// SPDX-License-Identifier: GPL-2.0-only /* * Analog Devices Generic AXI ADC IP core * Link: https://wiki.analog.com/resources/fpga/docs/axi_adc_ip * * Copyright 2012-2020 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ad7606_bus_iface.h" /* * Register definitions: * https://wiki.analog.com/resources/fpga/docs/axi_adc_ip#register_map */ /* ADC controls */ #define ADI_AXI_REG_RSTN 0x0040 #define ADI_AXI_REG_RSTN_CE_N BIT(2) #define ADI_AXI_REG_RSTN_MMCM_RSTN BIT(1) #define ADI_AXI_REG_RSTN_RSTN BIT(0) #define ADI_AXI_ADC_REG_CONFIG 0x000c #define ADI_AXI_ADC_REG_CONFIG_CMOS_OR_LVDS_N BIT(7) #define ADI_AXI_ADC_REG_CTRL 0x0044 #define ADI_AXI_ADC_CTRL_DDR_EDGESEL_MASK BIT(1) #define ADI_AXI_ADC_REG_CNTRL_3 0x004c #define AXI_AD485X_CNTRL_3_OS_EN_MSK BIT(2) #define AXI_AD485X_CNTRL_3_PACKET_FORMAT_MSK GENMASK(1, 0) #define AXI_AD485X_PACKET_FORMAT_20BIT 0x0 #define AXI_AD485X_PACKET_FORMAT_24BIT 0x1 #define AXI_AD485X_PACKET_FORMAT_32BIT 0x2 #define ADI_AXI_ADC_REG_DRP_STATUS 0x0074 #define ADI_AXI_ADC_DRP_LOCKED BIT(17) /* ADC Channel controls */ #define ADI_AXI_REG_CHAN_CTRL(c) (0x0400 + (c) * 0x40) #define ADI_AXI_REG_CHAN_CTRL_LB_OWR BIT(11) #define ADI_AXI_REG_CHAN_CTRL_PN_SEL_OWR BIT(10) #define ADI_AXI_REG_CHAN_CTRL_IQCOR_EN BIT(9) #define ADI_AXI_REG_CHAN_CTRL_DCFILT_EN BIT(8) #define ADI_AXI_REG_CHAN_CTRL_FMT_MASK GENMASK(6, 4) #define ADI_AXI_REG_CHAN_CTRL_FMT_SIGNEXT BIT(6) #define ADI_AXI_REG_CHAN_CTRL_FMT_TYPE BIT(5) #define ADI_AXI_REG_CHAN_CTRL_FMT_EN BIT(4) #define ADI_AXI_REG_CHAN_CTRL_PN_TYPE_OWR BIT(1) #define ADI_AXI_REG_CHAN_CTRL_ENABLE BIT(0) #define ADI_AXI_ADC_REG_CHAN_STATUS(c) (0x0404 + (c) * 0x40) #define ADI_AXI_ADC_CHAN_STAT_PN_MASK GENMASK(2, 1) /* out of sync */ #define ADI_AXI_ADC_CHAN_STAT_PN_OOS BIT(1) /* spurious out of sync */ #define ADI_AXI_ADC_CHAN_STAT_PN_ERR BIT(2) #define ADI_AXI_ADC_REG_CHAN_CTRL_3(c) (0x0418 + (c) * 0x40) #define ADI_AXI_ADC_CHAN_PN_SEL_MASK GENMASK(19, 16) /* IO Delays */ #define ADI_AXI_ADC_REG_DELAY(l) (0x0800 + (l) * 0x4) #define AXI_ADC_DELAY_CTRL_MASK GENMASK(4, 0) #define ADI_AXI_REG_CONFIG_WR 0x0080 #define ADI_AXI_REG_CONFIG_RD 0x0084 #define ADI_AXI_REG_CONFIG_CTRL 0x008c #define ADI_AXI_REG_CONFIG_CTRL_READ 0x03 #define ADI_AXI_REG_CONFIG_CTRL_WRITE 0x01 #define ADI_AXI_ADC_MAX_IO_NUM_LANES 15 #define ADI_AXI_REG_CHAN_CTRL_DEFAULTS \ (ADI_AXI_REG_CHAN_CTRL_FMT_SIGNEXT | \ ADI_AXI_REG_CHAN_CTRL_FMT_EN | \ ADI_AXI_REG_CHAN_CTRL_ENABLE) #define ADI_AXI_REG_READ_BIT 0x8000 #define ADI_AXI_REG_ADDRESS_MASK 0xff00 #define ADI_AXI_REG_VALUE_MASK 0x00ff struct axi_adc_info { unsigned int version; const struct iio_backend_info *backend_info; bool has_child_nodes; const void *pdata; unsigned int pdata_sz; }; struct adi_axi_adc_state { const struct axi_adc_info *info; struct regmap *regmap; struct device *dev; /* lock to protect multiple accesses to the device registers */ struct mutex lock; }; static int axi_adc_enable(struct iio_backend *back) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); unsigned int __val; int ret; guard(mutex)(&st->lock); ret = regmap_set_bits(st->regmap, ADI_AXI_REG_RSTN, ADI_AXI_REG_RSTN_MMCM_RSTN); if (ret) return ret; /* * Make sure the DRP (Dynamic Reconfiguration Port) is locked. Not all * designs really use it but if they don't we still get the lock bit * set. So let's do it all the time so the code is generic. */ ret = regmap_read_poll_timeout(st->regmap, ADI_AXI_ADC_REG_DRP_STATUS, __val, __val & ADI_AXI_ADC_DRP_LOCKED, 100, 1000); if (ret) return ret; return regmap_set_bits(st->regmap, ADI_AXI_REG_RSTN, ADI_AXI_REG_RSTN_RSTN | ADI_AXI_REG_RSTN_MMCM_RSTN); } static void axi_adc_disable(struct iio_backend *back) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); guard(mutex)(&st->lock); regmap_write(st->regmap, ADI_AXI_REG_RSTN, 0); } static int axi_adc_data_format_set(struct iio_backend *back, unsigned int chan, const struct iio_backend_data_fmt *data) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); u32 val; if (!data->enable) return regmap_clear_bits(st->regmap, ADI_AXI_REG_CHAN_CTRL(chan), ADI_AXI_REG_CHAN_CTRL_FMT_EN); val = FIELD_PREP(ADI_AXI_REG_CHAN_CTRL_FMT_EN, true); if (data->sign_extend) val |= FIELD_PREP(ADI_AXI_REG_CHAN_CTRL_FMT_SIGNEXT, true); if (data->type == IIO_BACKEND_OFFSET_BINARY) val |= FIELD_PREP(ADI_AXI_REG_CHAN_CTRL_FMT_TYPE, true); return regmap_update_bits(st->regmap, ADI_AXI_REG_CHAN_CTRL(chan), ADI_AXI_REG_CHAN_CTRL_FMT_MASK, val); } static int axi_adc_data_sample_trigger(struct iio_backend *back, enum iio_backend_sample_trigger trigger) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); switch (trigger) { case IIO_BACKEND_SAMPLE_TRIGGER_EDGE_RISING: return regmap_clear_bits(st->regmap, ADI_AXI_ADC_REG_CTRL, ADI_AXI_ADC_CTRL_DDR_EDGESEL_MASK); case IIO_BACKEND_SAMPLE_TRIGGER_EDGE_FALLING: return regmap_set_bits(st->regmap, ADI_AXI_ADC_REG_CTRL, ADI_AXI_ADC_CTRL_DDR_EDGESEL_MASK); default: return -EINVAL; } } static int axi_adc_iodelays_set(struct iio_backend *back, unsigned int lane, unsigned int tap) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); int ret; u32 val; if (tap > FIELD_MAX(AXI_ADC_DELAY_CTRL_MASK)) return -EINVAL; if (lane > ADI_AXI_ADC_MAX_IO_NUM_LANES) return -EINVAL; guard(mutex)(&st->lock); ret = regmap_write(st->regmap, ADI_AXI_ADC_REG_DELAY(lane), tap); if (ret) return ret; /* * If readback is ~0, that means there are issues with the * delay_clk. */ ret = regmap_read(st->regmap, ADI_AXI_ADC_REG_DELAY(lane), &val); if (ret) return ret; if (val == U32_MAX) return -EIO; return 0; } static int axi_adc_test_pattern_set(struct iio_backend *back, unsigned int chan, enum iio_backend_test_pattern pattern) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); switch (pattern) { case IIO_BACKEND_NO_TEST_PATTERN: /* nothing to do */ return 0; case IIO_BACKEND_ADI_PRBS_9A: return regmap_update_bits(st->regmap, ADI_AXI_ADC_REG_CHAN_CTRL_3(chan), ADI_AXI_ADC_CHAN_PN_SEL_MASK, FIELD_PREP(ADI_AXI_ADC_CHAN_PN_SEL_MASK, 0)); case IIO_BACKEND_ADI_PRBS_23A: return regmap_update_bits(st->regmap, ADI_AXI_ADC_REG_CHAN_CTRL_3(chan), ADI_AXI_ADC_CHAN_PN_SEL_MASK, FIELD_PREP(ADI_AXI_ADC_CHAN_PN_SEL_MASK, 1)); default: return -EINVAL; } } static int axi_adc_read_chan_status(struct adi_axi_adc_state *st, unsigned int chan, unsigned int *status) { int ret; guard(mutex)(&st->lock); /* reset test bits by setting them */ ret = regmap_write(st->regmap, ADI_AXI_ADC_REG_CHAN_STATUS(chan), ADI_AXI_ADC_CHAN_STAT_PN_MASK); if (ret) return ret; /* let's give enough time to validate or erroring the incoming pattern */ fsleep(1000); return regmap_read(st->regmap, ADI_AXI_ADC_REG_CHAN_STATUS(chan), status); } static int axi_adc_chan_status(struct iio_backend *back, unsigned int chan, bool *error) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); u32 val; int ret; ret = axi_adc_read_chan_status(st, chan, &val); if (ret) return ret; if (ADI_AXI_ADC_CHAN_STAT_PN_MASK & val) *error = true; else *error = false; return 0; } static int axi_adc_debugfs_print_chan_status(struct iio_backend *back, unsigned int chan, char *buf, size_t len) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); u32 val; int ret; ret = axi_adc_read_chan_status(st, chan, &val); if (ret) return ret; /* * PN_ERR is cleared in case out of sync is set. Hence, no point in * checking both bits. */ if (val & ADI_AXI_ADC_CHAN_STAT_PN_OOS) return scnprintf(buf, len, "CH%u: Out of Sync.\n", chan); if (val & ADI_AXI_ADC_CHAN_STAT_PN_ERR) return scnprintf(buf, len, "CH%u: Spurious Out of Sync.\n", chan); return scnprintf(buf, len, "CH%u: OK.\n", chan); } static int axi_adc_chan_enable(struct iio_backend *back, unsigned int chan) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); return regmap_set_bits(st->regmap, ADI_AXI_REG_CHAN_CTRL(chan), ADI_AXI_REG_CHAN_CTRL_ENABLE); } static int axi_adc_chan_disable(struct iio_backend *back, unsigned int chan) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); return regmap_clear_bits(st->regmap, ADI_AXI_REG_CHAN_CTRL(chan), ADI_AXI_REG_CHAN_CTRL_ENABLE); } static int axi_adc_interface_type_get(struct iio_backend *back, enum iio_backend_interface_type *type) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); unsigned int val; int ret; ret = regmap_read(st->regmap, ADI_AXI_ADC_REG_CONFIG, &val); if (ret) return ret; if (val & ADI_AXI_ADC_REG_CONFIG_CMOS_OR_LVDS_N) *type = IIO_BACKEND_INTERFACE_SERIAL_CMOS; else *type = IIO_BACKEND_INTERFACE_SERIAL_LVDS; return 0; } static int axi_adc_ad485x_data_size_set(struct iio_backend *back, unsigned int size) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); unsigned int val; switch (size) { /* * There are two different variants of the AXI AXI_AD485X IP block, a * 16-bit and a 20-bit variant. * The 0x0 value (AXI_AD485X_PACKET_FORMAT_20BIT) is corresponding also * to the 16-bit variant of the IP block. */ case 16: case 20: val = AXI_AD485X_PACKET_FORMAT_20BIT; break; case 24: val = AXI_AD485X_PACKET_FORMAT_24BIT; break; /* * The 0x2 (AXI_AD485X_PACKET_FORMAT_32BIT) corresponds only to the * 20-bit variant of the IP block. Setting this value properly is * ensured by the upper layers of the drivers calling the axi-adc * functions. * Also, for 16-bit IP block, the 0x2 (AXI_AD485X_PACKET_FORMAT_32BIT) * value is handled as maximum size available which is 24-bit for this * configuration. */ case 32: val = AXI_AD485X_PACKET_FORMAT_32BIT; break; default: return -EINVAL; } return regmap_update_bits(st->regmap, ADI_AXI_ADC_REG_CNTRL_3, AXI_AD485X_CNTRL_3_PACKET_FORMAT_MSK, FIELD_PREP(AXI_AD485X_CNTRL_3_PACKET_FORMAT_MSK, val)); } static int axi_adc_ad485x_oversampling_ratio_set(struct iio_backend *back, unsigned int ratio) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); /* The current state of the function enables or disables the * oversampling in REG_CNTRL_3 register. A ratio equal to 1 implies no * oversampling, while a value greater than 1 implies oversampling being * enabled. */ switch (ratio) { case 0: return -EINVAL; case 1: return regmap_clear_bits(st->regmap, ADI_AXI_ADC_REG_CNTRL_3, AXI_AD485X_CNTRL_3_OS_EN_MSK); default: return regmap_set_bits(st->regmap, ADI_AXI_ADC_REG_CNTRL_3, AXI_AD485X_CNTRL_3_OS_EN_MSK); } } static struct iio_buffer *axi_adc_request_buffer(struct iio_backend *back, struct iio_dev *indio_dev) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); const char *dma_name; if (device_property_read_string(st->dev, "dma-names", &dma_name)) dma_name = "rx"; return iio_dmaengine_buffer_setup(st->dev, indio_dev, dma_name); } static int axi_adc_raw_write(struct iio_backend *back, u32 val) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); regmap_write(st->regmap, ADI_AXI_REG_CONFIG_WR, val); regmap_write(st->regmap, ADI_AXI_REG_CONFIG_CTRL, ADI_AXI_REG_CONFIG_CTRL_WRITE); fsleep(100); regmap_write(st->regmap, ADI_AXI_REG_CONFIG_CTRL, 0x00); fsleep(100); return 0; } static int axi_adc_raw_read(struct iio_backend *back, u32 *val) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); regmap_write(st->regmap, ADI_AXI_REG_CONFIG_CTRL, ADI_AXI_REG_CONFIG_CTRL_READ); fsleep(100); regmap_read(st->regmap, ADI_AXI_REG_CONFIG_RD, val); regmap_write(st->regmap, ADI_AXI_REG_CONFIG_CTRL, 0x00); fsleep(100); return 0; } static int ad7606_bus_reg_read(struct iio_backend *back, u32 reg, u32 *val) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); int addr; guard(mutex)(&st->lock); /* * The address is written on the highest weight byte, and the MSB set * at 1 indicates a read operation. */ addr = FIELD_PREP(ADI_AXI_REG_ADDRESS_MASK, reg) | ADI_AXI_REG_READ_BIT; axi_adc_raw_write(back, addr); axi_adc_raw_read(back, val); /* Write 0x0 on the bus to get back to ADC mode */ axi_adc_raw_write(back, 0); return 0; } static int ad7606_bus_reg_write(struct iio_backend *back, u32 reg, u32 val) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); u32 buf; guard(mutex)(&st->lock); /* Write any register to switch to register mode */ axi_adc_raw_write(back, 0xaf00); buf = FIELD_PREP(ADI_AXI_REG_ADDRESS_MASK, reg) | FIELD_PREP(ADI_AXI_REG_VALUE_MASK, val); axi_adc_raw_write(back, buf); /* Write 0x0 on the bus to get back to ADC mode */ axi_adc_raw_write(back, 0); return 0; } static void axi_adc_free_buffer(struct iio_backend *back, struct iio_buffer *buffer) { iio_dmaengine_buffer_teardown(buffer); } static int axi_adc_reg_access(struct iio_backend *back, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct adi_axi_adc_state *st = iio_backend_get_priv(back); if (readval) return regmap_read(st->regmap, reg, readval); return regmap_write(st->regmap, reg, writeval); } static const struct regmap_config axi_adc_regmap_config = { .val_bits = 32, .reg_bits = 32, .reg_stride = 4, }; static void axi_adc_child_remove(void *data) { platform_device_unregister(data); } static int axi_adc_create_platform_device(struct adi_axi_adc_state *st, struct fwnode_handle *child) { struct platform_device_info pi = { .parent = st->dev, .name = fwnode_get_name(child), .id = PLATFORM_DEVID_AUTO, .fwnode = child, .data = st->info->pdata, .size_data = st->info->pdata_sz, }; struct platform_device *pdev; int ret; pdev = platform_device_register_full(&pi); if (IS_ERR(pdev)) return PTR_ERR(pdev); ret = devm_add_action_or_reset(st->dev, axi_adc_child_remove, pdev); if (ret) return ret; return 0; } static const struct iio_backend_ops adi_axi_adc_ops = { .enable = axi_adc_enable, .disable = axi_adc_disable, .data_format_set = axi_adc_data_format_set, .chan_enable = axi_adc_chan_enable, .chan_disable = axi_adc_chan_disable, .request_buffer = axi_adc_request_buffer, .free_buffer = axi_adc_free_buffer, .data_sample_trigger = axi_adc_data_sample_trigger, .iodelay_set = axi_adc_iodelays_set, .test_pattern_set = axi_adc_test_pattern_set, .chan_status = axi_adc_chan_status, .interface_type_get = axi_adc_interface_type_get, .debugfs_reg_access = iio_backend_debugfs_ptr(axi_adc_reg_access), .debugfs_print_chan_status = iio_backend_debugfs_ptr(axi_adc_debugfs_print_chan_status), }; static const struct iio_backend_info adi_axi_adc_generic = { .name = "axi-adc", .ops = &adi_axi_adc_ops, }; static const struct iio_backend_ops adi_ad485x_ops = { .enable = axi_adc_enable, .disable = axi_adc_disable, .data_format_set = axi_adc_data_format_set, .chan_enable = axi_adc_chan_enable, .chan_disable = axi_adc_chan_disable, .request_buffer = axi_adc_request_buffer, .free_buffer = axi_adc_free_buffer, .data_sample_trigger = axi_adc_data_sample_trigger, .iodelay_set = axi_adc_iodelays_set, .chan_status = axi_adc_chan_status, .interface_type_get = axi_adc_interface_type_get, .data_size_set = axi_adc_ad485x_data_size_set, .oversampling_ratio_set = axi_adc_ad485x_oversampling_ratio_set, .debugfs_reg_access = iio_backend_debugfs_ptr(axi_adc_reg_access), .debugfs_print_chan_status = iio_backend_debugfs_ptr(axi_adc_debugfs_print_chan_status), }; static const struct iio_backend_info axi_ad485x = { .name = "axi-ad485x", .ops = &adi_ad485x_ops, }; static int adi_axi_adc_probe(struct platform_device *pdev) { struct adi_axi_adc_state *st; void __iomem *base; unsigned int ver; struct clk *clk; int ret; st = devm_kzalloc(&pdev->dev, sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); st->dev = &pdev->dev; st->regmap = devm_regmap_init_mmio(&pdev->dev, base, &axi_adc_regmap_config); if (IS_ERR(st->regmap)) return dev_err_probe(&pdev->dev, PTR_ERR(st->regmap), "failed to init register map\n"); st->info = device_get_match_data(&pdev->dev); if (!st->info) return -ENODEV; clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(clk)) return dev_err_probe(&pdev->dev, PTR_ERR(clk), "failed to get clock\n"); /* * Force disable the core. Up to the frontend to enable us. And we can * still read/write registers... */ ret = regmap_write(st->regmap, ADI_AXI_REG_RSTN, 0); if (ret) return ret; ret = regmap_read(st->regmap, ADI_AXI_REG_VERSION, &ver); if (ret) return ret; if (ADI_AXI_PCORE_VER_MAJOR(ver) != ADI_AXI_PCORE_VER_MAJOR(st->info->version)) { dev_err(&pdev->dev, "Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n", ADI_AXI_PCORE_VER_MAJOR(st->info->version), ADI_AXI_PCORE_VER_MINOR(st->info->version), ADI_AXI_PCORE_VER_PATCH(st->info->version), ADI_AXI_PCORE_VER_MAJOR(ver), ADI_AXI_PCORE_VER_MINOR(ver), ADI_AXI_PCORE_VER_PATCH(ver)); return -ENODEV; } ret = devm_iio_backend_register(&pdev->dev, st->info->backend_info, st); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to register iio backend\n"); device_for_each_child_node_scoped(&pdev->dev, child) { int val; if (!st->info->has_child_nodes) return dev_err_probe(&pdev->dev, -EINVAL, "invalid fdt axi-dac compatible."); /* Processing only reg 0 node */ ret = fwnode_property_read_u32(child, "reg", &val); if (ret) return dev_err_probe(&pdev->dev, ret, "invalid reg property."); if (val != 0) return dev_err_probe(&pdev->dev, -EINVAL, "invalid node address."); ret = axi_adc_create_platform_device(st, child); if (ret) return dev_err_probe(&pdev->dev, -EINVAL, "cannot create device."); } dev_info(&pdev->dev, "AXI ADC IP core (%d.%.2d.%c) probed\n", ADI_AXI_PCORE_VER_MAJOR(ver), ADI_AXI_PCORE_VER_MINOR(ver), ADI_AXI_PCORE_VER_PATCH(ver)); return 0; } static const struct axi_adc_info adc_generic = { .version = ADI_AXI_PCORE_VER(10, 0, 'a'), .backend_info = &adi_axi_adc_generic, }; static const struct axi_adc_info adi_axi_ad485x = { .version = ADI_AXI_PCORE_VER(10, 0, 'a'), .backend_info = &axi_ad485x, }; static const struct ad7606_platform_data ad7606_pdata = { .bus_reg_read = ad7606_bus_reg_read, .bus_reg_write = ad7606_bus_reg_write, }; static const struct axi_adc_info adc_ad7606 = { .version = ADI_AXI_PCORE_VER(10, 0, 'a'), .backend_info = &adi_axi_adc_generic, .pdata = &ad7606_pdata, .pdata_sz = sizeof(ad7606_pdata), .has_child_nodes = true, }; /* Match table for of_platform binding */ static const struct of_device_id adi_axi_adc_of_match[] = { { .compatible = "adi,axi-adc-10.0.a", .data = &adc_generic }, { .compatible = "adi,axi-ad485x", .data = &adi_axi_ad485x }, { .compatible = "adi,axi-ad7606x", .data = &adc_ad7606 }, { /* end of list */ } }; MODULE_DEVICE_TABLE(of, adi_axi_adc_of_match); static struct platform_driver adi_axi_adc_driver = { .driver = { .name = KBUILD_MODNAME, .of_match_table = adi_axi_adc_of_match, }, .probe = adi_axi_adc_probe, }; module_platform_driver(adi_axi_adc_driver); MODULE_AUTHOR("Michael Hennerich "); MODULE_DESCRIPTION("Analog Devices Generic AXI ADC IP core driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER"); MODULE_IMPORT_NS("IIO_BACKEND");