
TCP Socket Test Port for TTCN-3
Toolset with TITAN, User’s Guide

Csaba Fehér

Version 198 17-CNL 113 347, Rev. L, 2009-04-02

Table of Contents
About this Document . 1

How to Read This Document . 1

Prerequisite Knowledge . 1

System Requirements . 1

Fundamental Concepts . 1

The Test Port . 2

Overview . 2

Connection ASPs. 2

Installation. 3

Configuration . 4

TCP Test Port Parameters in the RTE Configuration File . 4

Start Procedure. 9

TTCN-3 Test Executor . 9

Using the Test Port in TTCN3 . 9

Handling Single/Multiple Clients . 9

Stop Procedure . 10

TTCN-3 Test Executor . 10

Error Messages . 10

Error Messages in case TCP Connections Are Used . 10

Additional Error Messages in case SSL Connections Are Used . 12

Warning Messages . 14

Warning Messages . 14

Warning Messages In Case TCP Connections Are Used . 14

Warning Messages In Case SSL Connections Are Used. 15

Examples . 15

Configuration file . 15

Terminology. 17

Abbreviations . 17

References . 17

About this Document

How to Read This Document
This is the User’s Guide for the TCP test port. The TCP test port is developed for the TTCN-3 Toolset
with TITAN according to the Requirement Specification [4]. This document is intended to be read
together with Function Specification [3].

Prerequisite Knowledge
The knowledge of the TITAN TTCN-3 Test Executor [2] and the TTCN-3 language [1] is essential.
Basic knowledge of the TCP and SSL protocols is valuable when reading this document.

System Requirements
In order to operate the TCP test port the following system requirements must be satisfied:

• Platform: any platform supported by TITAN RTE and OpenSSL

• TITAN TTCN-3 Test Executor version R78 (1.8.pl0) or higher installed. For installation guide see
[2].

NOTE This version of the test port is not compatible with TITAN releases earlier than R8A.

• The Abstract_Socket (CNL 113 384) product version R6A01 or later has to be installed

If SSL is used, the same OpenSSL must be installed as used in TITAN (OpenSSL 0.9.7d). For
installation guide see [6].

For known limitations please see the FS [3].

Fundamental Concepts
The test port establishes TCP connection between the TTCN-3 test executor and the SUT. The test
port transmits and receives TCP messages between the TITAN RTE and the SUT. The transport
channel can be TCP or SSL.

TCP test port provides only an unstructured octetstring data field in the ASP to the test suite to
transfer data to or from the SUT. If there is a structured protocol coded in this octetstring that has a
field indicating the length of the actual protocol message, it is possible to provide some descriptors
for the TCP test port to wait until it receives enough bytes to build a complete message, that is
passed then to the test suite.

When connection ASPs are used, the test port provides TCP connection ASPs to let the TTCN code
control the creation and closing TCP connections or opening and closing TCP server listening port.

The TCP test port supports IPv4 and IPv6.

1

The Test Port

Overview
The TCP test port offers TCP primitives to the test suite in TTCN-3 format. The TTCN-3 definition of
the ASPs can be found in a separate TTCN-3 module. This module should be imported into the test
suite.

The test port translates the TCP ASP to TCP packets (and vice versa) between the TITAN RTE and the
SUT.

See the overview of the test system below:

Connection ASPs
When using connection ASPs, the following connection controlling ASPs can be sent to the test port:

• ASP_TCP_Connect:
It is used to create a client connection towards a server. hostname and portnumber are mandatory
fields of the ASP containing the remote host name and port number to connect. local_hostname
and local_portnumber are optional fields, the local host interface and port number can be
selected by assigning value to them.

• ASP_TCP_Connect_result:
It is returned right after sending a ASP_TCP_Connect. The client_id field of the received ASP will
contain the client id of the assigned connection, which can be used to distinguish among
different connections.

• ASP_TCP_Connected:
It is sent by a port which has accepted and incoming client connection. The hostname, portnumber
and client_id is filled with the corresponding parameters of the client.

• ASP_TCP_Close:
It is used to close a specific or all connections. If the client_id is omitted, all current connections
of the port will be closed. If a client_id is specified, the connection that belongs to the given

2

client_id will be closed. ASP_TCP_Close is received if a connection has been closed by the remote
side. In this case the client_id identifies the connection which has been closed.

• ASP_TCP_Listen:
It is used to open a server listening port. If a listening port was already opened, it will be closed
before opening a new one. The client connections will remain alive; they can be closed by
sending ASP_TCP_Close with omitted client_id. If portnumber or local_hostname is set, the listening
port will be bound to the given interface and port number. If the port number is not set, a port
will be picked by the kernel to be the listening port.

• ASP_TCP_Listen_result:
It is returned right after sending a ASP_TCP_Listen. The port number of the opened listening port
is returned in the ASP.

• ASP_TCP_Shutdown:
It can be used to close the listening port. The client connections will remain alive; they can be
closed by sending ASP_TCP_Close with omitted client_id.

• ASP_TCP_Error_report:
It is returned right after sending an ASP_TCP if error occurred during sending or the whole
packet could not be sent. The ASP_TCP_Error_report carries the client_id, TCP packet data,
number of the sent bytes, error type, error code and error descriptions.

• ASP_TCP_SetAddressFamily:
This can be used to change the address family used by the test port during runtime. All
subsequent ASP_TCP_Connect and ASP_TCP_Listen ASPs will use the address family set by this ASP.
The ASP_TCP_SetAddressFamily can be used several times. All connections keep their actual
address family. Only new connections are affected. The allowed values are the following:

◦ c_TCP_AF_INET or c_TCP_IPv4 to set IPv4

◦ c_TCP_AF_INET6 or c_TCP_IPv6 to set IPv6

◦ c_TCP_AF_UNSPEC or c_TCP_UNSPEC to set UNSPEC

For more information about connection ASPs, see the 'Start Procedure' section of [4].

Installation
Since the TCP test port is used as a part of the TTCN-3 test environment this requires TTCN-3 Test
Executor to be installed before any operation of the TCP test port. For more details on the
installation of TTCN-3 Test Executor see the relevant section of [2].

The compilation of SSL related code parts can be disabled by not defining the AS_USE_SSL macro in
the Makefile during the compilation.

When building the executable test suite the libraries compiled for the OpenSSL toolkit (if the
AS_USE_SSL macro is defined) and the TTCN-3 Test Executor should also be linked into the
executable. For more information see also [2]. OpenSSL libraries should be added to the Makefile (to
LDFLAGS variable) generated by the TITAN executor.

LDFLAGS = -lssl

3

NOTE
If you are using the test port on Solaris, you have to set the PLATFORM macro to the
proper value. It is SOLARIS in case of Solaris 6 (SunOS 5.6) and SOLARIS8 in case of
Solaris 8 (SunOS 5.8).

Configuration
The executable test program behavior is determined via the RTE configuration file. This is a simple
text file, which contains various sections (e.g. [TESTPORT_PARAMETERS]) after each other. The usual
suffix of the RTE configuration file is .cfg. For further information about the configuration file see
[2].

See the overview of the configuration process below:

TCP Test Port Parameters in the RTE Configuration
File
In the [TESTPORT_PARAMETERS] section you can specify parameters that are passed to the test ports.
Each parameter definition consists of a component name, a port name, a parameter name and a
parameter value. The component name can be either an identifier or a component reference
(integer) value. The port and parameter names are identifiers while the parameter value always
must be a charstring (with quotation marks). Instead of component name or port name (or both of
them) the asterisk ("*") sign can be used, which means "all components" or "all ports of the
component". More information about the RTE configuration file can be found in [2].

In the [TESTPORT_PARAMETERS] section the following parameters can be set for the TCP test port. If the
corresponding parameter is mandatory an (M), if it is optional an (O) is shown after its name:

4

TCP Test Port Parameters in the Test Port Configuration File if the
Transport Channel is TCP/IP

• use_connection_ASPs (O)

The parameter is optional, and can be used to specify whether the test port wants to send and
receive connection ASPs. If set to "yes", the server_mode and address/port parameters have no
meaning, since they have to be specified in the connection ASPs sent.

• server_mode (O)

The parameter is optional, and can be used to specify whether the test port shall act as a server
or a client. If the value is "yes", the test port will act as a server. If the value is "no", the test port
will act as a client.

The default value is "no".

• socket_debugging (O)

The parameter is optional, and can be used to enable debug logging related to the transport
channel (TCP socket and SSL operations) in the test port.

The default value is "no".

• halt_on_connection_reset (O)

The parameter is optional, and can be used to specify whether the test port shall stop on errors
occurred during connection setup (including connection refusing), sending and receiving,
disconnection (including the detection of the disconnection). The value "yes" means the test
port will stop, the value "no" means that it will not stop on such errors.

The default value is "no" in server mode and "yes" in client mode.

• nagling (O)

The parameter is optional, and can be used to specify whether concatenation occurs on TCP
layer. If value is "yes", concatenation is enabled. If value is "no", it is disabled. The nagling
setting is valid only for the outgoing messages, the nagling for the incoming messages is set by
the sending party.

The default value is "no".

• destIPAddr (client mode – M, server mode – not used)

The parameter can be used to specify the server’s IP address. It is mandatory in client mode and
not used in server mode.

• destPort (client mode – M, server mode – not used)

The parameter can be used to specify the server’s listening port. It is mandatory in client mode
and not used in server mode.

• serverIPAddr (O)

5

The parameter can be used to specify the server’s local IP address. Its presence is optional both
in server and client mode.

The default value is "localhost".

• serverPort (client mode – O, server mode – M)

The parameter can be used to specify the port where the server is listening for connections. It is
mandatory in server mode and optional in client mode.

• addressFamily (O)

The parameter can be used to specify the address family to use when opening listening ports or
creating client connections. If its value is set to "IPv4", or "AF_INET", only IPv4 addresses are
used. If it is set to "IPv6" or "AF_INET6" only IPv6 connections are allowed. The values "UNSPEC"
and "AF_UNSPEC" can be used if the address family is not specified. This allows using IPv4 and
IPv6 addresses at the same time. The selection is made automatically depending on the actual
value of the local and remote addresses. This parameter is optional.

The default value is "AF_UNSPEC".

• server_backlog (client mode – not used, server mode – O)

The parameter can be used to specify the number of allowed pending (queued) connection
requests on the port the server listens. It is optional in server mode and not used in client mode.

The default value is "1".

• packet_hdr_length_offset (O)

If there is a protocol above TCP this parameter can be used to specify the offset (in bytes) in the
protocol header where the length field starts. This parameter is optional, but should be used
together with packet_hdr_nr_bytes_in_length, packet_hdr_byte_order,
packet_hdr_length_value_offset and packet_hdr_length_multiplier. These parameters are used
to wait for a complete upper layer protocol message by the test port.

• packet_hdr_nr_bytes_in_length (O)

If there is a protocol above TCP this parameter can be used to specify the length of the length
field (in bytes) in the protocol header. This parameter is optional, but must be used together
with packet_hdr_length_offset, packet_hdr_byte_order, packet_hdr_length_value_offset and
packet_hdr_length_multiplier. These parameters are used to wait for a complete upper layer
protocol message by the test port.

• packet_hdr_byte_order (O)

If there is a protocol above TCP this parameter can be used to specify the byte order of the
protocol. The possible values are: "MSB" or "LSB".

"MSB" is the default value.

This parameter is optional, but should be used together with packet_hdr_length_offset,
packet_hdr_nr_bytes_in_length, packet_hdr_length_value_offset and

6

packet_hdr_length_multiplier. These parameters are used to wait for a complete upper layer
protocol message by the test port.

• packet_hdr_length_value_offset (O)

If there is a protocol above TCP this parameter can be used to specify the offset (in bytes) of the
value length which is added for the length decoded from the message. This parameter is
optional, but should be used together with packet_hdr_length_offset,
packet_hdr_nr_bytes_in_length, packet_hdr_byte_order and packet_hdr_length_multiplier. These
parameters are used to wait for a complete upper layer protocol message by the test port.

• packet_hdr_length_multiplier (O)`

If there is a protocol above TCP this parameter can be used to specify the multiplier of the
decoded_length_

"1" is the default value.

This parameter is optional, but should be used together with packet_hdr_length_offset,
packet_hdr_nr_bytes_in_length, packet_hdr_byte_order and packet_hdr_length_value_offset.
These parameters are used to wait for a complete upper layer protocol message by the test port.

Example

Let’s see how we could calculate the real message length using the previously introduced
parameters:

real_length = packet_hdr_length_multiplier x decoded_length +
packet_hdr_length_value_offset,

where decoded_length is calculated from the length field in the message and real_length is the real
message length.

If we set the parameters as follows:

packet_hdr_length_offset := "2";
packet_hdr_nr_bytes_in_length := "2";
packet_hdr_byte_order := "MSB";
packet_hdr_length_value_offset := "2";
packet_hdr_length_multiplier := "3";

and the following message arrives from the upper layer protocol:

message = ‘AAAA**0002**BBBBBBBBCCCC**0002**DDDDDDDD’O

the decoded_length = "2" (bold in the message) because the value starts from the 3rd octet while
header length offset is 2 octets, the number of bytes in the header is 2 octets and the byte order is
MSB. The multiplier is 3 and the value offset is 2 so real_length = "2 x 3 + 2 = 8". (We are using the

7

parameters in the example configuration file in Section 5.1, TCP_server3).

We can see that two messages arrived together and the test port will split them into the following
messages:

message1 = 'AAAA0002BBBBBBBB'O
message2 = 'CCCC0002DDDDDDDD'O

Additional TCP Test Port Parameters in the Test Port Configuration File if
the Transport Channel is SSL

Apart from the previously mentioned parameters, the following test port parameters can be used in
case SSL is used:

• ssl_use_ssl (O)

The parameter is optional, and can be used to specify whether to use SSL on the top of the TCP
connection or not.

The default value is "no".

• ssl_verify_certificate (O)

The parameter is optional, and can be used to tell the test port whether to check the certificate
of the other side. If it is defined "yes", the test port runs a query and checks the certificate. If the
certificate is not valid (i.e. the public and private keys do not match), it will exit with a
corresponding error message. If it is defined "no", the test port will not check the validity of the
certificate.

The default value is "no".

• ssl_use_session_resumption (O)

The parameter is optional, and can be used to specify whether to use/support SSL session
resumptions or not.

The default value is "yes".

• ssl_certificate_chain_file (client mode – O, server mode – M)

It specifies a 'pem' encoded file’s path on the file system containing the certificate chain. For
detailed information see [6]. It is mandatory in server mode and optional in client mode. Note
that the server may require client authentication. In this case no connection can be established
without a client certificate.

• ssl_private_key_file (client mode – O, server mode – M)

It specifies a 'pem' encoded file’s path on the file system containing the server’s RSA private key.
For detailed information see [6]. It is mandatory in server mode and optional in client mode.

• ssl_private_key_password (O)

8

The parameter is optional and can be used to specify the password protecting the private key
file. If not defined, the SSL toolkit will ask for it.

• ssl_trustedCAlist_file (M)

It specifies a 'pem' encoded file’s path on the file system containing the certificates of the trusted
CA authorities to use. It is mandatory in server mode and mandatory in client mode if
ssl_verify_certificate is set to "yes".

• ssl_allowed_ciphers_list (O)

The parameter is optional, and can be used to specify the allowed cipher list. The value is passed
directly to the SSL toolkit.

In the RTE configuration file it is possible to define the name and path of the RTE log file. Debug
output from the test port is written into the RTE log file. If no path is given in the configuration
file, the RTE log file is stored in the working directory.

Start Procedure

TTCN-3 Test Executor
Before running the executable test suite the TTCN-3 modules and C++ codes should be compiled and
linked into an executable program. This process can be automated using the make utility. The
Makefile generation process is described in [2].

NOTE
The C++ implementation files TCPasp_PT.hh and TCPasp_PT.cc of the test port, and
implementation files of the Abstract_Socket (CNL 113 384) component common
Abstract_Socket.cc and Abstract_Socket.hh, must be included in the Makefile.

If the executable test suite is ready, run it giving the RTE configuration file as argument in your
terminal:

Home> ExecutabletestSuite RTEConfigurationFile.cfg

For more information, see [2].

Using the Test Port in TTCN3

Handling Single/Multiple Clients
The ASP of the port has an optional member called client_id. This id identifies the client, when
connection ASPs are used, or the port is used in server mode, with multiple clients. When the port
is used in client mode, or in server mode with one single client, for simplicity reasons the client_id
can be omitted. In case of sending the "omit" value, in case of "receiving" the "*" wildcard is applied.

9

Example templates for single client mode:

template ASP_TCP send_packet(PDU_TCP tcp_packet_data) := {
 client_id := omit,
 data := tcp_packet_data
}
template ASP_TCP receive_packet(PDU_TCP tcp_packet_data) := {
 client_id := *,
 data := tcp_packet_data

Stop Procedure

TTCN-3 Test Executor
The test port should stop automatically after it finished the execution of all test cases. It closes down
the TCP socket towards the SUT and terminates.

The execution of the test suite can be stopped at any time by pressing <Cntr>-c. It shuts down the
socket and terminates.

Error Messages
The error messages have the following general form:

Dynamic test case error: <error text>

Error messages are written into the log file. In the log file a time stamp is also given before the
message text.

The list of the possible error messages is shown below.

NOTE
This list contains the error messages produced by the test port. The error messages
coming from the TITAN are not shown.

Error Messages in case TCP Connections Are
Used
Parameter value <value> not recognized for parameter <name>

The specified <value> in the runtime configuration file is not recognized for the parameter <name>.

Invalid input as port number given: <value>

The specified <value> in the runtime configuration file is cannot be interpreted as a valid port

10

number (e.g. string is given).

Port number must be between 0 and 65535, <value> is given

The specified <value> in the runtime configuration file cannot be interpreted as a valid port
number. Port numbers must be in the range 0..65535.

Invalid input as server backlog given: <value>

The specified <value> in the runtime configuration file is cannot be interpreted as a valid server
backlog number (e.g. string is given).

Cannot accept connection at port

Connection could not be accepted on TCP socket.

Error when reading the received TCP PDU

System error occurred during reading from the TCP socket.

Cannot open socket

Creation of the listener socket failed.

Setsockopt failed

Setting of socket options failed.

Cannot bind to port

Binding of a socket to a port failed.

Cannot listen at port

Listen on the listener socket failed.

Already tried <value> times, giving up

The deadlock counter exceeds the hard coded limit when trying to connect to a server in client
mode. When connecting on a socket, sometimes it is unsuccessful. The next try usually solves the
problem and the connection will be successfully accepted. The test port retries to connect as a
workaround. The number of tries however limited to avoid hanging the test port.

Different operating systems behave in different ways. This problem is rare on Solaris, Unix and
Linux systems, but much more often on Cygwin.

Cannot connect to server

Connection to a server on TCP failed.

Connection was interrupted by the other side

The TCP or SSL connection was refused by the other peer, or broken.

Client Id not specified although not only 1 client exists

11

It should never show up.

Send system call failed: There is no client connected to the TCP server

A send operation is performed to a non-existing client.

Send system call failed: <value> bytes were sent instead of <value>

The send operation failed.

<name> is not defined in the configuration file

The test port parameter <name> is not defined in the runtime configuration file, although its
presence is mandatory (or conditional and the condition is true).

The host name <name> is not valid in the configuration file

The host name specified in the configuration file could not be resolved.

Number of clients<>0 but cannot get first client, programming error

It should never show up.

Index <value> exceeds length of peer list

It should never show up.

Abstract_Socket::get_peer: Client <value> does not exist

It should never show up.

Invalid Client Id is given: <value>

It should never show up.

Peer <value> does not exist

It should never show up.

The value of parameter packet_hdr_length_offset must be a non-negative integer

This message is printed if the value of the parameter is negative.

The value of parameter packet_hdr_nr_bytes_in_length must be a non-negative integer

This message is printed if the value of the parameter is negative.

Additional Error Messages in case SSL
Connections Are Used
Apart from the previously mentioned error messages, the following messages are used in case SSL
is used:

No SSL CTX found, SSL not initialized

12

It should never show up.

Unknown SSL error code <value>

It should never show up.

Could not read from /dev/urandom

The read operation on the installed random device is failed.

Could not read from /dev/random

The read operation on the installed random device is failed.

Could not seed the Pseudo Random Number Generator with enough data

As no random devices found, a workaround is used to seed the SSL PRNG. The seeding failed.

SSL method creation failed

The creation of the SSL method object failed.

SSL context creation failed

The creation of the SSL context object failed.

Can’t read certificate file

The specified certificate file could not be read.

Can’t read key file

The specified private key file could not be read.

Can’t read trustedCAlist file

The specified certificate of the trusted CAs file could not be read.

Cipher list restriction failed for <value>

The specified cipher restriction list could not be set.

Activation of SSL session resumption failed on server

The activation of the SSL session resumption on the server failed.

No SSL CTX found, SSL not initialized

It should never show up.

Creation of SSL object failed

Creation of the SSL object is failed.

Binding of SSL object to socket failed

The SSL object could not be bound to the TCP socket.

13

SSL error occurred

A general SSL error occurred. Check the test port logs to see previous error messages showing the
real problem.

SSL object not found for client

It should never show up.

Rehandshaking is not supported

An SSL rehandshaking is detected. It is a not supported feature.

No SSL data available for client

It should never show up.

Sending SSL data would block (congestion?)

Sending SSL data is blocked.

Warning Messages

Warning Messages
Unsupported Test Port parameter: <name>

The test port parameter <name> in the runtime configuration file is not supported for this test port.

Warning Messages In Case TCP Connections
Are Used
connect() returned error code EADDRINUSE. Perhaps this is a kernel bug. Trying to connect
again.

When connecting on a socket, sometimes it is unsuccessful. The next try usually solves the problem
and the connection is successfully accepted. The test port retries to connect as a workaround. The
number of tries, however, is limited to avoid hanging the test port.

Different operating systems behave in different ways. This problem is rare on Solaris, Unix and
Linux systems, but much more often on Cygwin.

Client <value> has not been removed, programming error

It should never show up.

14

Warning Messages In Case SSL Connections
Are Used
SSL object not found for client <value>

It should never show up.

SSL_ERROR_<string>

Detailed information about the general SSL error.

SSL error queue content

Detailed information about the general SSL error containing OpenSSL source code information and
reason of the fault.

Other side does not have certificate

The other side of the SSL connection does not have a certificate.

Solaris patches to provide random generation devices are not installed

Solaris patches to provide random generation devices are not installed. A workaround will be used
to seed the PRNG.

Private key does not match the certificate public key

The private key specified for the test port does not match with the public key.

Connection from client <value> is refused

The connection from a client is refused in the server.

Connection to server is refused

The connection from the client is refused by the server.

Server did not send a session ID

The SSL server did not send a session ID.

Verification failed

The verification of the other side is failed. The connection will be shut down.

Examples

Configuration file
An example RTE configuration file is shown below:

15

[LOGGING]
LogFile := "TCPtest.log"
FileMask := LOG_ALL | TTCN_MATCHING | TTCN_DEBUG
ConsoleMask := TTCN_ERROR | TTCN_WARNING | TTCN_ACTION | TTCN_TESTCASE |
TTCN_STATISTICS | TTCN_USER | TTCN_DEBUG
SourceInfoFormat := Single

[EXECUTE]
TCPtest.tc_clientsend
TCPtest.tc_clientsend_connect
TCPtest.tc_serversend
TCPtest.tc_serversendfalse
TCPtest.tc_multipleclient
TCPtest.tc_dynamic_behaviour
TCPtest.tc_clientsend_multipleMessage

[TESTPORT_PARAMETERS]
*.TCP_server1.socket_debugging := "YES"
*.TCP_server1.server_mode := "YES"
*.TCP_server1.serverIPAddr := "localhost"
*.TCP_server1.serverPort := "1972"
*.TCP_server1.use_connection_ASPs := "NO"

*.TCP_server2.socket_debugging := "YES"
*.TCP_server2.server_mode := "YES"
*.TCP_server2.use_connection_ASPs := "YES"

*.TCP_server3.socket_debugging := "YES"
*.TCP_server3.server_mode := "YES"
*.TCP_server3.serverIPAddr := "localhost"
*.TCP_server3.serverPort := "1972"
*.TCP_server3.use_connection_ASPs := "NO"
*.TCP_server3.packet_hdr_length_offset := "2";
*.TCP_server3.packet_hdr_nr_bytes_in_length := "2";
*.TCP_server3.packet_hdr_byte_order := "MSB";
*.TCP_server3.packet_hdr_length_value_offset := "2";
*.TCP_server3.packet_hdr_length_multiplier := "3";

*.TCP_client1.socket_debugging := "YES"
*.TCP_client1.destIPAddr := "localhost"
*.TCP_client1.destPort := "1972"
*.TCP_client1.use_connection_ASPs := "NO"

*.TCP_client2.socket_debugging := "YES"
*.TCP_client2.use_connection_ASPs := "YES"

*.TCP_client3.socket_debugging := "YES"
*.TCP_client3.use_connection_ASPs := "YES"
*.TCP_client3.addressFamily := "IPv6"

16

[MAIN_CONTROLLER]
TCPPort := 6781

Terminology
OpenSSL:
The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-featured,
and open source toolkit implementing the Secure Socket Layer (SSL v2/v3) and Transport Layer
Security (TLS v1) protocols as well as a full-strength general-purpose cryptography library. For
more information on the OpenSSL project see [7].

Abbreviations
ASP

Abstract Service Primitive

RTE

Run-Time Environment

SSL

Secure Socket Layer

SUT

System Under Test

TTCN-3

Testing and Test Control Notation version 3

TCP

Transmission Control Protocol

References
[1] ETSI ES 201 873-1 (2002)
The Testing and Test Control Notation version 3. Part 1: Core Language

[2] User Documentation for the TITAN TTCN-3 Test Executor

[3] Socket Test Port for TTCN-3 Toolset with TITAN, Function Specification

[4] Functional Test System Requirement Specification for GSN

[5] RFC 793 (1981)
Transmission Control Protocol

17

https://tools.ietf.org/html/rfc2327

[6] OpenSSL toolkit
http://www.openssl.org

[7] Hickman, Kipp, "The SSL Protocol", Netscape Communications Corp., Feb 9, 1995.

[8] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol", Netscape Communications Corp., Nov
18, 1996.

[9] RFC 2246 (1999), T. Dierks, C. Allen: "The TLS Protocol Version 1.0"

18

http://www.openssl.org
https://tools.ietf.org/html/rfc2327

	TCP Socket Test Port for TTCN-3 Toolset with TITAN, User’s Guide
	Table of Contents
	About this Document
	How to Read This Document
	Prerequisite Knowledge

	System Requirements
	Fundamental Concepts
	The Test Port
	Overview
	Connection ASPs
	Installation
	Configuration
	TCP Test Port Parameters in the RTE Configuration File

	Start Procedure
	TTCN-3 Test Executor

	Using the Test Port in TTCN3
	Handling Single/Multiple Clients

	Stop Procedure
	TTCN-3 Test Executor

	Error Messages
	Error Messages in case TCP Connections Are Used
	Additional Error Messages in case SSL Connections Are Used

	Warning Messages
	Warning Messages
	Warning Messages In Case TCP Connections Are Used
	Warning Messages In Case SSL Connections Are Used

	Examples
	Configuration file

	Terminology
	Abbreviations
	References

