// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2024-2025 Intel Corporation */ #include #include #include "mld.h" #include "sta.h" #include "agg.h" #include "rx.h" #include "hcmd.h" #include "iface.h" #include "time_sync.h" #include "fw/dbg.h" #include "fw/api/rx.h" /* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */ struct iwl_mld_rx_phy_data { enum iwl_rx_phy_info_type info_type; __le32 data0; __le32 data1; __le32 data2; __le32 data3; __le32 eht_data4; __le32 data5; __le16 data4; bool first_subframe; bool with_data; __le32 rx_vec[4]; u32 rate_n_flags; u32 gp2_on_air_rise; u16 phy_info; u8 energy_a, energy_b; u8 channel; }; static void iwl_mld_fill_phy_data(struct iwl_rx_mpdu_desc *desc, struct iwl_mld_rx_phy_data *phy_data) { phy_data->phy_info = le16_to_cpu(desc->phy_info); phy_data->rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); phy_data->channel = desc->v3.channel; phy_data->energy_a = desc->v3.energy_a; phy_data->energy_b = desc->v3.energy_b; phy_data->data0 = desc->v3.phy_data0; phy_data->data1 = desc->v3.phy_data1; phy_data->data2 = desc->v3.phy_data2; phy_data->data3 = desc->v3.phy_data3; phy_data->data4 = desc->phy_data4; phy_data->eht_data4 = desc->phy_eht_data4; phy_data->data5 = desc->v3.phy_data5; phy_data->with_data = true; } static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb, int queue, struct ieee80211_sta *sta) { struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); struct iwl_mld_sta *mld_sta; struct iwl_mld_ptk_pn *ptk_pn; int res; u8 tid, keyidx; u8 pn[IEEE80211_CCMP_PN_LEN]; u8 *extiv; /* multicast and non-data only arrives on default queue; avoid checking * for default queue - we don't want to replicate all the logic that's * necessary for checking the PN on fragmented frames, leave that * to mac80211 */ if (queue == 0 || !ieee80211_is_data(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) return 0; if (!(stats->flag & RX_FLAG_DECRYPTED)) return 0; /* if we are here - this for sure is either CCMP or GCMP */ if (!sta) { IWL_DEBUG_DROP(mld, "expected hw-decrypted unicast frame for station\n"); return -1; } mld_sta = iwl_mld_sta_from_mac80211(sta); extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); keyidx = extiv[3] >> 6; ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]); if (!ptk_pn) return -1; if (ieee80211_is_data_qos(hdr->frame_control)) tid = ieee80211_get_tid(hdr); else tid = 0; /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ if (tid >= IWL_MAX_TID_COUNT) return -1; /* load pn */ pn[0] = extiv[7]; pn[1] = extiv[6]; pn[2] = extiv[5]; pn[3] = extiv[4]; pn[4] = extiv[1]; pn[5] = extiv[0]; res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); if (res < 0) return -1; if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) return -1; memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); stats->flag |= RX_FLAG_PN_VALIDATED; return 0; } /* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */ void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld, struct napi_struct *napi, struct sk_buff *skb, int queue, struct ieee80211_sta *sta) { KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211, mld, napi, skb, queue, sta); if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) { kfree_skb(skb); return; } ieee80211_rx_napi(mld->hw, sta, skb, napi); } EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211); static void iwl_mld_fill_signal(struct iwl_mld *mld, struct ieee80211_rx_status *rx_status, struct iwl_mld_rx_phy_data *phy_data) { u32 rate_n_flags = phy_data->rate_n_flags; int energy_a = phy_data->energy_a; int energy_b = phy_data->energy_b; int max_energy; energy_a = energy_a ? -energy_a : S8_MIN; energy_b = energy_b ? -energy_b : S8_MIN; max_energy = max(energy_a, energy_b); IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n", energy_a, energy_b, max_energy); rx_status->signal = max_energy; rx_status->chains = (rate_n_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; rx_status->chain_signal[0] = energy_a; rx_status->chain_signal[1] = energy_b; } static void iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data, struct ieee80211_radiotap_he *he, struct ieee80211_radiotap_he_mu *he_mu, struct ieee80211_rx_status *rx_status) { /* Unfortunately, we have to leave the mac80211 data * incorrect for the case that we receive an HE-MU * transmission and *don't* have the HE phy data (due * to the bits being used for TSF). This shouldn't * happen though as management frames where we need * the TSF/timers are not be transmitted in HE-MU. */ u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); u32 rate_n_flags = phy_data->rate_n_flags; u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; u8 offs = 0; rx_status->bw = RATE_INFO_BW_HE_RU; he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); switch (ru) { case 0 ... 36: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; offs = ru; break; case 37 ... 52: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; offs = ru - 37; break; case 53 ... 60: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; offs = ru - 53; break; case 61 ... 64: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; offs = ru - 61; break; case 65 ... 66: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; offs = ru - 65; break; case 67: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; break; case 68: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; break; } he->data2 |= le16_encode_bits(offs, IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); #define CHECK_BW(bw) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) CHECK_BW(20); CHECK_BW(40); CHECK_BW(80); CHECK_BW(160); if (he_mu) he_mu->flags2 |= le16_encode_bits(u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK), IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); else if (he_type == RATE_MCS_HE_TYPE_TRIG) he->data6 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | le16_encode_bits(u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK), IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); } static void iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data, struct ieee80211_radiotap_he_mu *he_mu) { u32 phy_data2 = le32_to_cpu(phy_data->data2); u32 phy_data3 = le32_to_cpu(phy_data->data3); u16 phy_data4 = le16_to_cpu(phy_data->data4); u32 rate_n_flags = phy_data->rate_n_flags; if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) { he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); he_mu->flags1 |= le16_encode_bits(u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU), IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); he_mu->ru_ch1[0] = u32_get_bits(phy_data2, IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0); he_mu->ru_ch1[1] = u32_get_bits(phy_data3, IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1); he_mu->ru_ch1[2] = u32_get_bits(phy_data2, IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2); he_mu->ru_ch1[3] = u32_get_bits(phy_data3, IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3); } if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) && (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); he_mu->flags2 |= le16_encode_bits(u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU), IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); he_mu->ru_ch2[0] = u32_get_bits(phy_data2, IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0); he_mu->ru_ch2[1] = u32_get_bits(phy_data3, IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1); he_mu->ru_ch2[2] = u32_get_bits(phy_data2, IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2); he_mu->ru_ch2[3] = u32_get_bits(phy_data3, IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3); } } static void iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data, struct ieee80211_radiotap_he *he, struct ieee80211_radiotap_he_mu *he_mu, struct ieee80211_rx_status *rx_status, int queue) { switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_NONE: case IWL_RX_PHY_INFO_TYPE_CCK: case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: case IWL_RX_PHY_INFO_TYPE_HT: case IWL_RX_PHY_INFO_TYPE_VHT_SU: case IWL_RX_PHY_INFO_TYPE_VHT_MU: case IWL_RX_PHY_INFO_TYPE_EHT_MU: case IWL_RX_PHY_INFO_TYPE_EHT_TB: case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: return; case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); fallthrough; case IWL_RX_PHY_INFO_TYPE_HE_SU: case IWL_RX_PHY_INFO_TYPE_HE_MU: case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: case IWL_RX_PHY_INFO_TYPE_HE_TB: /* HE common */ he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_UPLINK), IEEE80211_RADIOTAP_HE_DATA3_UL_DL); } he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), IEEE80211_RADIOTAP_HE_DATA6_TXOP); he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_DOPPLER), IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); break; } switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: case IWL_RX_PHY_INFO_TYPE_HE_MU: case IWL_RX_PHY_INFO_TYPE_HE_SU: he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); break; default: /* nothing here */ break; } switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: he_mu->flags1 |= le16_encode_bits(le16_get_bits(phy_data->data4, IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); he_mu->flags1 |= le16_encode_bits(le16_get_bits(phy_data->data4, IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); he_mu->flags2 |= le16_encode_bits(le16_get_bits(phy_data->data4, IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); iwl_mld_decode_he_mu_ext(phy_data, he_mu); fallthrough; case IWL_RX_PHY_INFO_TYPE_HE_MU: he_mu->flags2 |= le16_encode_bits(le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); he_mu->flags2 |= le16_encode_bits(le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); fallthrough; case IWL_RX_PHY_INFO_TYPE_HE_TB: case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); break; case IWL_RX_PHY_INFO_TYPE_HE_SU: he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_HE_BEAM_CHNG), IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); break; default: /* nothing */ break; } } static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb, struct iwl_mld_rx_phy_data *phy_data, int queue) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_he *he = NULL; struct ieee80211_radiotap_he_mu *he_mu = NULL; u32 rate_n_flags = phy_data->rate_n_flags; u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; u8 ltf; static const struct ieee80211_radiotap_he known = { .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), }; static const struct ieee80211_radiotap_he_mu mu_known = { .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), }; u16 phy_info = phy_data->phy_info; he = skb_put_data(skb, &known, sizeof(known)); rx_status->flag |= RX_FLAG_RADIOTAP_HE; if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; } /* report the AMPDU-EOF bit on single frames */ if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { rx_status->flag |= RX_FLAG_AMPDU_DETAILS; rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; } if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status, queue); /* update aggregation data for monitor sake on default queue */ if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; } if (he_type == RATE_MCS_HE_TYPE_EXT_SU && rate_n_flags & RATE_MCS_HE_106T_MSK) { rx_status->bw = RATE_INFO_BW_HE_RU; rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; } /* actually data is filled in mac80211 */ if (he_type == RATE_MCS_HE_TYPE_SU || he_type == RATE_MCS_HE_TYPE_EXT_SU) he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); #define CHECK_TYPE(F) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) CHECK_TYPE(SU); CHECK_TYPE(EXT_SU); CHECK_TYPE(MU); CHECK_TYPE(TRIG); he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); if (rate_n_flags & RATE_MCS_BF_MSK) he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> RATE_MCS_HE_GI_LTF_POS) { case 0: if (he_type == RATE_MCS_HE_TYPE_TRIG) rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; else rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; if (he_type == RATE_MCS_HE_TYPE_MU) ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; else ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; break; case 1: if (he_type == RATE_MCS_HE_TYPE_TRIG) rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; else rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; break; case 2: if (he_type == RATE_MCS_HE_TYPE_TRIG) { rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; } else { rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; } break; case 3: rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; break; case 4: rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; break; default: ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; } he->data5 |= le16_encode_bits(ltf, IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); } static void iwl_mld_decode_lsig(struct sk_buff *skb, struct iwl_mld_rx_phy_data *phy_data) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_lsig *lsig; switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_HT: case IWL_RX_PHY_INFO_TYPE_VHT_SU: case IWL_RX_PHY_INFO_TYPE_VHT_MU: case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: case IWL_RX_PHY_INFO_TYPE_HE_SU: case IWL_RX_PHY_INFO_TYPE_HE_MU: case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: case IWL_RX_PHY_INFO_TYPE_HE_TB: case IWL_RX_PHY_INFO_TYPE_EHT_MU: case IWL_RX_PHY_INFO_TYPE_EHT_TB: case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: lsig = skb_put(skb, sizeof(*lsig)); lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_LSIG_LEN_MASK), IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; break; default: break; } } /* Put a TLV on the skb and return data pointer * * Also pad the len to 4 and zero out all data part */ static void * iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) { struct ieee80211_radiotap_tlv *tlv; tlv = skb_put(skb, sizeof(*tlv)); tlv->type = cpu_to_le16(type); tlv->len = cpu_to_le16(len); return skb_put_zero(skb, ALIGN(len, 4)); } #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) #define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ typeof(enc_bits) _enc_bits = enc_bits; \ typeof(usig) _usig = usig; \ (_usig)->mask |= cpu_to_le32(_enc_bits); \ (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ } while (0) #define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ eht->data[(rt_data)] |= \ (cpu_to_le32 \ (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ LE32_DEC_ENC(data ## fw_data, \ IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) #define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 #define IWL_RX_RU_DATA_A1 2 #define IWL_RX_RU_DATA_A2 2 #define IWL_RX_RU_DATA_B1 2 #define IWL_RX_RU_DATA_B2 4 #define IWL_RX_RU_DATA_C1 3 #define IWL_RX_RU_DATA_C2 3 #define IWL_RX_RU_DATA_D1 4 #define IWL_RX_RU_DATA_D2 4 #define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru) \ _IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ rt_ru, \ IWL_RX_RU_DATA_ ## fw_ru, \ fw_ru) static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld, struct iwl_mld_rx_phy_data *phy_data, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht, struct ieee80211_radiotap_eht_usig *usig) { if (phy_data->with_data) { __le32 data1 = phy_data->data1; __le32 data2 = phy_data->data2; __le32 data3 = phy_data->data3; __le32 data4 = phy_data->eht_data4; __le32 data5 = phy_data->data5; u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4, IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); IWL_MLD_ENC_USIG_VALUE_MASK (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); eht->data[7] |= LE32_DEC_ENC (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); /* * Hardware labels the content channels/RU allocation values * as follows: * Content Channel 1 Content Channel 2 * 20 MHz: A1 * 40 MHz: A1 B1 * 80 MHz: A1 C1 B1 D1 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 * * However firmware can only give us A1-D2, so the higher * frequencies are missing. */ switch (phy_bw) { case RATE_MCS_CHAN_WIDTH_320: /* additional values are missing in RX metadata */ fallthrough; case RATE_MCS_CHAN_WIDTH_160: /* content channel 1 */ IWL_MLD_ENC_EHT_RU(1_2_1, A2); IWL_MLD_ENC_EHT_RU(1_2_2, C2); /* content channel 2 */ IWL_MLD_ENC_EHT_RU(2_2_1, B2); IWL_MLD_ENC_EHT_RU(2_2_2, D2); fallthrough; case RATE_MCS_CHAN_WIDTH_80: /* content channel 1 */ IWL_MLD_ENC_EHT_RU(1_1_2, C1); /* content channel 2 */ IWL_MLD_ENC_EHT_RU(2_1_2, D1); fallthrough; case RATE_MCS_CHAN_WIDTH_40: /* content channel 2 */ IWL_MLD_ENC_EHT_RU(2_1_1, B1); fallthrough; case RATE_MCS_CHAN_WIDTH_20: IWL_MLD_ENC_EHT_RU(1_1_1, A1); break; } } else { __le32 usig_a1 = phy_data->rx_vec[0]; __le32 usig_a2 = phy_data->rx_vec[1]; IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, IWL_RX_USIG_A1_DISREGARD, IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, IWL_RX_USIG_A1_VALIDATE, IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_PPDU_TYPE, IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_MCS, IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); IWL_MLD_ENC_USIG_VALUE_MASK (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_CRC_OK, IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); } } static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld, struct iwl_mld_rx_phy_data *phy_data, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht, struct ieee80211_radiotap_eht_usig *usig) { if (phy_data->with_data) { __le32 data5 = phy_data->data5; IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); } else { __le32 usig_a1 = phy_data->rx_vec[0]; __le32 usig_a2 = phy_data->rx_vec[1]; IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, IWL_RX_USIG_A1_DISREGARD, IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_PPDU_TYPE, IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_CRC_OK, IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); } } static void iwl_mld_decode_eht_ru(struct iwl_mld *mld, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht) { u32 ru = le32_get_bits(eht->data[8], IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); enum nl80211_eht_ru_alloc nl_ru; /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields * in an EHT variant User Info field */ switch (ru) { case 0 ... 36: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; break; case 37 ... 52: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; break; case 53 ... 60: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; break; case 61 ... 64: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; break; case 65 ... 66: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; break; case 67: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; break; case 68: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; break; case 69: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; break; case 70 ... 81: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; break; case 82 ... 89: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; break; case 90 ... 93: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; break; case 94 ... 95: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; break; case 96 ... 99: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; break; case 100 ... 103: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; break; case 104: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; break; case 105 ... 106: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; break; default: return; } rx_status->bw = RATE_INFO_BW_EHT_RU; rx_status->eht.ru = nl_ru; } static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld, struct iwl_mld_rx_phy_data *phy_data, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht, struct ieee80211_radiotap_eht_usig *usig) { __le32 data0 = phy_data->data0; __le32 data1 = phy_data->data1; __le32 usig_a1 = phy_data->rx_vec[0]; u8 info_type = phy_data->info_type; /* Not in EHT range */ if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) return; usig->common |= cpu_to_le32 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); if (phy_data->with_data) { usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_UPLINK, IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); } else { usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_UL_FLAG, IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_BSS_COLOR, IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); } usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); /* All RU allocating size/index is in TB format */ eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); iwl_mld_decode_eht_ru(mld, rx_status, eht); /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set * which is on only in case of monitor mode so no need to check monitor * mode */ eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); eht->data[1] |= le32_encode_bits(mld->monitor.p80, IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); if (phy_data->with_data) usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); else usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); /* * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS */ eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig); if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig); } static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb, struct iwl_mld_rx_phy_data *phy_data, int queue) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_eht *eht; struct ieee80211_radiotap_eht_usig *usig; size_t eht_len = sizeof(*eht); u32 rate_n_flags = phy_data->rate_n_flags; u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; /* EHT and HE have the same values for LTF */ u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; u16 phy_info = phy_data->phy_info; u32 bw; /* u32 for 1 user_info */ if (phy_data->with_data) eht_len += sizeof(u32); eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, sizeof(*usig)); rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); /* specific handling for 320MHz */ bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK); if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) bw += le32_get_bits(phy_data->data0, IWL_RX_PHY_DATA0_EHT_BW320_SLOT); usig->common |= cpu_to_le32 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); /* report the AMPDU-EOF bit on single frames */ if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { rx_status->flag |= RX_FLAG_AMPDU_DETAILS; rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; } if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig); #define CHECK_TYPE(F) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) CHECK_TYPE(SU); CHECK_TYPE(EXT_SU); CHECK_TYPE(MU); CHECK_TYPE(TRIG); switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) { case 0: if (he_type == RATE_MCS_HE_TYPE_TRIG) { rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; } else { rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; } break; case 1: rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; break; case 2: ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; if (he_type == RATE_MCS_HE_TYPE_TRIG) rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; else rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; break; case 3: if (he_type != RATE_MCS_HE_TYPE_TRIG) { ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; } break; default: /* nothing here */ break; } if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); eht->data[0] |= cpu_to_le32 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, ltf) | FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, rx_status->eht.gi)); } if (!phy_data->with_data) { eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); eht->data[7] |= le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); if (rate_n_flags & RATE_MCS_BF_MSK) eht->data[7] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); } else { eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); if (rate_n_flags & RATE_MCS_BF_MSK) eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); if (rate_n_flags & RATE_MCS_LDPC_MSK) eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); eht->user_info[0] |= cpu_to_le32 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, u32_get_bits(rate_n_flags, RATE_VHT_MCS_RATE_CODE_MSK)) | FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK))); } } #ifdef CONFIG_IWLWIFI_DEBUGFS static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_vendor_content *radiotap; const u16 vendor_data_len = sizeof(mld->monitor.cur_aid); if (!mld->monitor.cur_aid) return; radiotap = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_VENDOR_NAMESPACE, sizeof(*radiotap) + vendor_data_len); /* Intel OUI */ radiotap->oui[0] = 0xf6; radiotap->oui[1] = 0x54; radiotap->oui[2] = 0x25; /* radiotap sniffer config sub-namespace */ radiotap->oui_subtype = 1; radiotap->vendor_type = 0; /* fill the data now */ memcpy(radiotap->data, &mld->monitor.cur_aid, sizeof(mld->monitor.cur_aid)); rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; } #endif static void iwl_mld_rx_fill_status(struct iwl_mld *mld, struct sk_buff *skb, struct iwl_mld_rx_phy_data *phy_data, struct iwl_rx_mpdu_desc *mpdu_desc, struct ieee80211_hdr *hdr, int queue) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK; u32 rate_n_flags = phy_data->rate_n_flags; u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK; if (WARN_ON_ONCE(phy_data->with_data && (!mpdu_desc || !hdr))) return; /* Keep packets with CRC errors (and with overrun) for monitor mode * (otherwise the firmware discards them) but mark them as bad. */ if (phy_data->with_data && (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || !(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK)))) { IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n", le32_to_cpu(mpdu_desc->status)); rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; } phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; if (phy_data->with_data && likely(!(phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { rx_status->mactime = le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise); /* TSF as indicated by the firmware is at INA time */ rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; } else { phy_data->info_type = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_INFO_TYPE_MASK); } /* management stuff on default queue */ if (!queue && phy_data->with_data && unlikely(ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control))) { rx_status->boottime_ns = ktime_get_boottime_ns(); if (mld->scan.pass_all_sched_res == SCHED_SCAN_PASS_ALL_STATE_ENABLED) mld->scan.pass_all_sched_res = SCHED_SCAN_PASS_ALL_STATE_FOUND; } /* set the preamble flag if appropriate */ if (format == RATE_MCS_CCK_MSK && phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; iwl_mld_fill_signal(mld, rx_status, phy_data); /* This may be overridden by iwl_mld_rx_he() to HE_RU */ switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { case RATE_MCS_CHAN_WIDTH_20: break; case RATE_MCS_CHAN_WIDTH_40: rx_status->bw = RATE_INFO_BW_40; break; case RATE_MCS_CHAN_WIDTH_80: rx_status->bw = RATE_INFO_BW_80; break; case RATE_MCS_CHAN_WIDTH_160: rx_status->bw = RATE_INFO_BW_160; break; case RATE_MCS_CHAN_WIDTH_320: rx_status->bw = RATE_INFO_BW_320; break; } /* must be before L-SIG data */ if (format == RATE_MCS_HE_MSK) iwl_mld_rx_he(mld, skb, phy_data, queue); iwl_mld_decode_lsig(skb, phy_data); rx_status->device_timestamp = phy_data->gp2_on_air_rise; /* using TLV format and must be after all fixed len fields */ if (format == RATE_MCS_EHT_MSK) iwl_mld_rx_eht(mld, skb, phy_data, queue); #ifdef CONFIG_IWLWIFI_DEBUGFS if (unlikely(mld->monitor.on)) iwl_mld_add_rtap_sniffer_config(mld, skb); #endif if (format != RATE_MCS_CCK_MSK && is_sgi) rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (rate_n_flags & RATE_MCS_LDPC_MSK) rx_status->enc_flags |= RX_ENC_FLAG_LDPC; switch (format) { case RATE_MCS_HT_MSK: rx_status->encoding = RX_ENC_HT; rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; break; case RATE_MCS_VHT_MSK: case RATE_MCS_HE_MSK: case RATE_MCS_EHT_MSK: if (format == RATE_MCS_VHT_MSK) { rx_status->encoding = RX_ENC_VHT; } else if (format == RATE_MCS_HE_MSK) { rx_status->encoding = RX_ENC_HE; rx_status->he_dcm = !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); } else if (format == RATE_MCS_EHT_MSK) { rx_status->encoding = RX_ENC_EHT; } rx_status->nss = u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; break; default: { int rate = iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags, rx_status->band); /* valid rate */ if (rate >= 0 && rate <= 0xFF) { rx_status->rate_idx = rate; break; } /* invalid rate */ rx_status->rate_idx = 0; if (net_ratelimit()) IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n", rate_n_flags, rx_status->band); break; } } } /* iwl_mld_create_skb adds the rxb to a new skb */ static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb, struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, struct iwl_rx_cmd_buffer *rxb) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; unsigned int headlen, fraglen, pad_len = 0; unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); u8 mic_crc_len = u8_get_bits(desc->mac_flags1, IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { len -= 2; pad_len = 2; } /* For non monitor interface strip the bytes the RADA might not have * removed (it might be disabled, e.g. for mgmt frames). As a monitor * interface cannot exist with other interfaces, this removal is safe * and sufficient, in monitor mode there's no decryption being done. */ if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS)) len -= mic_crc_len; /* If frame is small enough to fit in skb->head, pull it completely. * If not, only pull ieee80211_hdr (including crypto if present, and * an additional 8 bytes for SNAP/ethertype, see below) so that * splice() or TCP coalesce are more efficient. * * Since, in addition, ieee80211_data_to_8023() always pull in at * least 8 bytes (possibly more for mesh) we can do the same here * to save the cost of doing it later. That still doesn't pull in * the actual IP header since the typical case has a SNAP header. * If the latter changes (there are efforts in the standards group * to do so) we should revisit this and ieee80211_data_to_8023(). */ headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8; /* The firmware may align the packet to DWORD. * The padding is inserted after the IV. * After copying the header + IV skip the padding if * present before copying packet data. */ hdrlen += crypt_len; if (unlikely(headlen < hdrlen)) return -EINVAL; /* Since data doesn't move data while putting data on skb and that is * the only way we use, data + len is the next place that hdr would * be put */ skb_set_mac_header(skb, skb->len); skb_put_data(skb, hdr, hdrlen); skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); if (skb->ip_summed == CHECKSUM_COMPLETE) { struct { u8 hdr[6]; __be16 type; } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); if (unlikely(headlen - hdrlen < sizeof(*shdr) || !ether_addr_equal(shdr->hdr, rfc1042_header) || (shdr->type != htons(ETH_P_IP) && shdr->type != htons(ETH_P_ARP) && shdr->type != htons(ETH_P_IPV6) && shdr->type != htons(ETH_P_8021Q) && shdr->type != htons(ETH_P_PAE) && shdr->type != htons(ETH_P_TDLS)))) skb->ip_summed = CHECKSUM_NONE; } fraglen = len - headlen; if (fraglen) { int offset = (u8 *)hdr + headlen + pad_len - (u8 *)rxb_addr(rxb) + rxb_offset(rxb); skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, fraglen, rxb->truesize); } return 0; } /* returns true if a packet is a duplicate or invalid tid and * should be dropped. Updates AMSDU PN tracking info */ VISIBLE_IF_IWLWIFI_KUNIT bool iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta, struct ieee80211_hdr *hdr, const struct iwl_rx_mpdu_desc *mpdu_desc, struct ieee80211_rx_status *rx_status, int queue) { struct iwl_mld_sta *mld_sta; struct iwl_mld_rxq_dup_data *dup_data; u8 tid, sub_frame_idx; if (WARN_ON(!sta)) return false; mld_sta = iwl_mld_sta_from_mac80211(sta); if (WARN_ON_ONCE(!mld_sta->dup_data)) return false; dup_data = &mld_sta->dup_data[queue]; /* Drop duplicate 802.11 retransmissions * (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery") */ if (ieee80211_is_ctl(hdr->frame_control) || ieee80211_is_any_nullfunc(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) return false; if (ieee80211_is_data_qos(hdr->frame_control)) { /* frame has qos control */ tid = ieee80211_get_tid(hdr); if (tid >= IWL_MAX_TID_COUNT) return true; } else { tid = IWL_MAX_TID_COUNT; } /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ sub_frame_idx = mpdu_desc->amsdu_info & IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; if (IWL_FW_CHECK(mld, sub_frame_idx > 0 && !(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU), "got sub_frame_idx=%d but A-MSDU flag is not set\n", sub_frame_idx)) return true; if (unlikely(ieee80211_has_retry(hdr->frame_control) && dup_data->last_seq[tid] == hdr->seq_ctrl && dup_data->last_sub_frame_idx[tid] >= sub_frame_idx)) return true; /* Allow same PN as the first subframe for following sub frames */ if (dup_data->last_seq[tid] == hdr->seq_ctrl && sub_frame_idx > dup_data->last_sub_frame_idx[tid]) rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; dup_data->last_seq[tid] = hdr->seq_ctrl; dup_data->last_sub_frame_idx[tid] = sub_frame_idx; rx_status->flag |= RX_FLAG_DUP_VALIDATED; return false; } EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup); static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid) { unsigned long now = jiffies; unsigned long timeout; struct iwl_mld_baid_data *ba_data; ba_data = rcu_dereference(mld->fw_id_to_ba[baid]); if (!ba_data) { IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid); return; } if (!ba_data->timeout) return; /* To minimize cache bouncing between RX queues, avoid frequent updates * to last_rx_timestamp. update it only when the timeout period has * passed. The worst-case scenario is the session expiring after * approximately 2 * timeout, which is negligible (the update is * atomic). */ timeout = TU_TO_JIFFIES(ba_data->timeout); if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout)) ba_data->last_rx_timestamp = now; } /* Processes received packets for a station. * Sets *drop to true if the packet should be dropped. * Returns the station if found, or NULL otherwise. */ static struct ieee80211_sta * iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr, struct sk_buff *skb, const struct iwl_rx_mpdu_desc *mpdu_desc, const struct iwl_rx_packet *pkt, int queue, bool *drop) { struct ieee80211_sta *sta = NULL; struct ieee80211_link_sta *link_sta = NULL; struct ieee80211_rx_status *rx_status; u8 baid; if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { u8 sta_id = le32_get_bits(mpdu_desc->status, IWL_RX_MPDU_STATUS_STA_ID); if (IWL_FW_CHECK(mld, sta_id >= mld->fw->ucode_capa.num_stations, "rx_mpdu: invalid sta_id %d\n", sta_id)) return NULL; link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]); if (!IS_ERR_OR_NULL(link_sta)) sta = link_sta->sta; } else if (!is_multicast_ether_addr(hdr->addr2)) { /* Passing NULL is fine since we prevent two stations with the * same address from being added. */ sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL); } /* we may not have any station yet */ if (!sta) return NULL; rx_status = IEEE80211_SKB_RXCB(skb); if (link_sta && sta->valid_links) { rx_status->link_valid = true; rx_status->link_id = link_sta->link_id; } /* fill checksum */ if (ieee80211_is_data(hdr->frame_control) && pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum); skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = csum_unfold(~(__force __sum16)hwsum); } if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) { IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n", le16_to_cpu(hdr->seq_ctrl)); *drop = true; return NULL; } baid = le32_get_bits(mpdu_desc->reorder_data, IWL_RX_MPDU_REORDER_BAID_MASK); if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) iwl_mld_update_last_rx_timestamp(mld, baid); if (link_sta && ieee80211_is_data(hdr->frame_control)) { u8 sub_frame_idx = mpdu_desc->amsdu_info & IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; /* 0 means not an A-MSDU, and 1 means a new A-MSDU */ if (!sub_frame_idx || sub_frame_idx == 1) iwl_mld_count_mpdu_rx(link_sta, queue, 1); if (!is_multicast_ether_addr(hdr->addr1)) iwl_mld_low_latency_update_counters(mld, hdr, sta, queue); } return sta; } #define KEY_IDX_LEN 2 static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta, struct ieee80211_hdr *hdr, struct ieee80211_rx_status *rx_status, u32 mpdu_status, u32 mpdu_len) { struct wireless_dev *wdev; struct iwl_mld_sta *mld_sta; struct iwl_mld_vif *mld_vif; u8 keyidx; struct ieee80211_key_conf *key; const u8 *frame = (void *)hdr; if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) return 0; /* For non-beacon, we don't really care. But beacons may * be filtered out, and we thus need the firmware's replay * detection, otherwise beacons the firmware previously * filtered could be replayed, or something like that, and * it can filter a lot - though usually only if nothing has * changed. */ if (!ieee80211_is_beacon(hdr->frame_control)) return 0; if (!sta) return -1; mld_sta = iwl_mld_sta_from_mac80211(sta); mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif); /* key mismatch - will also report !MIC_OK but we shouldn't count it */ if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID)) goto report; /* good cases */ if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK && !(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { rx_status->flag |= RX_FLAG_DECRYPTED; return 0; } /* both keys will have the same cipher and MIC length, use * whichever one is available */ key = rcu_dereference(mld_vif->bigtks[0]); if (!key) { key = rcu_dereference(mld_vif->bigtks[1]); if (!key) goto report; } if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN) goto report; /* get the real key ID */ keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN]; /* and if that's the other key, look it up */ if (keyidx != key->keyidx) { /* shouldn't happen since firmware checked, but be safe * in case the MIC length is wrong too, for example */ if (keyidx != 6 && keyidx != 7) return -1; key = rcu_dereference(mld_vif->bigtks[keyidx - 6]); if (!key) goto report; } /* Report status to mac80211 */ if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK)) ieee80211_key_mic_failure(key); else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) ieee80211_key_replay(key); report: wdev = ieee80211_vif_to_wdev(mld_sta->vif); if (wdev->netdev) cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, mpdu_len); return -1; } static int iwl_mld_rx_crypto(struct iwl_mld *mld, struct ieee80211_sta *sta, struct ieee80211_hdr *hdr, struct ieee80211_rx_status *rx_status, struct iwl_rx_mpdu_desc *desc, int queue, u32 pkt_flags, u8 *crypto_len) { u32 status = le32_to_cpu(desc->status); if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && !ieee80211_has_protected(hdr->frame_control))) return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status, le16_to_cpu(desc->mpdu_len)); if (!ieee80211_has_protected(hdr->frame_control) || (status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) return 0; switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { case IWL_RX_MPDU_STATUS_SEC_CCM: case IWL_RX_MPDU_STATUS_SEC_GCM: BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { IWL_DEBUG_DROP(mld, "Dropping packet, bad MIC (CCM/GCM)\n"); return -1; } rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; *crypto_len = IEEE80211_CCMP_HDR_LEN; return 0; case IWL_RX_MPDU_STATUS_SEC_TKIP: if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) return -1; if (!(status & RX_MPDU_RES_STATUS_MIC_OK)) rx_status->flag |= RX_FLAG_MMIC_ERROR; if (pkt_flags & FH_RSCSR_RADA_EN) { rx_status->flag |= RX_FLAG_ICV_STRIPPED; rx_status->flag |= RX_FLAG_MMIC_STRIPPED; } *crypto_len = IEEE80211_TKIP_IV_LEN; rx_status->flag |= RX_FLAG_DECRYPTED; return 0; default: break; } return 0; } static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld, struct iwl_mld_rx_phy_data *phy_data, struct ieee80211_rx_status *rx_status) { bool toggle_bit = phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; rx_status->flag |= RX_FLAG_AMPDU_DETAILS; /* Toggle is switched whenever new aggregation starts. Make * sure ampdu_reference is never 0 so we can later use it to * see if the frame was really part of an A-MPDU or not. */ if (toggle_bit != mld->monitor.ampdu_toggle) { mld->monitor.ampdu_ref++; if (mld->monitor.ampdu_ref == 0) mld->monitor.ampdu_ref++; mld->monitor.ampdu_toggle = toggle_bit; phy_data->first_subframe = true; } rx_status->ampdu_reference = mld->monitor.ampdu_ref; } static void iwl_mld_fill_rx_status_band_freq(struct iwl_mld_rx_phy_data *phy_data, struct iwl_rx_mpdu_desc *mpdu_desc, struct ieee80211_rx_status *rx_status) { enum nl80211_band band; band = BAND_IN_RX_STATUS(mpdu_desc->mac_phy_idx); rx_status->band = iwl_mld_phy_band_to_nl80211(band); rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, rx_status->band); } void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi, struct iwl_rx_cmd_buffer *rxb, int queue) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_mld_rx_phy_data phy_data = {}; struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data; struct ieee80211_sta *sta; struct ieee80211_hdr *hdr; struct sk_buff *skb; size_t mpdu_desc_size = sizeof(*mpdu_desc); bool drop = false; u8 crypto_len = 0; u32 pkt_len = iwl_rx_packet_payload_len(pkt); u32 mpdu_len; enum iwl_mld_reorder_result reorder_res; struct ieee80211_rx_status *rx_status; if (unlikely(mld->fw_status.in_hw_restart)) return; if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size, "Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len)) return; mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len); if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len, "FW lied about packet len (%d)\n", pkt_len)) return; /* Don't use dev_alloc_skb(), we'll have enough headroom once * ieee80211_hdr pulled. */ skb = alloc_skb(128, GFP_ATOMIC); if (!skb) { IWL_ERR(mld, "alloc_skb failed\n"); return; } hdr = (void *)(pkt->data + mpdu_desc_size); iwl_mld_fill_phy_data(mpdu_desc, &phy_data); if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { /* If the device inserted padding it means that (it thought) * the 802.11 header wasn't a multiple of 4 bytes long. In * this case, reserve two bytes at the start of the SKB to * align the payload properly in case we end up copying it. */ skb_reserve(skb, 2); } rx_status = IEEE80211_SKB_RXCB(skb); /* this is needed early */ iwl_mld_fill_rx_status_band_freq(&phy_data, mpdu_desc, rx_status); rcu_read_lock(); sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop); if (drop) goto drop; /* update aggregation data for monitor sake on default queue */ if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status); iwl_mld_rx_fill_status(mld, skb, &phy_data, mpdu_desc, hdr, queue); if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue, le32_to_cpu(pkt->len_n_flags), &crypto_len)) goto drop; if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb)) goto drop; /* time sync frame is saved and will be released later when the * notification with the timestamps arrives. */ if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2)) goto out; reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc); switch (reorder_res) { case IWL_MLD_PASS_SKB: break; case IWL_MLD_DROP_SKB: goto drop; case IWL_MLD_BUFFERED_SKB: goto out; default: WARN_ON(1); goto drop; } iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta); goto out; drop: kfree_skb(skb); out: rcu_read_unlock(); } #define SYNC_RX_QUEUE_TIMEOUT (HZ) void iwl_mld_sync_rx_queues(struct iwl_mld *mld, enum iwl_mld_internal_rxq_notif_type type, const void *notif_payload, u32 notif_payload_size) { u8 num_rx_queues = mld->trans->num_rx_queues; struct { struct iwl_rxq_sync_cmd sync_cmd; struct iwl_mld_internal_rxq_notif notif; } __packed cmd = { .sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1), .sync_cmd.count = cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) + notif_payload_size), .notif.type = type, .notif.cookie = mld->rxq_sync.cookie, }; struct iwl_host_cmd hcmd = { .id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD), .data[0] = &cmd, .len[0] = sizeof(cmd), .data[1] = notif_payload, .len[1] = notif_payload_size, }; int ret; /* size must be a multiple of DWORD */ if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3))) return; mld->rxq_sync.state = (1 << num_rx_queues) - 1; ret = iwl_mld_send_cmd(mld, &hcmd); if (ret) { IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret); goto out; } ret = wait_event_timeout(mld->rxq_sync.waitq, READ_ONCE(mld->rxq_sync.state) == 0, SYNC_RX_QUEUE_TIMEOUT); WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n", mld->rxq_sync.state, mld->rxq_sync.cookie); out: mld->rxq_sync.state = 0; mld->rxq_sync.cookie++; } void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld, struct napi_struct *napi, struct iwl_rx_packet *pkt, int queue) { struct iwl_rxq_sync_notification *notif; struct iwl_mld_internal_rxq_notif *internal_notif; u32 len = iwl_rx_packet_payload_len(pkt); size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif); notif = (void *)pkt->data; internal_notif = (void *)notif->payload; if (IWL_FW_CHECK(mld, len < combined_notif_len, "invalid notification size %u (%zu)\n", len, combined_notif_len)) return; len -= combined_notif_len; if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie, "received expired RX queue sync message (cookie=%d expected=%d q[%d])\n", internal_notif->cookie, mld->rxq_sync.cookie, queue)) return; switch (internal_notif->type) { case IWL_MLD_RXQ_EMPTY: IWL_FW_CHECK(mld, len, "invalid empty notification size %d\n", len); break; case IWL_MLD_RXQ_NOTIF_DEL_BA: if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data), "invalid delba notification size %u (%zu)\n", len, sizeof(struct iwl_mld_delba_data))) break; iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload); break; default: WARN_ON_ONCE(1); } IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state), "RXQ sync: queue %d responded a second time!\n", queue); if (READ_ONCE(mld->rxq_sync.state) == 0) wake_up(&mld->rxq_sync.waitq); } void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi, struct iwl_rx_packet *pkt, int queue) { struct iwl_rx_no_data_ver_3 *desc; struct iwl_mld_rx_phy_data phy_data; struct ieee80211_rx_status *rx_status; struct sk_buff *skb; u32 format, rssi; if (unlikely(mld->fw_status.in_hw_restart)) return; if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc), "Bad RX_NO_DATA_NOTIF size (%d)\n", iwl_rx_packet_payload_len(pkt))) return; desc = (void *)pkt->data; rssi = le32_to_cpu(desc->rssi); phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); phy_data.data0 = desc->phy_info[0]; phy_data.data1 = desc->phy_info[1]; phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); phy_data.rate_n_flags = le32_to_cpu(desc->rate); phy_data.with_data = false; BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec)); memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec)); format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; /* Don't use dev_alloc_skb(), we'll have enough headroom once * ieee80211_hdr pulled. */ skb = alloc_skb(128, GFP_ATOMIC); if (!skb) { IWL_ERR(mld, "alloc_skb failed\n"); return; } rx_status = IEEE80211_SKB_RXCB(skb); /* 0-length PSDU */ rx_status->flag |= RX_FLAG_NO_PSDU; /* mark as failed PLCP on any errors to skip checks in mac80211 */ if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) != RX_NO_DATA_INFO_ERR_NONE) rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) { case RX_NO_DATA_INFO_TYPE_NDP: rx_status->zero_length_psdu_type = IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; break; case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: rx_status->zero_length_psdu_type = IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; break; default: rx_status->zero_length_psdu_type = IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; break; } rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : NL80211_BAND_2GHZ; rx_status->freq = ieee80211_channel_to_frequency(phy_data.channel, rx_status->band); iwl_mld_rx_fill_status(mld, skb, &phy_data, NULL, NULL, queue); /* No more radiotap info should be added after this point. * Mark it as mac header for upper layers to know where * the radiotap header ends. */ skb_set_mac_header(skb, skb->len); /* Override the nss from the rx_vec since the rate_n_flags has * only 1 bit for the nss which gives a max of 2 ss but there * may be up to 8 spatial streams. */ switch (format) { case RATE_MCS_VHT_MSK: rx_status->nss = le32_get_bits(desc->rx_vec[0], RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; break; case RATE_MCS_HE_MSK: rx_status->nss = le32_get_bits(desc->rx_vec[0], RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; break; case RATE_MCS_EHT_MSK: rx_status->nss = le32_get_bits(desc->rx_vec[2], RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; } /* pass the packet to mac80211 */ rcu_read_lock(); ieee80211_rx_napi(mld->hw, NULL, skb, napi); rcu_read_unlock(); }