// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include #include #include #include #include #include #include "vkms_drv.h" static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) { u32 new_color; new_color = (src * 0xffff + dst * (0xffff - alpha)); return DIV_ROUND_CLOSEST(new_color, 0xffff); } /** * pre_mul_alpha_blend - alpha blending equation * @stage_buffer: The line with the pixels from src_plane * @output_buffer: A line buffer that receives all the blends output * @x_start: The start offset * @pixel_count: The number of pixels to blend * * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at * [@x_start;@x_start+@pixel_count) in output_buffer. * * The current DRM assumption is that pixel color values have been already * pre-multiplied with the alpha channel values. See more * drm_plane_create_blend_mode_property(). Also, this formula assumes a * completely opaque background. */ static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer, struct line_buffer *output_buffer, int x_start, int pixel_count) { struct pixel_argb_u16 *out = &output_buffer->pixels[x_start]; const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start]; for (int i = 0; i < pixel_count; i++) { out[i].a = (u16)0xffff; out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a); out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a); out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a); } } static void fill_background(const struct pixel_argb_u16 *background_color, struct line_buffer *output_buffer) { for (size_t i = 0; i < output_buffer->n_pixels; i++) output_buffer->pixels[i] = *background_color; } // lerp(a, b, t) = a + (b - a) * t static u16 lerp_u16(u16 a, u16 b, s64 t) { s64 a_fp = drm_int2fixp(a); s64 b_fp = drm_int2fixp(b); s64 delta = drm_fixp_mul(b_fp - a_fp, t); return drm_fixp2int(a_fp + delta); } static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) { s64 color_channel_fp = drm_int2fixp(channel_value); return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio); } /* * This enum is related to the positions of the variables inside * `struct drm_color_lut`, so the order of both needs to be the same. */ enum lut_channel { LUT_RED = 0, LUT_GREEN, LUT_BLUE, LUT_RESERVED }; static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, enum lut_channel channel) { s64 lut_index = get_lut_index(lut, channel_value); u16 *floor_lut_value, *ceil_lut_value; u16 floor_channel_value, ceil_channel_value; /* * This checks if `struct drm_color_lut` has any gap added by the compiler * between the struct fields. */ static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4); floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; if (drm_fixp2int(lut_index) == (lut->lut_length - 1)) /* We're at the end of the LUT array, use same value for ceil and floor */ ceil_lut_value = floor_lut_value; else ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; floor_channel_value = floor_lut_value[channel]; ceil_channel_value = ceil_lut_value[channel]; return lerp_u16(floor_channel_value, ceil_channel_value, lut_index & DRM_FIXED_DECIMAL_MASK); } static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer) { if (!crtc_state->gamma_lut.base) return; if (!crtc_state->gamma_lut.lut_length) return; for (size_t x = 0; x < output_buffer->n_pixels; x++) { struct pixel_argb_u16 *pixel = &output_buffer->pixels[x]; pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED); pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN); pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE); } } /** * direction_for_rotation() - Get the correct reading direction for a given rotation * * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation. * * This function will use the @rotation setting of a source plane to compute the reading * direction in this plane which correspond to a "left to right writing" in the CRTC. * For example, if the buffer is reflected on X axis, the pixel must be read from right to left * to be written from left to right on the CRTC. */ static enum pixel_read_direction direction_for_rotation(unsigned int rotation) { struct drm_rect tmp_a, tmp_b; int x, y; /* * Points A and B are depicted as zero-size rectangles on the CRTC. * The CRTC writing direction is from A to B. The plane reading direction * is discovered by inverse-transforming A and B. * The reading direction is computed by rotating the vector AB (top-left to top-right) in a * 1x1 square. */ tmp_a = DRM_RECT_INIT(0, 0, 0, 0); tmp_b = DRM_RECT_INIT(1, 0, 0, 0); drm_rect_rotate_inv(&tmp_a, 1, 1, rotation); drm_rect_rotate_inv(&tmp_b, 1, 1, rotation); x = tmp_b.x1 - tmp_a.x1; y = tmp_b.y1 - tmp_a.y1; if (x == 1 && y == 0) return READ_LEFT_TO_RIGHT; else if (x == -1 && y == 0) return READ_RIGHT_TO_LEFT; else if (y == 1 && x == 0) return READ_TOP_TO_BOTTOM; else if (y == -1 && x == 0) return READ_BOTTOM_TO_TOP; WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction."); return READ_LEFT_TO_RIGHT; } /** * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend * process. * * @direction: direction of the reading * @current_plane: current plane blended * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of * pixel_count*1 if @direction is horizontal. * @src_x_start: x start coordinate for the line reading * @src_y_start: y start coordinate for the line reading * @dst_x_start: x coordinate to blend the read line * @pixel_count: number of pixels to blend * * This function is mainly a safety net to avoid reading outside the source buffer. As the * userspace should never ask to read outside the source plane, all the cases covered here should * be dead code. */ static void clamp_line_coordinates(enum pixel_read_direction direction, const struct vkms_plane_state *current_plane, const struct drm_rect *src_line, int *src_x_start, int *src_y_start, int *dst_x_start, int *pixel_count) { /* By default the start points are correct */ *src_x_start = src_line->x1; *src_y_start = src_line->y1; *dst_x_start = current_plane->frame_info->dst.x1; /* Get the correct number of pixel to blend, it depends of the direction */ switch (direction) { case READ_LEFT_TO_RIGHT: case READ_RIGHT_TO_LEFT: *pixel_count = drm_rect_width(src_line); break; case READ_BOTTOM_TO_TOP: case READ_TOP_TO_BOTTOM: *pixel_count = drm_rect_height(src_line); break; } /* * Clamp the coordinates to avoid reading outside the buffer * * This is mainly a security check to avoid reading outside the buffer, the userspace * should never request to read outside the source buffer. */ switch (direction) { case READ_LEFT_TO_RIGHT: case READ_RIGHT_TO_LEFT: if (*src_x_start < 0) { *pixel_count += *src_x_start; *dst_x_start -= *src_x_start; *src_x_start = 0; } if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width) *pixel_count = max(0, (int)current_plane->frame_info->fb->width - *src_x_start); break; case READ_BOTTOM_TO_TOP: case READ_TOP_TO_BOTTOM: if (*src_y_start < 0) { *pixel_count += *src_y_start; *dst_x_start -= *src_y_start; *src_y_start = 0; } if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height) *pixel_count = max(0, (int)current_plane->frame_info->fb->height - *src_y_start); break; } } /** * blend_line() - Blend a line from a plane to the output buffer * * @current_plane: current plane to work on * @y: line to write in the output buffer * @crtc_x_limit: width of the output buffer * @stage_buffer: temporary buffer to convert the pixel line from the source buffer * @output_buffer: buffer to blend the read line into. */ static void blend_line(struct vkms_plane_state *current_plane, int y, int crtc_x_limit, struct line_buffer *stage_buffer, struct line_buffer *output_buffer) { int src_x_start, src_y_start, dst_x_start, pixel_count; struct drm_rect dst_line, tmp_src, src_line; /* Avoid rendering useless lines */ if (y < current_plane->frame_info->dst.y1 || y >= current_plane->frame_info->dst.y2) return; /* * dst_line is the line to copy. The initial coordinates are inside the * destination framebuffer, and then drm_rect_* helpers are used to * compute the correct position into the source framebuffer. */ dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y, drm_rect_width(¤t_plane->frame_info->dst), 1); drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src); /* * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of * the destination buffer */ dst_line.x1 = max_t(int, dst_line.x1, 0); dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit); /* The destination is completely outside of the crtc. */ if (dst_line.x2 <= dst_line.x1) return; src_line = dst_line; /* * Transform the coordinate x/y from the crtc to coordinates into * coordinates for the src buffer. * * - Cancel the offset of the dst buffer. * - Invert the rotation. This assumes that * dst = drm_rect_rotate(src, rotation) (dst and src have the * same size, but can be rotated). * - Apply the offset of the source rectangle to the coordinate. */ drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1, -current_plane->frame_info->dst.y1); drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src), drm_rect_height(&tmp_src), current_plane->frame_info->rotation); drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1); /* Get the correct reading direction in the source buffer. */ enum pixel_read_direction direction = direction_for_rotation(current_plane->frame_info->rotation); /* [2]: Compute and clamp the number of pixel to read */ clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start, &dst_x_start, &pixel_count); if (pixel_count <= 0) { /* Nothing to read, so avoid multiple function calls */ return; } /* * Modify the starting point to take in account the rotation * * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left * corner. */ if (direction == READ_RIGHT_TO_LEFT) { // src_x_start is now the right point src_x_start += pixel_count - 1; } else if (direction == READ_BOTTOM_TO_TOP) { // src_y_start is now the bottom point src_y_start += pixel_count - 1; } /* * Perform the conversion and the blending * * Here we know that the read line (x_start, y_start, pixel_count) is * inside the source buffer [2] and we don't write outside the stage * buffer [1]. */ current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction, pixel_count, &stage_buffer->pixels[dst_x_start]); pre_mul_alpha_blend(stage_buffer, output_buffer, dst_x_start, pixel_count); } /** * blend - blend the pixels from all planes and compute crc * @wb: The writeback frame buffer metadata * @crtc_state: The crtc state * @crc32: The crc output of the final frame * @output_buffer: A buffer of a row that will receive the result of the blend(s) * @stage_buffer: The line with the pixels from plane being blend to the output * @row_size: The size, in bytes, of a single row * * This function blends the pixels (Using the `pre_mul_alpha_blend`) * from all planes, calculates the crc32 of the output from the former step, * and, if necessary, convert and store the output to the writeback buffer. */ static void blend(struct vkms_writeback_job *wb, struct vkms_crtc_state *crtc_state, u32 *crc32, struct line_buffer *stage_buffer, struct line_buffer *output_buffer, size_t row_size) { struct vkms_plane_state **plane = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; const struct pixel_argb_u16 background_color = { .a = 0xffff }; int crtc_y_limit = crtc_state->base.mode.vdisplay; int crtc_x_limit = crtc_state->base.mode.hdisplay; /* * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary * complexity to avoid poor blending performance. * * The function pixel_read_line callback is used to read a line, using an efficient * algorithm for a specific format, into the staging buffer. */ for (int y = 0; y < crtc_y_limit; y++) { fill_background(&background_color, output_buffer); /* The active planes are composed associatively in z-order. */ for (size_t i = 0; i < n_active_planes; i++) { blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer); } apply_lut(crtc_state, output_buffer); *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); if (wb) vkms_writeback_row(wb, output_buffer, y); } } static int check_format_funcs(struct vkms_crtc_state *crtc_state, struct vkms_writeback_job *active_wb) { struct vkms_plane_state **planes = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; for (size_t i = 0; i < n_active_planes; i++) if (!planes[i]->pixel_read_line) return -1; if (active_wb && !active_wb->pixel_write) return -1; return 0; } static int check_iosys_map(struct vkms_crtc_state *crtc_state) { struct vkms_plane_state **plane_state = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; for (size_t i = 0; i < n_active_planes; i++) if (iosys_map_is_null(&plane_state[i]->frame_info->map[0])) return -1; return 0; } static int compose_active_planes(struct vkms_writeback_job *active_wb, struct vkms_crtc_state *crtc_state, u32 *crc32) { size_t line_width, pixel_size = sizeof(struct pixel_argb_u16); struct line_buffer output_buffer, stage_buffer; int ret = 0; /* * This check exists so we can call `crc32_le` for the entire line * instead doing it for each channel of each pixel in case * `struct `pixel_argb_u16` had any gap added by the compiler * between the struct fields. */ static_assert(sizeof(struct pixel_argb_u16) == 8); if (WARN_ON(check_iosys_map(crtc_state))) return -EINVAL; if (WARN_ON(check_format_funcs(crtc_state, active_wb))) return -EINVAL; line_width = crtc_state->base.mode.hdisplay; stage_buffer.n_pixels = line_width; output_buffer.n_pixels = line_width; stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); if (!stage_buffer.pixels) { DRM_ERROR("Cannot allocate memory for the output line buffer"); return -ENOMEM; } output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); if (!output_buffer.pixels) { DRM_ERROR("Cannot allocate memory for intermediate line buffer"); ret = -ENOMEM; goto free_stage_buffer; } blend(active_wb, crtc_state, crc32, &stage_buffer, &output_buffer, line_width * pixel_size); kvfree(output_buffer.pixels); free_stage_buffer: kvfree(stage_buffer.pixels); return ret; } /** * vkms_composer_worker - ordered work_struct to compute CRC * * @work: work_struct * * Work handler for composing and computing CRCs. work_struct scheduled in * an ordered workqueue that's periodically scheduled to run by * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail(). */ void vkms_composer_worker(struct work_struct *work) { struct vkms_crtc_state *crtc_state = container_of(work, struct vkms_crtc_state, composer_work); struct drm_crtc *crtc = crtc_state->base.crtc; struct vkms_writeback_job *active_wb = crtc_state->active_writeback; struct vkms_output *out = drm_crtc_to_vkms_output(crtc); bool crc_pending, wb_pending; u64 frame_start, frame_end; u32 crc32 = 0; int ret; spin_lock_irq(&out->composer_lock); frame_start = crtc_state->frame_start; frame_end = crtc_state->frame_end; crc_pending = crtc_state->crc_pending; wb_pending = crtc_state->wb_pending; crtc_state->frame_start = 0; crtc_state->frame_end = 0; crtc_state->crc_pending = false; if (crtc->state->gamma_lut) { s64 max_lut_index_fp; s64 u16_max_fp = drm_int2fixp(0xffff); crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data; crtc_state->gamma_lut.lut_length = crtc->state->gamma_lut->length / sizeof(struct drm_color_lut); max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp, u16_max_fp); } else { crtc_state->gamma_lut.base = NULL; } spin_unlock_irq(&out->composer_lock); /* * We raced with the vblank hrtimer and previous work already computed * the crc, nothing to do. */ if (!crc_pending) return; if (wb_pending) ret = compose_active_planes(active_wb, crtc_state, &crc32); else ret = compose_active_planes(NULL, crtc_state, &crc32); if (ret) return; if (wb_pending) { drm_writeback_signal_completion(&out->wb_connector, 0); spin_lock_irq(&out->composer_lock); crtc_state->wb_pending = false; spin_unlock_irq(&out->composer_lock); } /* * The worker can fall behind the vblank hrtimer, make sure we catch up. */ while (frame_start <= frame_end) drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); } static const char *const pipe_crc_sources[] = { "auto" }; const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, size_t *count) { *count = ARRAY_SIZE(pipe_crc_sources); return pipe_crc_sources; } static int vkms_crc_parse_source(const char *src_name, bool *enabled) { int ret = 0; if (!src_name) { *enabled = false; } else if (strcmp(src_name, "auto") == 0) { *enabled = true; } else { *enabled = false; ret = -EINVAL; } return ret; } int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name, size_t *values_cnt) { bool enabled; if (vkms_crc_parse_source(src_name, &enabled) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", src_name); return -EINVAL; } *values_cnt = 1; return 0; } void vkms_set_composer(struct vkms_output *out, bool enabled) { bool old_enabled; if (enabled) drm_crtc_vblank_get(&out->crtc); spin_lock_irq(&out->lock); old_enabled = out->composer_enabled; out->composer_enabled = enabled; spin_unlock_irq(&out->lock); if (old_enabled) drm_crtc_vblank_put(&out->crtc); } int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name) { struct vkms_output *out = drm_crtc_to_vkms_output(crtc); bool enabled = false; int ret = 0; ret = vkms_crc_parse_source(src_name, &enabled); vkms_set_composer(out, enabled); return ret; }