/* SPDX-License-Identifier: GPL-2.0-or-later */ // // Template to generate [V]PCLMULQDQ-based CRC functions for x86 // // Copyright 2025 Google LLC // // Author: Eric Biggers #include #include // Offsets within the generated constants table .set OFFSETOF_BSWAP_MASK, -5*16 // msb-first CRCs only .set OFFSETOF_FOLD_ACROSS_2048_BITS_CONSTS, -4*16 // must precede next .set OFFSETOF_FOLD_ACROSS_1024_BITS_CONSTS, -3*16 // must precede next .set OFFSETOF_FOLD_ACROSS_512_BITS_CONSTS, -2*16 // must precede next .set OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS, -1*16 // must precede next .set OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS, 0*16 // must be 0 .set OFFSETOF_SHUF_TABLE, 1*16 .set OFFSETOF_BARRETT_REDUCTION_CONSTS, 4*16 // Emit a VEX (or EVEX) coded instruction if allowed, or emulate it using the // corresponding non-VEX instruction plus any needed moves. The supported // instruction formats are: // // - Two-arg [src, dst], where the non-VEX format is the same. // - Three-arg [src1, src2, dst] where the non-VEX format is // [src1, src2_and_dst]. If src2 != dst, then src1 must != dst too. // // \insn gives the instruction without a "v" prefix and including any immediate // argument if needed to make the instruction follow one of the above formats. // If \unaligned_mem_tmp is given, then the emitted non-VEX code moves \arg1 to // it first; this is needed when \arg1 is an unaligned mem operand. .macro _cond_vex insn:req, arg1:req, arg2:req, arg3, unaligned_mem_tmp .if AVX_LEVEL == 0 // VEX not allowed. Emulate it. .ifnb \arg3 // Three-arg [src1, src2, dst] .ifc "\arg2", "\arg3" // src2 == dst? .ifnb \unaligned_mem_tmp movdqu \arg1, \unaligned_mem_tmp \insn \unaligned_mem_tmp, \arg3 .else \insn \arg1, \arg3 .endif .else // src2 != dst .ifc "\arg1", "\arg3" .error "Can't have src1 == dst when src2 != dst" .endif .ifnb \unaligned_mem_tmp movdqu \arg1, \unaligned_mem_tmp movdqa \arg2, \arg3 \insn \unaligned_mem_tmp, \arg3 .else movdqa \arg2, \arg3 \insn \arg1, \arg3 .endif .endif .else // Two-arg [src, dst] .ifnb \unaligned_mem_tmp movdqu \arg1, \unaligned_mem_tmp \insn \unaligned_mem_tmp, \arg2 .else \insn \arg1, \arg2 .endif .endif .else // VEX is allowed. Emit the desired instruction directly. .ifnb \arg3 v\insn \arg1, \arg2, \arg3 .else v\insn \arg1, \arg2 .endif .endif .endm // Broadcast an aligned 128-bit mem operand to all 128-bit lanes of a vector // register of length VL. .macro _vbroadcast src, dst .if VL == 16 _cond_vex movdqa, \src, \dst .elseif VL == 32 vbroadcasti128 \src, \dst .else vbroadcasti32x4 \src, \dst .endif .endm // Load \vl bytes from the unaligned mem operand \src into \dst, and if the CRC // is msb-first use \bswap_mask to reflect the bytes within each 128-bit lane. .macro _load_data vl, src, bswap_mask, dst .if \vl < 64 _cond_vex movdqu, "\src", \dst .else vmovdqu8 \src, \dst .endif .if !LSB_CRC _cond_vex pshufb, \bswap_mask, \dst, \dst .endif .endm .macro _prepare_v0 vl, v0, v1, bswap_mask .if LSB_CRC .if \vl < 64 _cond_vex pxor, (BUF), \v0, \v0, unaligned_mem_tmp=\v1 .else vpxorq (BUF), \v0, \v0 .endif .else _load_data \vl, (BUF), \bswap_mask, \v1 .if \vl < 64 _cond_vex pxor, \v1, \v0, \v0 .else vpxorq \v1, \v0, \v0 .endif .endif .endm // The x^0..x^63 terms, i.e. poly128 mod x^64, i.e. the physically low qword for // msb-first order or the physically high qword for lsb-first order #define LO64_TERMS 0 // The x^64..x^127 terms, i.e. floor(poly128 / x^64), i.e. the physically high // qword for msb-first order or the physically low qword for lsb-first order #define HI64_TERMS 1 // Multiply the given \src1_terms of each 128-bit lane of \src1 by the given // \src2_terms of each 128-bit lane of \src2, and write the result(s) to \dst. .macro _pclmulqdq src1, src1_terms, src2, src2_terms, dst _cond_vex "pclmulqdq $((\src1_terms ^ LSB_CRC) << 4) ^ (\src2_terms ^ LSB_CRC),", \ \src1, \src2, \dst .endm // Fold \acc into \data and store the result back into \acc. \data can be an // unaligned mem operand if using VEX is allowed and the CRC is lsb-first so no // byte-reflection is needed; otherwise it must be a vector register. \consts // is a vector register containing the needed fold constants, and \tmp is a // temporary vector register. All arguments must be the same length. .macro _fold_vec acc, data, consts, tmp _pclmulqdq \consts, HI64_TERMS, \acc, HI64_TERMS, \tmp _pclmulqdq \consts, LO64_TERMS, \acc, LO64_TERMS, \acc .if AVX_LEVEL <= 2 _cond_vex pxor, \data, \tmp, \tmp _cond_vex pxor, \tmp, \acc, \acc .else vpternlogq $0x96, \data, \tmp, \acc .endif .endm // Fold \acc into \data and store the result back into \acc. \data is an // unaligned mem operand, \consts is a vector register containing the needed // fold constants, \bswap_mask is a vector register containing the // byte-reflection table if the CRC is msb-first, and \tmp1 and \tmp2 are // temporary vector registers. All arguments must have length \vl. .macro _fold_vec_mem vl, acc, data, consts, bswap_mask, tmp1, tmp2 .if AVX_LEVEL == 0 || !LSB_CRC _load_data \vl, \data, \bswap_mask, \tmp1 _fold_vec \acc, \tmp1, \consts, \tmp2 .else _fold_vec \acc, \data, \consts, \tmp1 .endif .endm // Load the constants for folding across 2**i vectors of length VL at a time // into all 128-bit lanes of the vector register CONSTS. .macro _load_vec_folding_consts i _vbroadcast OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS+(4-LOG2_VL-\i)*16(CONSTS_PTR), \ CONSTS .endm // Given vector registers \v0 and \v1 of length \vl, fold \v0 into \v1 and store // the result back into \v0. If the remaining length mod \vl is nonzero, also // fold \vl data bytes from BUF. For both operations the fold distance is \vl. // \consts must be a register of length \vl containing the fold constants. .macro _fold_vec_final vl, v0, v1, consts, bswap_mask, tmp1, tmp2 _fold_vec \v0, \v1, \consts, \tmp1 test $\vl, LEN8 jz .Lfold_vec_final_done\@ _fold_vec_mem \vl, \v0, (BUF), \consts, \bswap_mask, \tmp1, \tmp2 add $\vl, BUF .Lfold_vec_final_done\@: .endm // This macro generates the body of a CRC function with the following prototype: // // crc_t crc_func(crc_t crc, const u8 *buf, size_t len, const void *consts); // // |crc| is the initial CRC, and crc_t is a data type wide enough to hold it. // |buf| is the data to checksum. |len| is the data length in bytes, which must // be at least 16. |consts| is a pointer to the fold_across_128_bits_consts // field of the constants struct that was generated for the chosen CRC variant. // // Moving onto the macro parameters, \n is the number of bits in the CRC, e.g. // 32 for a CRC-32. Currently the supported values are 8, 16, 32, and 64. If // the file is compiled in i386 mode, then the maximum supported value is 32. // // \lsb_crc is 1 if the CRC processes the least significant bit of each byte // first, i.e. maps bit0 to x^7, bit1 to x^6, ..., bit7 to x^0. \lsb_crc is 0 // if the CRC processes the most significant bit of each byte first, i.e. maps // bit0 to x^0, bit1 to x^1, bit7 to x^7. // // \vl is the maximum length of vector register to use in bytes: 16, 32, or 64. // // \avx_level is the level of AVX support to use: 0 for SSE only, 2 for AVX2, or // 512 for AVX512. // // If \vl == 16 && \avx_level == 0, the generated code requires: // PCLMULQDQ && SSE4.1. (Note: all known CPUs with PCLMULQDQ also have SSE4.1.) // // If \vl == 32 && \avx_level == 2, the generated code requires: // VPCLMULQDQ && AVX2. // // If \vl == 64 && \avx_level == 512, the generated code requires: // VPCLMULQDQ && AVX512BW && AVX512VL. // // Other \vl and \avx_level combinations are either not supported or not useful. .macro _crc_pclmul n, lsb_crc, vl, avx_level .set LSB_CRC, \lsb_crc .set VL, \vl .set AVX_LEVEL, \avx_level // Define aliases for the xmm, ymm, or zmm registers according to VL. .irp i, 0,1,2,3,4,5,6,7 .if VL == 16 .set V\i, %xmm\i .set LOG2_VL, 4 .elseif VL == 32 .set V\i, %ymm\i .set LOG2_VL, 5 .elseif VL == 64 .set V\i, %zmm\i .set LOG2_VL, 6 .else .error "Unsupported vector length" .endif .endr // Define aliases for the function parameters. // Note: when crc_t is shorter than u32, zero-extension to 32 bits is // guaranteed by the ABI. Zero-extension to 64 bits is *not* guaranteed // when crc_t is shorter than u64. #ifdef __x86_64__ .if \n <= 32 .set CRC, %edi .else .set CRC, %rdi .endif .set BUF, %rsi .set LEN, %rdx .set LEN32, %edx .set LEN8, %dl .set CONSTS_PTR, %rcx #else // 32-bit support, assuming -mregparm=3 and not including support for // CRC-64 (which would use both eax and edx to pass the crc parameter). .set CRC, %eax .set BUF, %edx .set LEN, %ecx .set LEN32, %ecx .set LEN8, %cl .set CONSTS_PTR, %ebx // Passed on stack #endif // Define aliases for some local variables. V0-V5 are used without // aliases (for accumulators, data, temporary values, etc). Staying // within the first 8 vector registers keeps the code 32-bit SSE // compatible and reduces the size of 64-bit SSE code slightly. .set BSWAP_MASK, V6 .set BSWAP_MASK_YMM, %ymm6 .set BSWAP_MASK_XMM, %xmm6 .set CONSTS, V7 .set CONSTS_YMM, %ymm7 .set CONSTS_XMM, %xmm7 // Use ANNOTATE_NOENDBR to suppress an objtool warning, since the // functions generated by this macro are called only by static_call. ANNOTATE_NOENDBR #ifdef __i386__ push CONSTS_PTR mov 8(%esp), CONSTS_PTR #endif // Create a 128-bit vector that contains the initial CRC in the end // representing the high-order polynomial coefficients, and the rest 0. // If the CRC is msb-first, also load the byte-reflection table. .if \n <= 32 _cond_vex movd, CRC, %xmm0 .else _cond_vex movq, CRC, %xmm0 .endif .if !LSB_CRC _cond_vex pslldq, $(128-\n)/8, %xmm0, %xmm0 _vbroadcast OFFSETOF_BSWAP_MASK(CONSTS_PTR), BSWAP_MASK .endif // Load the first vector of data and XOR the initial CRC into the // appropriate end of the first 128-bit lane of data. If LEN < VL, then // use a short vector and jump ahead to the final reduction. (LEN >= 16 // is guaranteed here but not necessarily LEN >= VL.) .if VL >= 32 cmp $VL, LEN jae .Lat_least_1vec\@ .if VL == 64 cmp $32, LEN32 jb .Lless_than_32bytes\@ _prepare_v0 32, %ymm0, %ymm1, BSWAP_MASK_YMM add $32, BUF jmp .Lreduce_256bits_to_128bits\@ .Lless_than_32bytes\@: .endif _prepare_v0 16, %xmm0, %xmm1, BSWAP_MASK_XMM add $16, BUF vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM jmp .Lcheck_for_partial_block\@ .Lat_least_1vec\@: .endif _prepare_v0 VL, V0, V1, BSWAP_MASK // Handle VL <= LEN < 4*VL. cmp $4*VL-1, LEN ja .Lat_least_4vecs\@ add $VL, BUF // If VL <= LEN < 2*VL, then jump ahead to the reduction from 1 vector. // If VL==16 then load fold_across_128_bits_consts first, as the final // reduction depends on it and it won't be loaded anywhere else. cmp $2*VL-1, LEN32 .if VL == 16 _cond_vex movdqa, OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM .endif jbe .Lreduce_1vec_to_128bits\@ // Otherwise 2*VL <= LEN < 4*VL. Load one more vector and jump ahead to // the reduction from 2 vectors. _load_data VL, (BUF), BSWAP_MASK, V1 add $VL, BUF jmp .Lreduce_2vecs_to_1\@ .Lat_least_4vecs\@: // Load 3 more vectors of data. _load_data VL, 1*VL(BUF), BSWAP_MASK, V1 _load_data VL, 2*VL(BUF), BSWAP_MASK, V2 _load_data VL, 3*VL(BUF), BSWAP_MASK, V3 sub $-4*VL, BUF // Shorter than 'add 4*VL' when VL=32 add $-4*VL, LEN // Shorter than 'sub 4*VL' when VL=32 // Main loop: while LEN >= 4*VL, fold the 4 vectors V0-V3 into the next // 4 vectors of data and write the result back to V0-V3. cmp $4*VL-1, LEN // Shorter than 'cmp 4*VL' when VL=32 jbe .Lreduce_4vecs_to_2\@ _load_vec_folding_consts 2 .Lfold_4vecs_loop\@: _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 _fold_vec_mem VL, V2, 2*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 _fold_vec_mem VL, V3, 3*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 sub $-4*VL, BUF add $-4*VL, LEN cmp $4*VL-1, LEN ja .Lfold_4vecs_loop\@ // Fold V0,V1 into V2,V3 and write the result back to V0,V1. Then fold // two more vectors of data from BUF, if at least that much remains. .Lreduce_4vecs_to_2\@: _load_vec_folding_consts 1 _fold_vec V0, V2, CONSTS, V4 _fold_vec V1, V3, CONSTS, V4 test $2*VL, LEN8 jz .Lreduce_2vecs_to_1\@ _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 sub $-2*VL, BUF // Fold V0 into V1 and write the result back to V0. Then fold one more // vector of data from BUF, if at least that much remains. .Lreduce_2vecs_to_1\@: _load_vec_folding_consts 0 _fold_vec_final VL, V0, V1, CONSTS, BSWAP_MASK, V4, V5 .Lreduce_1vec_to_128bits\@: .if VL == 64 // Reduce 512-bit %zmm0 to 256-bit %ymm0. Then fold 256 more bits of // data from BUF, if at least that much remains. vbroadcasti128 OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS(CONSTS_PTR), CONSTS_YMM vextracti64x4 $1, %zmm0, %ymm1 _fold_vec_final 32, %ymm0, %ymm1, CONSTS_YMM, BSWAP_MASK_YMM, %ymm4, %ymm5 .Lreduce_256bits_to_128bits\@: .endif .if VL >= 32 // Reduce 256-bit %ymm0 to 128-bit %xmm0. Then fold 128 more bits of // data from BUF, if at least that much remains. vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM vextracti128 $1, %ymm0, %xmm1 _fold_vec_final 16, %xmm0, %xmm1, CONSTS_XMM, BSWAP_MASK_XMM, %xmm4, %xmm5 .Lcheck_for_partial_block\@: .endif and $15, LEN32 jz .Lreduce_128bits_to_crc\@ // 1 <= LEN <= 15 data bytes remain in BUF. The polynomial is now // A*(x^(8*LEN)) + B, where A is the 128-bit polynomial stored in %xmm0 // and B is the polynomial of the remaining LEN data bytes. To reduce // this to 128 bits without needing fold constants for each possible // LEN, rearrange this expression into C1*(x^128) + C2, where // C1 = floor(A / x^(128 - 8*LEN)) and C2 = A*x^(8*LEN) + B mod x^128. // Then fold C1 into C2, which is just another fold across 128 bits. .if !LSB_CRC || AVX_LEVEL == 0 // Load the last 16 data bytes. Note that originally LEN was >= 16. _load_data 16, "-16(BUF,LEN)", BSWAP_MASK_XMM, %xmm2 .endif // Else will use vpblendvb mem operand later. .if !LSB_CRC neg LEN // Needed for indexing shuf_table .endif // tmp = A*x^(8*LEN) mod x^128 // lsb: pshufb by [LEN, LEN+1, ..., 15, -1, -1, ..., -1] // i.e. right-shift by LEN bytes. // msb: pshufb by [-1, -1, ..., -1, 0, 1, ..., 15-LEN] // i.e. left-shift by LEN bytes. _cond_vex movdqu, "OFFSETOF_SHUF_TABLE+16(CONSTS_PTR,LEN)", %xmm3 _cond_vex pshufb, %xmm3, %xmm0, %xmm1 // C1 = floor(A / x^(128 - 8*LEN)) // lsb: pshufb by [-1, -1, ..., -1, 0, 1, ..., LEN-1] // i.e. left-shift by 16-LEN bytes. // msb: pshufb by [16-LEN, 16-LEN+1, ..., 15, -1, -1, ..., -1] // i.e. right-shift by 16-LEN bytes. _cond_vex pshufb, "OFFSETOF_SHUF_TABLE+32*!LSB_CRC(CONSTS_PTR,LEN)", \ %xmm0, %xmm0, unaligned_mem_tmp=%xmm4 // C2 = tmp + B. This is just a blend of tmp with the last 16 data // bytes (reflected if msb-first). The blend mask is the shuffle table // that was used to create tmp. 0 selects tmp, and 1 last16databytes. .if AVX_LEVEL == 0 movdqa %xmm0, %xmm4 movdqa %xmm3, %xmm0 pblendvb %xmm2, %xmm1 // uses %xmm0 as implicit operand movdqa %xmm4, %xmm0 .elseif LSB_CRC vpblendvb %xmm3, -16(BUF,LEN), %xmm1, %xmm1 .else vpblendvb %xmm3, %xmm2, %xmm1, %xmm1 .endif // Fold C1 into C2 and store the 128-bit result in %xmm0. _fold_vec %xmm0, %xmm1, CONSTS_XMM, %xmm4 .Lreduce_128bits_to_crc\@: // Compute the CRC as %xmm0 * x^n mod G. Here %xmm0 means the 128-bit // polynomial stored in %xmm0 (using either lsb-first or msb-first bit // order according to LSB_CRC), and G is the CRC's generator polynomial. // First, multiply %xmm0 by x^n and reduce the result to 64+n bits: // // t0 := (x^(64+n) mod G) * floor(%xmm0 / x^64) + // x^n * (%xmm0 mod x^64) // // Store t0 * x^(64-n) in %xmm0. I.e., actually do: // // %xmm0 := ((x^(64+n) mod G) * x^(64-n)) * floor(%xmm0 / x^64) + // x^64 * (%xmm0 mod x^64) // // The extra unreduced factor of x^(64-n) makes floor(t0 / x^n) aligned // to the HI64_TERMS of %xmm0 so that the next pclmulqdq can easily // select it. The 64-bit constant (x^(64+n) mod G) * x^(64-n) in the // msb-first case, or (x^(63+n) mod G) * x^(64-n) in the lsb-first case // (considering the extra factor of x that gets implicitly introduced by // each pclmulqdq when using lsb-first order), is identical to the // constant that was used earlier for folding the LO64_TERMS across 128 // bits. Thus it's already available in LO64_TERMS of CONSTS_XMM. _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm0, HI64_TERMS, %xmm1 .if LSB_CRC _cond_vex psrldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64) .else _cond_vex pslldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64) .endif _cond_vex pxor, %xmm1, %xmm0, %xmm0 // The HI64_TERMS of %xmm0 now contain floor(t0 / x^n). // The LO64_TERMS of %xmm0 now contain (t0 mod x^n) * x^(64-n). // First step of Barrett reduction: Compute floor(t0 / G). This is the // polynomial by which G needs to be multiplied to cancel out the x^n // and higher terms of t0, i.e. to reduce t0 mod G. First do: // // t1 := floor(x^(63+n) / G) * x * floor(t0 / x^n) // // Then the desired value floor(t0 / G) is floor(t1 / x^64). The 63 in // x^(63+n) is the maximum degree of floor(t0 / x^n) and thus the lowest // value that makes enough precision be carried through the calculation. // // The '* x' makes it so the result is floor(t1 / x^64) rather than // floor(t1 / x^63), making it qword-aligned in HI64_TERMS so that it // can be extracted much more easily in the next step. In the lsb-first // case the '* x' happens implicitly. In the msb-first case it must be // done explicitly; floor(x^(63+n) / G) * x is a 65-bit constant, so the // constant passed to pclmulqdq is (floor(x^(63+n) / G) * x) - x^64, and // the multiplication by the x^64 term is handled using a pxor. The // pxor causes the low 64 terms of t1 to be wrong, but they are unused. _cond_vex movdqa, OFFSETOF_BARRETT_REDUCTION_CONSTS(CONSTS_PTR), CONSTS_XMM _pclmulqdq CONSTS_XMM, HI64_TERMS, %xmm0, HI64_TERMS, %xmm1 .if !LSB_CRC _cond_vex pxor, %xmm0, %xmm1, %xmm1 // += x^64 * floor(t0 / x^n) .endif // The HI64_TERMS of %xmm1 now contain floor(t1 / x^64) = floor(t0 / G). // Second step of Barrett reduction: Cancel out the x^n and higher terms // of t0 by subtracting the needed multiple of G. This gives the CRC: // // crc := t0 - (G * floor(t0 / G)) // // But %xmm0 contains t0 * x^(64-n), so it's more convenient to do: // // crc := ((t0 * x^(64-n)) - ((G * x^(64-n)) * floor(t0 / G))) / x^(64-n) // // Furthermore, since the resulting CRC is n-bit, if mod x^n is // explicitly applied to it then the x^n term of G makes no difference // in the result and can be omitted. This helps keep the constant // multiplier in 64 bits in most cases. This gives the following: // // %xmm0 := %xmm0 - (((G - x^n) * x^(64-n)) * floor(t0 / G)) // crc := (%xmm0 / x^(64-n)) mod x^n // // In the lsb-first case, each pclmulqdq implicitly introduces // an extra factor of x, so in that case the constant that needs to be // passed to pclmulqdq is actually '(G - x^n) * x^(63-n)' when n <= 63. // For lsb-first CRCs where n=64, the extra factor of x cannot be as // easily avoided. In that case, instead pass '(G - x^n - x^0) / x' to // pclmulqdq and handle the x^0 term (i.e. 1) separately. (All CRC // polynomials have nonzero x^n and x^0 terms.) It works out as: the // CRC has be XORed with the physically low qword of %xmm1, representing // floor(t0 / G). The most efficient way to do that is to move it to // the physically high qword and use a ternlog to combine the two XORs. .if LSB_CRC && \n == 64 _cond_vex punpcklqdq, %xmm1, %xmm2, %xmm2 _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1 .if AVX_LEVEL <= 2 _cond_vex pxor, %xmm2, %xmm0, %xmm0 _cond_vex pxor, %xmm1, %xmm0, %xmm0 .else vpternlogq $0x96, %xmm2, %xmm1, %xmm0 .endif _cond_vex "pextrq $1,", %xmm0, %rax // (%xmm0 / x^0) mod x^64 .else _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1 _cond_vex pxor, %xmm1, %xmm0, %xmm0 .if \n == 8 _cond_vex "pextrb $7 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^56) mod x^8 .elseif \n == 16 _cond_vex "pextrw $3 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^48) mod x^16 .elseif \n == 32 _cond_vex "pextrd $1 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^32) mod x^32 .else // \n == 64 && !LSB_CRC _cond_vex movq, %xmm0, %rax // (%xmm0 / x^0) mod x^64 .endif .endif .if VL > 16 vzeroupper // Needed when ymm or zmm registers may have been used. .endif #ifdef __i386__ pop CONSTS_PTR #endif RET .endm #ifdef CONFIG_AS_VPCLMULQDQ #define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \ SYM_FUNC_START(prefix##_pclmul_sse); \ _crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \ SYM_FUNC_END(prefix##_pclmul_sse); \ \ SYM_FUNC_START(prefix##_vpclmul_avx2); \ _crc_pclmul n=bits, lsb_crc=lsb, vl=32, avx_level=2; \ SYM_FUNC_END(prefix##_vpclmul_avx2); \ \ SYM_FUNC_START(prefix##_vpclmul_avx512); \ _crc_pclmul n=bits, lsb_crc=lsb, vl=64, avx_level=512; \ SYM_FUNC_END(prefix##_vpclmul_avx512); #else #define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \ SYM_FUNC_START(prefix##_pclmul_sse); \ _crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \ SYM_FUNC_END(prefix##_pclmul_sse); #endif // !CONFIG_AS_VPCLMULQDQ