-3
Test Executor is valuable when reading this document (see [1] and [2]).

This document is based on specifications of Transfer Control Protocol (TCP) defined by RFC 793 [5].

General
The TCP Test Port makes it possible to execute test suites towards an SUT. The test port offers TCP
primitives to the test suite and communicates with the SUT.

The communication between the TCP test port and the TITAN RTE is done by using the API
functions described in [2]. The TCP test port then transfers the TCP messages to the SUT.

See the overview of the system below:

Function Specification

Implementation
The TCP layer is implemented in the kernel of the operating system. The test port implements the
communication between the TCP socket and the TTCN-3 TCP ASPs. When connecting to an SSL
enabled IUT, the connection is secured with the OpenSSL toolkit based on configuration data. The
test port can work in three modes:

• Using connection ASPs - both servers maintaining one listen port at a time and client
maintaining any number of connections can be handled

1

• As a client - maintaining only one connection at a time

• As a server - maintaining several connections at the same time

The TCP test port supports IPv4 and IPv6.

Module Structure
The TCP test port is implemented in the following TTCN-3 blocks:

• TCPasp_Types.ttcn

• TCPasp_PortType.ttcn

The file TCPasp_Types.ttcn defines the TCP ASPs. The port type is defined in TCPasp_PortType.ttcn.

The C++ implementation of the test port is contained in the following files:

• TCPasp_PT.hh

• TCPasp_PT.cc

The port is using the Abstract_Socket, a common component with the product number CNL 113 384,
implementing the basic sending, receiving and socket handling routines. The following files should
be included in the Makefile:

• Abstract_Socket.hh

• Abstract_Socket.cc

Configuration
The configuration of the TCP test port is done by the TITAN RTE configuration file. If using the
connection ASPs, the use_connection_ASPs parameter has to be set to "yes". In this case sending the
ASP_TCP_Connect ASP to the port creates connections, and sending the ASP_TCP_Listen ASP activates
listening port. There are ASPs provided to receive the result of opening connections and listening
ports, notification when a new client connects to the port, close specific connection and close the
listening port.

If not using the connection ASPs, the address and port of the server and the operation mode have to
be given as port parameters. The nagling algorithm can also be turned on and off from the port
parameters. When the operation mode is set to client, the port will operate as TCP client socket,
trying to connect to the given address and port. In case of server operation mode, the port will start
a TCP server on the given port and will be listening for new connections from client ports. Using the
SSL in the test port is also configurable. In case of using SSL some parameters can also be provided.
For more information about configuring the test port please refer to [4].

Start Procedure

2

Server Start, Listening to Incoming Connections
If not using connection ASPs, when the executable test suite is started, it initializes the TCP socket.
After mapping, the TCP server type port is already listening for server connections.

If connection ASPs are used, an ASP_TCP_Listen'' has to be sent to the port with the listening
port number and optionally the listening host name or address. The port will send back an

ASP_TCP_Listen_result'' ASP filled with the result of the operation.

Client Start, Connecting to Remote TCP Ports
If not using connection ASPs, the TCP connection is initiated by the client type port, and is set up
during the TTCN port mapping procedure. Before running the test case the user has to make sure
that the target system is up and running. After the port is mapped and the connection has been set
up, transmission of the ASPs can begin.

If connection ASPs are used, an ASP_TCP_Connect has to be sent to the port with the remote host
name and port number where to connect. Optionally the local host name or address and port can
be specified, if you want to connect to the remote host from a specific local interface. The port will
send back an ASP_TCP_Connect_result ASP filled with the result of the operation.

Sending/Receiving TCP ASPs
When the communication between the TCP test port and the target system is set up, the test port
starts translating the TCP primitives to TCP packets (and vice versa) between the TITAN RTE and the
SUT. The service primitives contains a data field of type octetstring which contains the user data,
and beside this contains also contains a client_id of type integer which identifies the sending or
receiving client, when the port is used in server operation mode or connection ASPs are used.
When not using the connection ASPs, and the port is used in client mode or in server mode with
only one single client, the client_id can be simply ignored.

Closing Down
If connection ASPs are used, ASP_TCP_Close can be used to initiate the closing of connection(s). The
same ASP_TCP_Close ASP identifying a client is received by TTCN indicating if a connection has been
closed by the remote side.

After the test port has executed all test cases it will stop automatically. It will close down the TCP
socket towards the SUT and terminate.

The execution of the test suite can be stopped at any time by pressing <Ctrl>-c. Even when
execution is interrupted with <Ctrl>-c the socket is still closed.

Changing the Address Family
The address family used by ASP_TCP_Connect and ASP_TCP_Listen can be changed during runtime

3

with the help of the ASP_TCP_SetAddressFamily message. With this ASP the address family can be set
to IPv4, IPv6 or unspecified, meaning that the address family will be determined from the actual
addresses in the ASP_TCP_Connect and ASP_TCP_Listen ASPs. The address family can also be set from
the configuration file.

Logging
The type of information that will be logged can be categorized into two groups. The first one
consists of information that shows the flow of the internal execution of the test port, for example,
important events, which function that is currently executing etc. The second group deals with
presenting valuable data, for example, presenting the content of a PDU. The logging printouts will
be directed to the RTE log file. The user is able to decide whether logging is to take place or not by
setting appropriate configuration data.

Error Handling
Erroneous behavior detected during runtime is shown on the console and directed into the RTE log
file. The following two types of messages are taken care of:

• Errors:
information about errors detected is provided. If an error occurs the execution will stop
immediately.

• Warnings:
information about warnings detected is provided. The execution continues after the warning is
shown.

SSL Functionality
The test port can use SSL or TCP as the transport channel. The SSL implementation is based on the
same OpenSSL as TITAN (OpenSSL 0.9.7d).

The protocols SSLv2, SSLv3 and TLSv1 are supported.

Compilation
The usage of SSL and even the compilation of the SSL related code parts are optional. This is
because SSL related code parts cannot be compiled without the OpenSSL installed.

The compilation of SSL related code parts can be disabled by not defining the AS_USE_SSL macro in
the Makefile during the compilation. If the macro is defined in the Makefile, the SSL code parts are
compiled to the executable test code. The usage of the SSL then can be enabled/disabled in the
runtime configuration file, see [2]. Naturally the test port parameter will be ignored if the
AS_USE_SSL macro is not defined during compilation. For more information about the compilation
see [3].

4

Authentication
The test port provides both server side and client side authentication. When authenticating the
other side, a certificate is requested and the own trusted certificate authorities’ list is sent. The
received certificate is verified whether it is a valid certificate or not (the public and private keys are
matching). No further authentication is performed (e.g. whether hostname is present in the
certificate). The verification can be enabled/disabled in the runtime configuration file, see [3].

In server mode the test port will always send its certificate and trusted certificate authorities’ list to
its clients. If verification is enabled in the runtime configuration file, the server will request for a
client’s certificate. If the client does not send a valid certificate, the connection will be refused. If
verification is disabled, then the connection will be accepted even if the client does not send or
send an invalid certificate.

In client mode the test port will send its certificate to the server on the server’s request. If
verification is enabled in the runtime configuration file, the client will send its own trusted
certificate authorities’ list to the server and will verify the server’s certificate as well. If the server’s
certificate is not valid, the SSL connection will not be established. If verification is disabled, then
the connection will be accepted even if the server does not send or send an invalid certificate.

The own certificate(s), the own private key file, the optional password protecting the own private
key file and the trusted certificate authorities’ list file can be specified in the runtime configuration
file, see [3].

The test port will check the consistency between the own private key and the public key (based on
the own certificate) automatically. If the check fails, a warning is issued and execution continues.

Other Features
Both client and server support SSLv2, SSLv3 and TLSv1, however no restriction is possible to use
only a subset of these. The used protocol will be selected during the SSL handshake automatically.

The usage of SSL session resumption can be enabled/disabled in the runtime configuration file, see
[3].

The allowed ciphering suites can be restricted in the runtime configuration file, see [3].

The SSL rehandshaking requests are accepted and processed, however rehandshaking cannot be
initiated from the test port.

Limitations
• No restriction is possible on the used protocols (e.g. use only SSLv2), it is determined during SSL

handshake between the peers.

• SSL rehandshaking cannot be initiated from the test port.

• The own certificate file(s), the own private key file and the trusted certificate authorities’ list file
must be in PEM format. Other formats are not supported.

5

• The SSL certificate verification works separately based on the server_mode test port parameter.
When using the connection ASPs, and server_mode = "yes", the test port will do the server
authentication. If server_mode = "no" (or not specified), the test port will do the client-side
certificate validation if the ssl_verify_certificate is also set to "yes".

Terminology
• Sockets:

The sockets is a method for communication between a client program and a server program in
a network. A socket is defined as "the endpoint in a connection. Sockets are created and used
with a set of programming requests or "function calls" sometimes called the sockets application-
programming interface (API). The most common socket API is the Berkeley UNIX C language
interface for sockets. Sockets can also be used for communication between processes within the
same computer.

• OpenSSL:
The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-
featured, and open source toolkit implementing the Secure Socket Layer (SSL v2/v3) and
Transport Layer Security (TLS v1) protocols as well as a full-strength general-purpose
cryptography library. For more information on the OpenSSL project see [7].

Abbreviations
API

Application Program Interface

ASP

Abstract Service Primitive

RTE

Run-Time Environment

SSL

Secure Socket Layer

SUT

System Under Test

TTCN-3

Testing and Test Control Notation version 3

TCP

Transmission Control Protocol

6

References
[1] ETSI ES 201 873-1 (2002)
The Testing and Test Control Notation version 3. Part 1: Core Language

[2] User Documentation for the TITAN TTCN-3 Test Executor

[3] TCP Socket Test Port for TTCN-3 Toolset with TITAN, User’s Guide

[4] Functional Test System Requirement Specification for GSN

[5] RFC 793 (1981)
Transmission Control Protocol

[6] OpenSSL toolkit
http://www.openssl.org

[7] Hickman, Kipp, "The SSL Protocol", Netscape Communications Corp., Feb 9, 1995.

[8] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol", Netscape Communications Corp., Nov
18, 1996.

[9] RFC 2246 (1999), T. Dierks, C. Allen: "The TLS Protocol Version 1.0"

7

https://tools.ietf.org/html/rfc793
http://www.openssl.org
https://tools.ietf.org/html/rfc2246

	TCP Socket Test Port for TTCN-3 Toolset with TITAN, Function Specification
	Table of Contents
	How to Read This Document
	Scope
	General
	Function Specification
	Implementation
	Module Structure

	Configuration
	Start Procedure
	Server Start, Listening to Incoming Connections
	Client Start, Connecting to Remote TCP Ports

	Sending/Receiving TCP ASPs
	Closing Down
	Changing the Address Family
	Logging
	Error Handling
	SSL Functionality
	Compilation
	Authentication
	Other Features
	Limitations

	Terminology
	Abbreviations
	References

