// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020 Hannes Reinecke, SUSE Linux */ #include #include #include #include #include #include #include #include #include #include #include #define HKDF_MAX_HASHLEN 64 static u32 nvme_dhchap_seqnum; static DEFINE_MUTEX(nvme_dhchap_mutex); u32 nvme_auth_get_seqnum(void) { u32 seqnum; mutex_lock(&nvme_dhchap_mutex); if (!nvme_dhchap_seqnum) nvme_dhchap_seqnum = get_random_u32(); else { nvme_dhchap_seqnum++; if (!nvme_dhchap_seqnum) nvme_dhchap_seqnum++; } seqnum = nvme_dhchap_seqnum; mutex_unlock(&nvme_dhchap_mutex); return seqnum; } EXPORT_SYMBOL_GPL(nvme_auth_get_seqnum); static struct nvme_auth_dhgroup_map { const char name[16]; const char kpp[16]; } dhgroup_map[] = { [NVME_AUTH_DHGROUP_NULL] = { .name = "null", .kpp = "null" }, [NVME_AUTH_DHGROUP_2048] = { .name = "ffdhe2048", .kpp = "ffdhe2048(dh)" }, [NVME_AUTH_DHGROUP_3072] = { .name = "ffdhe3072", .kpp = "ffdhe3072(dh)" }, [NVME_AUTH_DHGROUP_4096] = { .name = "ffdhe4096", .kpp = "ffdhe4096(dh)" }, [NVME_AUTH_DHGROUP_6144] = { .name = "ffdhe6144", .kpp = "ffdhe6144(dh)" }, [NVME_AUTH_DHGROUP_8192] = { .name = "ffdhe8192", .kpp = "ffdhe8192(dh)" }, }; const char *nvme_auth_dhgroup_name(u8 dhgroup_id) { if (dhgroup_id >= ARRAY_SIZE(dhgroup_map)) return NULL; return dhgroup_map[dhgroup_id].name; } EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_name); const char *nvme_auth_dhgroup_kpp(u8 dhgroup_id) { if (dhgroup_id >= ARRAY_SIZE(dhgroup_map)) return NULL; return dhgroup_map[dhgroup_id].kpp; } EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_kpp); u8 nvme_auth_dhgroup_id(const char *dhgroup_name) { int i; if (!dhgroup_name || !strlen(dhgroup_name)) return NVME_AUTH_DHGROUP_INVALID; for (i = 0; i < ARRAY_SIZE(dhgroup_map); i++) { if (!strlen(dhgroup_map[i].name)) continue; if (!strncmp(dhgroup_map[i].name, dhgroup_name, strlen(dhgroup_map[i].name))) return i; } return NVME_AUTH_DHGROUP_INVALID; } EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_id); static struct nvme_dhchap_hash_map { int len; const char hmac[15]; const char digest[8]; } hash_map[] = { [NVME_AUTH_HASH_SHA256] = { .len = 32, .hmac = "hmac(sha256)", .digest = "sha256", }, [NVME_AUTH_HASH_SHA384] = { .len = 48, .hmac = "hmac(sha384)", .digest = "sha384", }, [NVME_AUTH_HASH_SHA512] = { .len = 64, .hmac = "hmac(sha512)", .digest = "sha512", }, }; const char *nvme_auth_hmac_name(u8 hmac_id) { if (hmac_id >= ARRAY_SIZE(hash_map)) return NULL; return hash_map[hmac_id].hmac; } EXPORT_SYMBOL_GPL(nvme_auth_hmac_name); const char *nvme_auth_digest_name(u8 hmac_id) { if (hmac_id >= ARRAY_SIZE(hash_map)) return NULL; return hash_map[hmac_id].digest; } EXPORT_SYMBOL_GPL(nvme_auth_digest_name); u8 nvme_auth_hmac_id(const char *hmac_name) { int i; if (!hmac_name || !strlen(hmac_name)) return NVME_AUTH_HASH_INVALID; for (i = 0; i < ARRAY_SIZE(hash_map); i++) { if (!strlen(hash_map[i].hmac)) continue; if (!strncmp(hash_map[i].hmac, hmac_name, strlen(hash_map[i].hmac))) return i; } return NVME_AUTH_HASH_INVALID; } EXPORT_SYMBOL_GPL(nvme_auth_hmac_id); size_t nvme_auth_hmac_hash_len(u8 hmac_id) { if (hmac_id >= ARRAY_SIZE(hash_map)) return 0; return hash_map[hmac_id].len; } EXPORT_SYMBOL_GPL(nvme_auth_hmac_hash_len); u32 nvme_auth_key_struct_size(u32 key_len) { struct nvme_dhchap_key key; return struct_size(&key, key, key_len); } EXPORT_SYMBOL_GPL(nvme_auth_key_struct_size); struct nvme_dhchap_key *nvme_auth_extract_key(unsigned char *secret, u8 key_hash) { struct nvme_dhchap_key *key; unsigned char *p; u32 crc; int ret, key_len; size_t allocated_len = strlen(secret); /* Secret might be affixed with a ':' */ p = strrchr(secret, ':'); if (p) allocated_len = p - secret; key = nvme_auth_alloc_key(allocated_len, 0); if (!key) return ERR_PTR(-ENOMEM); key_len = base64_decode(secret, allocated_len, key->key); if (key_len < 0) { pr_debug("base64 key decoding error %d\n", key_len); ret = key_len; goto out_free_secret; } if (key_len != 36 && key_len != 52 && key_len != 68) { pr_err("Invalid key len %d\n", key_len); ret = -EINVAL; goto out_free_secret; } /* The last four bytes is the CRC in little-endian format */ key_len -= 4; /* * The linux implementation doesn't do pre- and post-increments, * so we have to do it manually. */ crc = ~crc32(~0, key->key, key_len); if (get_unaligned_le32(key->key + key_len) != crc) { pr_err("key crc mismatch (key %08x, crc %08x)\n", get_unaligned_le32(key->key + key_len), crc); ret = -EKEYREJECTED; goto out_free_secret; } key->len = key_len; key->hash = key_hash; return key; out_free_secret: nvme_auth_free_key(key); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(nvme_auth_extract_key); struct nvme_dhchap_key *nvme_auth_alloc_key(u32 len, u8 hash) { u32 num_bytes = nvme_auth_key_struct_size(len); struct nvme_dhchap_key *key = kzalloc(num_bytes, GFP_KERNEL); if (key) { key->len = len; key->hash = hash; } return key; } EXPORT_SYMBOL_GPL(nvme_auth_alloc_key); void nvme_auth_free_key(struct nvme_dhchap_key *key) { if (!key) return; kfree_sensitive(key); } EXPORT_SYMBOL_GPL(nvme_auth_free_key); struct nvme_dhchap_key *nvme_auth_transform_key( struct nvme_dhchap_key *key, char *nqn) { const char *hmac_name; struct crypto_shash *key_tfm; struct shash_desc *shash; struct nvme_dhchap_key *transformed_key; int ret, key_len; if (!key) { pr_warn("No key specified\n"); return ERR_PTR(-ENOKEY); } if (key->hash == 0) { key_len = nvme_auth_key_struct_size(key->len); transformed_key = kmemdup(key, key_len, GFP_KERNEL); if (!transformed_key) return ERR_PTR(-ENOMEM); return transformed_key; } hmac_name = nvme_auth_hmac_name(key->hash); if (!hmac_name) { pr_warn("Invalid key hash id %d\n", key->hash); return ERR_PTR(-EINVAL); } key_tfm = crypto_alloc_shash(hmac_name, 0, 0); if (IS_ERR(key_tfm)) return ERR_CAST(key_tfm); shash = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(key_tfm), GFP_KERNEL); if (!shash) { ret = -ENOMEM; goto out_free_key; } key_len = crypto_shash_digestsize(key_tfm); transformed_key = nvme_auth_alloc_key(key_len, key->hash); if (!transformed_key) { ret = -ENOMEM; goto out_free_shash; } shash->tfm = key_tfm; ret = crypto_shash_setkey(key_tfm, key->key, key->len); if (ret < 0) goto out_free_transformed_key; ret = crypto_shash_init(shash); if (ret < 0) goto out_free_transformed_key; ret = crypto_shash_update(shash, nqn, strlen(nqn)); if (ret < 0) goto out_free_transformed_key; ret = crypto_shash_update(shash, "NVMe-over-Fabrics", 17); if (ret < 0) goto out_free_transformed_key; ret = crypto_shash_final(shash, transformed_key->key); if (ret < 0) goto out_free_transformed_key; kfree(shash); crypto_free_shash(key_tfm); return transformed_key; out_free_transformed_key: nvme_auth_free_key(transformed_key); out_free_shash: kfree(shash); out_free_key: crypto_free_shash(key_tfm); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(nvme_auth_transform_key); static int nvme_auth_hash_skey(int hmac_id, u8 *skey, size_t skey_len, u8 *hkey) { const char *digest_name; struct crypto_shash *tfm; int ret; digest_name = nvme_auth_digest_name(hmac_id); if (!digest_name) { pr_debug("%s: failed to get digest for %d\n", __func__, hmac_id); return -EINVAL; } tfm = crypto_alloc_shash(digest_name, 0, 0); if (IS_ERR(tfm)) return -ENOMEM; ret = crypto_shash_tfm_digest(tfm, skey, skey_len, hkey); if (ret < 0) pr_debug("%s: Failed to hash digest len %zu\n", __func__, skey_len); crypto_free_shash(tfm); return ret; } int nvme_auth_augmented_challenge(u8 hmac_id, u8 *skey, size_t skey_len, u8 *challenge, u8 *aug, size_t hlen) { struct crypto_shash *tfm; u8 *hashed_key; const char *hmac_name; int ret; hashed_key = kmalloc(hlen, GFP_KERNEL); if (!hashed_key) return -ENOMEM; ret = nvme_auth_hash_skey(hmac_id, skey, skey_len, hashed_key); if (ret < 0) goto out_free_key; hmac_name = nvme_auth_hmac_name(hmac_id); if (!hmac_name) { pr_warn("%s: invalid hash algorithm %d\n", __func__, hmac_id); ret = -EINVAL; goto out_free_key; } tfm = crypto_alloc_shash(hmac_name, 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto out_free_key; } ret = crypto_shash_setkey(tfm, hashed_key, hlen); if (ret) goto out_free_hash; ret = crypto_shash_tfm_digest(tfm, challenge, hlen, aug); out_free_hash: crypto_free_shash(tfm); out_free_key: kfree_sensitive(hashed_key); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_augmented_challenge); int nvme_auth_gen_privkey(struct crypto_kpp *dh_tfm, u8 dh_gid) { int ret; ret = crypto_kpp_set_secret(dh_tfm, NULL, 0); if (ret) pr_debug("failed to set private key, error %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_gen_privkey); int nvme_auth_gen_pubkey(struct crypto_kpp *dh_tfm, u8 *host_key, size_t host_key_len) { struct kpp_request *req; struct crypto_wait wait; struct scatterlist dst; int ret; req = kpp_request_alloc(dh_tfm, GFP_KERNEL); if (!req) return -ENOMEM; crypto_init_wait(&wait); kpp_request_set_input(req, NULL, 0); sg_init_one(&dst, host_key, host_key_len); kpp_request_set_output(req, &dst, host_key_len); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); kpp_request_free(req); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_gen_pubkey); int nvme_auth_gen_shared_secret(struct crypto_kpp *dh_tfm, u8 *ctrl_key, size_t ctrl_key_len, u8 *sess_key, size_t sess_key_len) { struct kpp_request *req; struct crypto_wait wait; struct scatterlist src, dst; int ret; req = kpp_request_alloc(dh_tfm, GFP_KERNEL); if (!req) return -ENOMEM; crypto_init_wait(&wait); sg_init_one(&src, ctrl_key, ctrl_key_len); kpp_request_set_input(req, &src, ctrl_key_len); sg_init_one(&dst, sess_key, sess_key_len); kpp_request_set_output(req, &dst, sess_key_len); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); kpp_request_free(req); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_gen_shared_secret); int nvme_auth_generate_key(u8 *secret, struct nvme_dhchap_key **ret_key) { struct nvme_dhchap_key *key; u8 key_hash; if (!secret) { *ret_key = NULL; return 0; } if (sscanf(secret, "DHHC-1:%hhd:%*s:", &key_hash) != 1) return -EINVAL; /* Pass in the secret without the 'DHHC-1:XX:' prefix */ key = nvme_auth_extract_key(secret + 10, key_hash); if (IS_ERR(key)) { *ret_key = NULL; return PTR_ERR(key); } *ret_key = key; return 0; } EXPORT_SYMBOL_GPL(nvme_auth_generate_key); /** * nvme_auth_generate_psk - Generate a PSK for TLS * @hmac_id: Hash function identifier * @skey: Session key * @skey_len: Length of @skey * @c1: Value of challenge C1 * @c2: Value of challenge C2 * @hash_len: Hash length of the hash algorithm * @ret_psk: Pointer too the resulting generated PSK * @ret_len: length of @ret_psk * * Generate a PSK for TLS as specified in NVMe base specification, section * 8.13.5.9: Generated PSK for TLS * * The generated PSK for TLS shall be computed applying the HMAC function * using the hash function H( ) selected by the HashID parameter in the * DH-HMAC-CHAP_Challenge message with the session key KS as key to the * concatenation of the two challenges C1 and C2 (i.e., generated * PSK = HMAC(KS, C1 || C2)). * * Returns 0 on success with a valid generated PSK pointer in @ret_psk and * the length of @ret_psk in @ret_len, or a negative error number otherwise. */ int nvme_auth_generate_psk(u8 hmac_id, u8 *skey, size_t skey_len, u8 *c1, u8 *c2, size_t hash_len, u8 **ret_psk, size_t *ret_len) { struct crypto_shash *tfm; SHASH_DESC_ON_STACK(shash, tfm); u8 *psk; const char *hmac_name; int ret, psk_len; if (!c1 || !c2) return -EINVAL; hmac_name = nvme_auth_hmac_name(hmac_id); if (!hmac_name) { pr_warn("%s: invalid hash algorithm %d\n", __func__, hmac_id); return -EINVAL; } tfm = crypto_alloc_shash(hmac_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); psk_len = crypto_shash_digestsize(tfm); psk = kzalloc(psk_len, GFP_KERNEL); if (!psk) { ret = -ENOMEM; goto out_free_tfm; } shash->tfm = tfm; ret = crypto_shash_setkey(tfm, skey, skey_len); if (ret) goto out_free_psk; ret = crypto_shash_init(shash); if (ret) goto out_free_psk; ret = crypto_shash_update(shash, c1, hash_len); if (ret) goto out_free_psk; ret = crypto_shash_update(shash, c2, hash_len); if (ret) goto out_free_psk; ret = crypto_shash_final(shash, psk); if (!ret) { *ret_psk = psk; *ret_len = psk_len; } out_free_psk: if (ret) kfree_sensitive(psk); out_free_tfm: crypto_free_shash(tfm); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_generate_psk); /** * nvme_auth_generate_digest - Generate TLS PSK digest * @hmac_id: Hash function identifier * @psk: Generated input PSK * @psk_len: Length of @psk * @subsysnqn: NQN of the subsystem * @hostnqn: NQN of the host * @ret_digest: Pointer to the returned digest * * Generate a TLS PSK digest as specified in TP8018 Section 3.6.1.3: * TLS PSK and PSK identity Derivation * * The PSK digest shall be computed by encoding in Base64 (refer to RFC * 4648) the result of the application of the HMAC function using the hash * function specified in item 4 above (ie the hash function of the cipher * suite associated with the PSK identity) with the PSK as HMAC key to the * concatenation of: * - the NQN of the host (i.e., NQNh) not including the null terminator; * - a space character; * - the NQN of the NVM subsystem (i.e., NQNc) not including the null * terminator; * - a space character; and * - the seventeen ASCII characters "NVMe-over-Fabrics" * (i.e., = Base64(HMAC(PSK, NQNh || " " || NQNc || " " || * "NVMe-over-Fabrics"))). * The length of the PSK digest depends on the hash function used to compute * it as follows: * - If the SHA-256 hash function is used, the resulting PSK digest is 44 * characters long; or * - If the SHA-384 hash function is used, the resulting PSK digest is 64 * characters long. * * Returns 0 on success with a valid digest pointer in @ret_digest, or a * negative error number on failure. */ int nvme_auth_generate_digest(u8 hmac_id, u8 *psk, size_t psk_len, char *subsysnqn, char *hostnqn, u8 **ret_digest) { struct crypto_shash *tfm; SHASH_DESC_ON_STACK(shash, tfm); u8 *digest, *enc; const char *hmac_name; size_t digest_len, hmac_len; int ret; if (WARN_ON(!subsysnqn || !hostnqn)) return -EINVAL; hmac_name = nvme_auth_hmac_name(hmac_id); if (!hmac_name) { pr_warn("%s: invalid hash algorithm %d\n", __func__, hmac_id); return -EINVAL; } switch (nvme_auth_hmac_hash_len(hmac_id)) { case 32: hmac_len = 44; break; case 48: hmac_len = 64; break; default: pr_warn("%s: invalid hash algorithm '%s'\n", __func__, hmac_name); return -EINVAL; } enc = kzalloc(hmac_len + 1, GFP_KERNEL); if (!enc) return -ENOMEM; tfm = crypto_alloc_shash(hmac_name, 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto out_free_enc; } digest_len = crypto_shash_digestsize(tfm); digest = kzalloc(digest_len, GFP_KERNEL); if (!digest) { ret = -ENOMEM; goto out_free_tfm; } shash->tfm = tfm; ret = crypto_shash_setkey(tfm, psk, psk_len); if (ret) goto out_free_digest; ret = crypto_shash_init(shash); if (ret) goto out_free_digest; ret = crypto_shash_update(shash, hostnqn, strlen(hostnqn)); if (ret) goto out_free_digest; ret = crypto_shash_update(shash, " ", 1); if (ret) goto out_free_digest; ret = crypto_shash_update(shash, subsysnqn, strlen(subsysnqn)); if (ret) goto out_free_digest; ret = crypto_shash_update(shash, " NVMe-over-Fabrics", 18); if (ret) goto out_free_digest; ret = crypto_shash_final(shash, digest); if (ret) goto out_free_digest; ret = base64_encode(digest, digest_len, enc); if (ret < hmac_len) { ret = -ENOKEY; goto out_free_digest; } *ret_digest = enc; ret = 0; out_free_digest: kfree_sensitive(digest); out_free_tfm: crypto_free_shash(tfm); out_free_enc: if (ret) kfree_sensitive(enc); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_generate_digest); /** * nvme_auth_derive_tls_psk - Derive TLS PSK * @hmac_id: Hash function identifier * @psk: generated input PSK * @psk_len: size of @psk * @psk_digest: TLS PSK digest * @ret_psk: Pointer to the resulting TLS PSK * * Derive a TLS PSK as specified in TP8018 Section 3.6.1.3: * TLS PSK and PSK identity Derivation * * The TLS PSK shall be derived as follows from an input PSK * (i.e., either a retained PSK or a generated PSK) and a PSK * identity using the HKDF-Extract and HKDF-Expand-Label operations * (refer to RFC 5869 and RFC 8446) where the hash function is the * one specified by the hash specifier of the PSK identity: * 1. PRK = HKDF-Extract(0, Input PSK); and * 2. TLS PSK = HKDF-Expand-Label(PRK, "nvme-tls-psk", PskIdentityContext, L), * where PskIdentityContext is the hash identifier indicated in * the PSK identity concatenated to a space character and to the * Base64 PSK digest (i.e., " ") and L is the * output size in bytes of the hash function (i.e., 32 for SHA-256 * and 48 for SHA-384). * * Returns 0 on success with a valid psk pointer in @ret_psk or a negative * error number otherwise. */ int nvme_auth_derive_tls_psk(int hmac_id, u8 *psk, size_t psk_len, u8 *psk_digest, u8 **ret_psk) { struct crypto_shash *hmac_tfm; const char *hmac_name; const char *psk_prefix = "tls13 nvme-tls-psk"; static const char default_salt[HKDF_MAX_HASHLEN]; size_t info_len, prk_len; char *info; unsigned char *prk, *tls_key; int ret; hmac_name = nvme_auth_hmac_name(hmac_id); if (!hmac_name) { pr_warn("%s: invalid hash algorithm %d\n", __func__, hmac_id); return -EINVAL; } if (hmac_id == NVME_AUTH_HASH_SHA512) { pr_warn("%s: unsupported hash algorithm %s\n", __func__, hmac_name); return -EINVAL; } hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0); if (IS_ERR(hmac_tfm)) return PTR_ERR(hmac_tfm); prk_len = crypto_shash_digestsize(hmac_tfm); prk = kzalloc(prk_len, GFP_KERNEL); if (!prk) { ret = -ENOMEM; goto out_free_shash; } if (WARN_ON(prk_len > HKDF_MAX_HASHLEN)) { ret = -EINVAL; goto out_free_prk; } ret = hkdf_extract(hmac_tfm, psk, psk_len, default_salt, prk_len, prk); if (ret) goto out_free_prk; ret = crypto_shash_setkey(hmac_tfm, prk, prk_len); if (ret) goto out_free_prk; /* * 2 addtional bytes for the length field from HDKF-Expand-Label, * 2 addtional bytes for the HMAC ID, and one byte for the space * separator. */ info_len = strlen(psk_digest) + strlen(psk_prefix) + 5; info = kzalloc(info_len + 1, GFP_KERNEL); if (!info) { ret = -ENOMEM; goto out_free_prk; } put_unaligned_be16(psk_len, info); memcpy(info + 2, psk_prefix, strlen(psk_prefix)); sprintf(info + 2 + strlen(psk_prefix), "%02d %s", hmac_id, psk_digest); tls_key = kzalloc(psk_len, GFP_KERNEL); if (!tls_key) { ret = -ENOMEM; goto out_free_info; } ret = hkdf_expand(hmac_tfm, info, info_len, tls_key, psk_len); if (ret) { kfree(tls_key); goto out_free_info; } *ret_psk = tls_key; out_free_info: kfree(info); out_free_prk: kfree(prk); out_free_shash: crypto_free_shash(hmac_tfm); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_derive_tls_psk); MODULE_DESCRIPTION("NVMe Authentication framework"); MODULE_LICENSE("GPL v2");