// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include #include "vgic.h" #define ICH_LRN(n) (ICH_LR0_EL2 + (n)) #define ICH_AP0RN(n) (ICH_AP0R0_EL2 + (n)) #define ICH_AP1RN(n) (ICH_AP1R0_EL2 + (n)) struct mi_state { u16 eisr; u16 elrsr; bool pend; }; /* * The shadow registers loaded to the hardware when running a L2 guest * with the virtual IMO/FMO bits set. */ struct shadow_if { struct vgic_v3_cpu_if cpuif; unsigned long lr_map; }; static DEFINE_PER_CPU(struct shadow_if, shadow_if); /* * Nesting GICv3 support * * On a non-nesting VM (only running at EL0/EL1), the host hypervisor * completely controls the interrupts injected via the list registers. * Consequently, most of the state that is modified by the guest (by ACK-ing * and EOI-ing interrupts) is synced by KVM on each entry/exit, so that we * keep a semi-consistent view of the interrupts. * * This still applies for a NV guest, but only while "InHost" (either * running at EL2, or at EL0 with HCR_EL2.{E2H.TGE}=={1,1}. * * When running a L2 guest ("not InHost"), things are radically different, * as the L1 guest is in charge of provisioning the interrupts via its own * view of the ICH_LR*_EL2 registers, which conveniently live in the VNCR * page. This means that the flow described above does work (there is no * state to rebuild in the L0 hypervisor), and that most things happed on L2 * load/put: * * - on L2 load: move the in-memory L1 vGIC configuration into a shadow, * per-CPU data structure that is used to populate the actual LRs. This is * an extra copy that we could avoid, but life is short. In the process, * we remap any interrupt that has the HW bit set to the mapped interrupt * on the host, should the host consider it a HW one. This allows the HW * deactivation to take its course, such as for the timer. * * - on L2 put: perform the inverse transformation, so that the result of L2 * running becomes visible to L1 in the VNCR-accessible registers. * * - there is nothing to do on L2 entry, as everything will have happened * on load. However, this is the point where we detect that an interrupt * targeting L1 and prepare the grand switcheroo. * * - on L2 exit: emulate the HW bit, and deactivate corresponding the L1 * interrupt. The L0 active state will be cleared by the HW if the L1 * interrupt was itself backed by a HW interrupt. * * Maintenance Interrupt (MI) management: * * Since the L2 guest runs the vgic in its full glory, MIs get delivered and * used as a handover point between L2 and L1. * * - on delivery of a MI to L0 while L2 is running: make the L1 MI pending, * and let it rip. This will initiate a vcpu_put() on L2, and allow L1 to * run and process the MI. * * - L1 MI is a fully virtual interrupt, not linked to the host's MI. Its * state must be computed at each entry/exit of the guest, much like we do * it for the PMU interrupt. * * - because most of the ICH_*_EL2 registers live in the VNCR page, the * quality of emulation is poor: L1 can setup the vgic so that an MI would * immediately fire, and not observe anything until the next exit. Trying * to read ICH_MISR_EL2 would do the trick, for example. * * System register emulation: * * We get two classes of registers: * * - those backed by memory (LRs, APRs, HCR, VMCR): L1 can freely access * them, and L0 doesn't see a thing. * * - those that always trap (ELRSR, EISR, MISR): these are status registers * that are built on the fly based on the in-memory state. * * Only L1 can access the ICH_*_EL2 registers. A non-NV L2 obviously cannot, * and a NV L2 would either access the VNCR page provided by L1 (memory * based registers), or see the access redirected to L1 (registers that * trap) thanks to NV being set by L1. */ bool vgic_state_is_nested(struct kvm_vcpu *vcpu) { u64 xmo; if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { xmo = __vcpu_sys_reg(vcpu, HCR_EL2) & (HCR_IMO | HCR_FMO); WARN_ONCE(xmo && xmo != (HCR_IMO | HCR_FMO), "Separate virtual IRQ/FIQ settings not supported\n"); return !!xmo; } return false; } static struct shadow_if *get_shadow_if(void) { return this_cpu_ptr(&shadow_if); } static bool lr_triggers_eoi(u64 lr) { return !(lr & (ICH_LR_STATE | ICH_LR_HW)) && (lr & ICH_LR_EOI); } static void vgic_compute_mi_state(struct kvm_vcpu *vcpu, struct mi_state *mi_state) { u16 eisr = 0, elrsr = 0; bool pend = false; for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) { u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i)); if (lr_triggers_eoi(lr)) eisr |= BIT(i); if (!(lr & ICH_LR_STATE)) elrsr |= BIT(i); pend |= (lr & ICH_LR_PENDING_BIT); } mi_state->eisr = eisr; mi_state->elrsr = elrsr; mi_state->pend = pend; } u16 vgic_v3_get_eisr(struct kvm_vcpu *vcpu) { struct mi_state mi_state; vgic_compute_mi_state(vcpu, &mi_state); return mi_state.eisr; } u16 vgic_v3_get_elrsr(struct kvm_vcpu *vcpu) { struct mi_state mi_state; vgic_compute_mi_state(vcpu, &mi_state); return mi_state.elrsr; } u64 vgic_v3_get_misr(struct kvm_vcpu *vcpu) { struct mi_state mi_state; u64 reg = 0, hcr, vmcr; hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2); vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2); vgic_compute_mi_state(vcpu, &mi_state); if (mi_state.eisr) reg |= ICH_MISR_EL2_EOI; if (__vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_UIE) { int used_lrs = kvm_vgic_global_state.nr_lr; used_lrs -= hweight16(mi_state.elrsr); reg |= (used_lrs <= 1) ? ICH_MISR_EL2_U : 0; } if ((hcr & ICH_HCR_EL2_LRENPIE) && FIELD_GET(ICH_HCR_EL2_EOIcount_MASK, hcr)) reg |= ICH_MISR_EL2_LRENP; if ((hcr & ICH_HCR_EL2_NPIE) && !mi_state.pend) reg |= ICH_MISR_EL2_NP; if ((hcr & ICH_HCR_EL2_VGrp0EIE) && (vmcr & ICH_VMCR_ENG0_MASK)) reg |= ICH_MISR_EL2_VGrp0E; if ((hcr & ICH_HCR_EL2_VGrp0DIE) && !(vmcr & ICH_VMCR_ENG0_MASK)) reg |= ICH_MISR_EL2_VGrp0D; if ((hcr & ICH_HCR_EL2_VGrp1EIE) && (vmcr & ICH_VMCR_ENG1_MASK)) reg |= ICH_MISR_EL2_VGrp1E; if ((hcr & ICH_HCR_EL2_VGrp1DIE) && !(vmcr & ICH_VMCR_ENG1_MASK)) reg |= ICH_MISR_EL2_VGrp1D; return reg; } /* * For LRs which have HW bit set such as timer interrupts, we modify them to * have the host hardware interrupt number instead of the virtual one programmed * by the guest hypervisor. */ static void vgic_v3_create_shadow_lr(struct kvm_vcpu *vcpu, struct vgic_v3_cpu_if *s_cpu_if) { unsigned long lr_map = 0; int index = 0; for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) { u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i)); struct vgic_irq *irq; if (!(lr & ICH_LR_STATE)) lr = 0; if (!(lr & ICH_LR_HW)) goto next; /* We have the HW bit set, check for validity of pINTID */ irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr)); if (!irq || !irq->hw || irq->intid > VGIC_MAX_SPI ) { /* There was no real mapping, so nuke the HW bit */ lr &= ~ICH_LR_HW; if (irq) vgic_put_irq(vcpu->kvm, irq); goto next; } /* It is illegal to have the EOI bit set with HW */ lr &= ~ICH_LR_EOI; /* Translate the virtual mapping to the real one */ lr &= ~ICH_LR_PHYS_ID_MASK; lr |= FIELD_PREP(ICH_LR_PHYS_ID_MASK, (u64)irq->hwintid); vgic_put_irq(vcpu->kvm, irq); next: s_cpu_if->vgic_lr[index] = lr; if (lr) { lr_map |= BIT(i); index++; } } container_of(s_cpu_if, struct shadow_if, cpuif)->lr_map = lr_map; s_cpu_if->used_lrs = index; } void vgic_v3_sync_nested(struct kvm_vcpu *vcpu) { struct shadow_if *shadow_if = get_shadow_if(); int i, index = 0; for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) { u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i)); struct vgic_irq *irq; if (!(lr & ICH_LR_HW) || !(lr & ICH_LR_STATE)) goto next; /* * If we had a HW lr programmed by the guest hypervisor, we * need to emulate the HW effect between the guest hypervisor * and the nested guest. */ irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr)); if (WARN_ON(!irq)) /* Shouldn't happen as we check on load */ goto next; lr = __gic_v3_get_lr(index); if (!(lr & ICH_LR_STATE)) irq->active = false; vgic_put_irq(vcpu->kvm, irq); next: index++; } } static void vgic_v3_create_shadow_state(struct kvm_vcpu *vcpu, struct vgic_v3_cpu_if *s_cpu_if) { struct vgic_v3_cpu_if *host_if = &vcpu->arch.vgic_cpu.vgic_v3; u64 val = 0; int i; /* * If we're on a system with a broken vgic that requires * trapping, propagate the trapping requirements. * * Ah, the smell of rotten fruits... */ if (static_branch_unlikely(&vgic_v3_cpuif_trap)) val = host_if->vgic_hcr & (ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TC | ICH_HCR_EL2_TDIR); s_cpu_if->vgic_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) | val; s_cpu_if->vgic_vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2); s_cpu_if->vgic_sre = host_if->vgic_sre; for (i = 0; i < 4; i++) { s_cpu_if->vgic_ap0r[i] = __vcpu_sys_reg(vcpu, ICH_AP0RN(i)); s_cpu_if->vgic_ap1r[i] = __vcpu_sys_reg(vcpu, ICH_AP1RN(i)); } vgic_v3_create_shadow_lr(vcpu, s_cpu_if); } void vgic_v3_load_nested(struct kvm_vcpu *vcpu) { struct shadow_if *shadow_if = get_shadow_if(); struct vgic_v3_cpu_if *cpu_if = &shadow_if->cpuif; BUG_ON(!vgic_state_is_nested(vcpu)); vgic_v3_create_shadow_state(vcpu, cpu_if); __vgic_v3_restore_vmcr_aprs(cpu_if); __vgic_v3_activate_traps(cpu_if); __vgic_v3_restore_state(cpu_if); /* * Propagate the number of used LRs for the benefit of the HYP * GICv3 emulation code. Yes, this is a pretty sorry hack. */ vcpu->arch.vgic_cpu.vgic_v3.used_lrs = cpu_if->used_lrs; } void vgic_v3_put_nested(struct kvm_vcpu *vcpu) { struct shadow_if *shadow_if = get_shadow_if(); struct vgic_v3_cpu_if *s_cpu_if = &shadow_if->cpuif; u64 val; int i; __vgic_v3_save_vmcr_aprs(s_cpu_if); __vgic_v3_deactivate_traps(s_cpu_if); __vgic_v3_save_state(s_cpu_if); /* * Translate the shadow state HW fields back to the virtual ones * before copying the shadow struct back to the nested one. */ val = __vcpu_sys_reg(vcpu, ICH_HCR_EL2); val &= ~ICH_HCR_EL2_EOIcount_MASK; val |= (s_cpu_if->vgic_hcr & ICH_HCR_EL2_EOIcount_MASK); __vcpu_sys_reg(vcpu, ICH_HCR_EL2) = val; __vcpu_sys_reg(vcpu, ICH_VMCR_EL2) = s_cpu_if->vgic_vmcr; for (i = 0; i < 4; i++) { __vcpu_sys_reg(vcpu, ICH_AP0RN(i)) = s_cpu_if->vgic_ap0r[i]; __vcpu_sys_reg(vcpu, ICH_AP1RN(i)) = s_cpu_if->vgic_ap1r[i]; } for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) { val = __vcpu_sys_reg(vcpu, ICH_LRN(i)); val &= ~ICH_LR_STATE; val |= s_cpu_if->vgic_lr[i] & ICH_LR_STATE; __vcpu_sys_reg(vcpu, ICH_LRN(i)) = val; s_cpu_if->vgic_lr[i] = 0; } shadow_if->lr_map = 0; vcpu->arch.vgic_cpu.vgic_v3.used_lrs = 0; } /* * If we exit a L2 VM with a pending maintenance interrupt from the GIC, * then we need to forward this to L1 so that it can re-sync the appropriate * LRs and sample level triggered interrupts again. */ void vgic_v3_handle_nested_maint_irq(struct kvm_vcpu *vcpu) { bool state = read_sysreg_s(SYS_ICH_MISR_EL2); /* This will force a switch back to L1 if the level is high */ kvm_vgic_inject_irq(vcpu->kvm, vcpu, vcpu->kvm->arch.vgic.mi_intid, state, vcpu); sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0); } void vgic_v3_nested_update_mi(struct kvm_vcpu *vcpu) { bool level; level = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_En; if (level) level &= vgic_v3_get_misr(vcpu); kvm_vgic_inject_irq(vcpu->kvm, vcpu, vcpu->kvm->arch.vgic.mi_intid, level, vcpu); }