// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2025 - All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OSPI_CR 0x00 #define CR_EN BIT(0) #define CR_ABORT BIT(1) #define CR_DMAEN BIT(2) #define CR_FTHRES_SHIFT 8 #define CR_TEIE BIT(16) #define CR_TCIE BIT(17) #define CR_SMIE BIT(19) #define CR_APMS BIT(22) #define CR_CSSEL BIT(24) #define CR_FMODE_MASK GENMASK(29, 28) #define CR_FMODE_INDW (0U) #define CR_FMODE_INDR (1U) #define CR_FMODE_APM (2U) #define CR_FMODE_MM (3U) #define OSPI_DCR1 0x08 #define DCR1_DLYBYP BIT(3) #define DCR1_DEVSIZE_MASK GENMASK(20, 16) #define DCR1_MTYP_MASK GENMASK(26, 24) #define DCR1_MTYP_MX_MODE 1 #define DCR1_MTYP_HP_MEMMODE 4 #define OSPI_DCR2 0x0c #define DCR2_PRESC_MASK GENMASK(7, 0) #define OSPI_SR 0x20 #define SR_TEF BIT(0) #define SR_TCF BIT(1) #define SR_FTF BIT(2) #define SR_SMF BIT(3) #define SR_BUSY BIT(5) #define OSPI_FCR 0x24 #define FCR_CTEF BIT(0) #define FCR_CTCF BIT(1) #define FCR_CSMF BIT(3) #define OSPI_DLR 0x40 #define OSPI_AR 0x48 #define OSPI_DR 0x50 #define OSPI_PSMKR 0x80 #define OSPI_PSMAR 0x88 #define OSPI_CCR 0x100 #define CCR_IMODE_MASK GENMASK(2, 0) #define CCR_IDTR BIT(3) #define CCR_ISIZE_MASK GENMASK(5, 4) #define CCR_ADMODE_MASK GENMASK(10, 8) #define CCR_ADMODE_8LINES 4 #define CCR_ADDTR BIT(11) #define CCR_ADSIZE_MASK GENMASK(13, 12) #define CCR_ADSIZE_32BITS 3 #define CCR_DMODE_MASK GENMASK(26, 24) #define CCR_DMODE_8LINES 4 #define CCR_DQSE BIT(29) #define CCR_DDTR BIT(27) #define CCR_BUSWIDTH_0 0x0 #define CCR_BUSWIDTH_1 0x1 #define CCR_BUSWIDTH_2 0x2 #define CCR_BUSWIDTH_4 0x3 #define CCR_BUSWIDTH_8 0x4 #define OSPI_TCR 0x108 #define TCR_DCYC_MASK GENMASK(4, 0) #define TCR_DHQC BIT(28) #define TCR_SSHIFT BIT(30) #define OSPI_IR 0x110 #define STM32_OSPI_MAX_MMAP_SZ SZ_256M #define STM32_OSPI_MAX_NORCHIP 2 #define STM32_FIFO_TIMEOUT_US 30000 #define STM32_ABT_TIMEOUT_US 100000 #define STM32_COMP_TIMEOUT_MS 5000 #define STM32_BUSY_TIMEOUT_US 100000 #define STM32_AUTOSUSPEND_DELAY -1 struct stm32_ospi { struct device *dev; struct spi_controller *ctrl; struct clk *clk; struct reset_control *rstc; struct completion data_completion; struct completion match_completion; struct dma_chan *dma_chtx; struct dma_chan *dma_chrx; struct completion dma_completion; void __iomem *regs_base; void __iomem *mm_base; phys_addr_t regs_phys_base; resource_size_t mm_size; u32 clk_rate; u32 fmode; u32 cr_reg; u32 dcr_reg; u32 flash_presc[STM32_OSPI_MAX_NORCHIP]; int irq; unsigned long status_timeout; /* * To protect device configuration, could be different between * 2 flash access */ struct mutex lock; }; static void stm32_ospi_read_fifo(u8 *val, void __iomem *addr) { *val = readb_relaxed(addr); } static void stm32_ospi_write_fifo(u8 *val, void __iomem *addr) { writeb_relaxed(*val, addr); } static int stm32_ospi_abort(struct stm32_ospi *ospi) { void __iomem *regs_base = ospi->regs_base; u32 cr; int timeout; cr = readl_relaxed(regs_base + OSPI_CR) | CR_ABORT; writel_relaxed(cr, regs_base + OSPI_CR); /* wait clear of abort bit by hw */ timeout = readl_relaxed_poll_timeout_atomic(regs_base + OSPI_CR, cr, !(cr & CR_ABORT), 1, STM32_ABT_TIMEOUT_US); if (timeout) dev_err(ospi->dev, "%s abort timeout:%d\n", __func__, timeout); return timeout; } static int stm32_ospi_poll(struct stm32_ospi *ospi, u8 *buf, u32 len, bool read) { void __iomem *regs_base = ospi->regs_base; void (*fifo)(u8 *val, void __iomem *addr); u32 sr; int ret; if (read) fifo = stm32_ospi_read_fifo; else fifo = stm32_ospi_write_fifo; while (len--) { ret = readl_relaxed_poll_timeout_atomic(regs_base + OSPI_SR, sr, sr & SR_FTF, 1, STM32_FIFO_TIMEOUT_US); if (ret) { dev_err(ospi->dev, "fifo timeout (len:%d stat:%#x)\n", len, sr); return ret; } fifo(buf++, regs_base + OSPI_DR); } return 0; } static int stm32_ospi_wait_nobusy(struct stm32_ospi *ospi) { u32 sr; return readl_relaxed_poll_timeout_atomic(ospi->regs_base + OSPI_SR, sr, !(sr & SR_BUSY), 1, STM32_BUSY_TIMEOUT_US); } static int stm32_ospi_wait_cmd(struct stm32_ospi *ospi) { void __iomem *regs_base = ospi->regs_base; u32 cr, sr; int err = 0; if ((readl_relaxed(regs_base + OSPI_SR) & SR_TCF) || ospi->fmode == CR_FMODE_APM) goto out; reinit_completion(&ospi->data_completion); cr = readl_relaxed(regs_base + OSPI_CR); writel_relaxed(cr | CR_TCIE | CR_TEIE, regs_base + OSPI_CR); if (!wait_for_completion_timeout(&ospi->data_completion, msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) err = -ETIMEDOUT; sr = readl_relaxed(regs_base + OSPI_SR); if (sr & SR_TCF) /* avoid false timeout */ err = 0; if (sr & SR_TEF) err = -EIO; out: /* clear flags */ writel_relaxed(FCR_CTCF | FCR_CTEF, regs_base + OSPI_FCR); if (!err) err = stm32_ospi_wait_nobusy(ospi); return err; } static void stm32_ospi_dma_callback(void *arg) { struct completion *dma_completion = arg; complete(dma_completion); } static irqreturn_t stm32_ospi_irq(int irq, void *dev_id) { struct stm32_ospi *ospi = (struct stm32_ospi *)dev_id; void __iomem *regs_base = ospi->regs_base; u32 cr, sr; cr = readl_relaxed(regs_base + OSPI_CR); sr = readl_relaxed(regs_base + OSPI_SR); if (cr & CR_SMIE && sr & SR_SMF) { /* disable irq */ cr &= ~CR_SMIE; writel_relaxed(cr, regs_base + OSPI_CR); complete(&ospi->match_completion); return IRQ_HANDLED; } if (sr & (SR_TEF | SR_TCF)) { /* disable irq */ cr &= ~CR_TCIE & ~CR_TEIE; writel_relaxed(cr, regs_base + OSPI_CR); complete(&ospi->data_completion); } return IRQ_HANDLED; } static void stm32_ospi_dma_setup(struct stm32_ospi *ospi, struct dma_slave_config *dma_cfg) { if (dma_cfg && ospi->dma_chrx) { if (dmaengine_slave_config(ospi->dma_chrx, dma_cfg)) { dev_err(ospi->dev, "dma rx config failed\n"); dma_release_channel(ospi->dma_chrx); ospi->dma_chrx = NULL; } } if (dma_cfg && ospi->dma_chtx) { if (dmaengine_slave_config(ospi->dma_chtx, dma_cfg)) { dev_err(ospi->dev, "dma tx config failed\n"); dma_release_channel(ospi->dma_chtx); ospi->dma_chtx = NULL; } } init_completion(&ospi->dma_completion); } static int stm32_ospi_tx_mm(struct stm32_ospi *ospi, const struct spi_mem_op *op) { memcpy_fromio(op->data.buf.in, ospi->mm_base + op->addr.val, op->data.nbytes); return 0; } static int stm32_ospi_tx_dma(struct stm32_ospi *ospi, const struct spi_mem_op *op) { struct dma_async_tx_descriptor *desc; void __iomem *regs_base = ospi->regs_base; enum dma_transfer_direction dma_dir; struct dma_chan *dma_ch; struct sg_table sgt; dma_cookie_t cookie; u32 cr, t_out; int err; if (op->data.dir == SPI_MEM_DATA_IN) { dma_dir = DMA_DEV_TO_MEM; dma_ch = ospi->dma_chrx; } else { dma_dir = DMA_MEM_TO_DEV; dma_ch = ospi->dma_chtx; } /* * Spi_map_buf return -EINVAL if the buffer is not DMA-able * (DMA-able: in vmalloc | kmap | virt_addr_valid) */ err = spi_controller_dma_map_mem_op_data(ospi->ctrl, op, &sgt); if (err) return err; desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents, dma_dir, DMA_PREP_INTERRUPT); if (!desc) { err = -ENOMEM; goto out_unmap; } cr = readl_relaxed(regs_base + OSPI_CR); reinit_completion(&ospi->dma_completion); desc->callback = stm32_ospi_dma_callback; desc->callback_param = &ospi->dma_completion; cookie = dmaengine_submit(desc); err = dma_submit_error(cookie); if (err) goto out; dma_async_issue_pending(dma_ch); writel_relaxed(cr | CR_DMAEN, regs_base + OSPI_CR); t_out = sgt.nents * STM32_COMP_TIMEOUT_MS; if (!wait_for_completion_timeout(&ospi->dma_completion, msecs_to_jiffies(t_out))) err = -ETIMEDOUT; if (err) dmaengine_terminate_all(dma_ch); out: writel_relaxed(cr & ~CR_DMAEN, regs_base + OSPI_CR); out_unmap: spi_controller_dma_unmap_mem_op_data(ospi->ctrl, op, &sgt); return err; } static int stm32_ospi_xfer(struct stm32_ospi *ospi, const struct spi_mem_op *op) { u8 *buf; if (!op->data.nbytes) return 0; if (ospi->fmode == CR_FMODE_MM) return stm32_ospi_tx_mm(ospi, op); else if (((op->data.dir == SPI_MEM_DATA_IN && ospi->dma_chrx) || (op->data.dir == SPI_MEM_DATA_OUT && ospi->dma_chtx)) && op->data.nbytes > 8) if (!stm32_ospi_tx_dma(ospi, op)) return 0; if (op->data.dir == SPI_MEM_DATA_IN) buf = op->data.buf.in; else buf = (u8 *)op->data.buf.out; return stm32_ospi_poll(ospi, buf, op->data.nbytes, op->data.dir == SPI_MEM_DATA_IN); } static int stm32_ospi_wait_poll_status(struct stm32_ospi *ospi, const struct spi_mem_op *op) { void __iomem *regs_base = ospi->regs_base; u32 cr; reinit_completion(&ospi->match_completion); cr = readl_relaxed(regs_base + OSPI_CR); writel_relaxed(cr | CR_SMIE, regs_base + OSPI_CR); if (!wait_for_completion_timeout(&ospi->match_completion, msecs_to_jiffies(ospi->status_timeout))) { u32 sr = readl_relaxed(regs_base + OSPI_SR); /* Avoid false timeout */ if (!(sr & SR_SMF)) return -ETIMEDOUT; } writel_relaxed(FCR_CSMF, regs_base + OSPI_FCR); return 0; } static int stm32_ospi_get_mode(u8 buswidth) { switch (buswidth) { case 8: return CCR_BUSWIDTH_8; case 4: return CCR_BUSWIDTH_4; default: return buswidth; } } static int stm32_ospi_send(struct spi_device *spi, const struct spi_mem_op *op) { struct stm32_ospi *ospi = spi_controller_get_devdata(spi->controller); void __iomem *regs_base = ospi->regs_base; u32 ccr, cr, dcr2, tcr; int timeout, err = 0, err_poll_status = 0; u8 cs = spi->chip_select[ffs(spi->cs_index_mask) - 1]; dev_dbg(ospi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n", op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth, op->addr.val, op->data.nbytes); cr = readl_relaxed(ospi->regs_base + OSPI_CR); cr &= ~CR_CSSEL; cr |= FIELD_PREP(CR_CSSEL, cs); cr &= ~CR_FMODE_MASK; cr |= FIELD_PREP(CR_FMODE_MASK, ospi->fmode); writel_relaxed(cr, regs_base + OSPI_CR); if (op->data.nbytes) writel_relaxed(op->data.nbytes - 1, regs_base + OSPI_DLR); /* set prescaler */ dcr2 = readl_relaxed(regs_base + OSPI_DCR2); dcr2 |= FIELD_PREP(DCR2_PRESC_MASK, ospi->flash_presc[cs]); writel_relaxed(dcr2, regs_base + OSPI_DCR2); ccr = FIELD_PREP(CCR_IMODE_MASK, stm32_ospi_get_mode(op->cmd.buswidth)); if (op->addr.nbytes) { ccr |= FIELD_PREP(CCR_ADMODE_MASK, stm32_ospi_get_mode(op->addr.buswidth)); ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1); } tcr = TCR_SSHIFT; if (op->dummy.buswidth && op->dummy.nbytes) { tcr |= FIELD_PREP(TCR_DCYC_MASK, op->dummy.nbytes * 8 / op->dummy.buswidth); } writel_relaxed(tcr, regs_base + OSPI_TCR); if (op->data.nbytes) { ccr |= FIELD_PREP(CCR_DMODE_MASK, stm32_ospi_get_mode(op->data.buswidth)); } writel_relaxed(ccr, regs_base + OSPI_CCR); /* set instruction, must be set after ccr register update */ writel_relaxed(op->cmd.opcode, regs_base + OSPI_IR); if (op->addr.nbytes && ospi->fmode != CR_FMODE_MM) writel_relaxed(op->addr.val, regs_base + OSPI_AR); if (ospi->fmode == CR_FMODE_APM) err_poll_status = stm32_ospi_wait_poll_status(ospi, op); err = stm32_ospi_xfer(ospi, op); /* * Abort in: * -error case * -read memory map: prefetching must be stopped if we read the last * byte of device (device size - fifo size). like device size is not * knows, the prefetching is always stop. */ if (err || err_poll_status || ospi->fmode == CR_FMODE_MM) goto abort; /* Wait end of tx in indirect mode */ err = stm32_ospi_wait_cmd(ospi); if (err) goto abort; return 0; abort: timeout = stm32_ospi_abort(ospi); writel_relaxed(FCR_CTCF | FCR_CSMF, regs_base + OSPI_FCR); if (err || err_poll_status || timeout) dev_err(ospi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n", __func__, err, err_poll_status, timeout); return err; } static int stm32_ospi_poll_status(struct spi_mem *mem, const struct spi_mem_op *op, u16 mask, u16 match, unsigned long initial_delay_us, unsigned long polling_rate_us, unsigned long timeout_ms) { struct stm32_ospi *ospi = spi_controller_get_devdata(mem->spi->controller); void __iomem *regs_base = ospi->regs_base; int ret; ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) return ret; mutex_lock(&ospi->lock); writel_relaxed(mask, regs_base + OSPI_PSMKR); writel_relaxed(match, regs_base + OSPI_PSMAR); ospi->fmode = CR_FMODE_APM; ospi->status_timeout = timeout_ms; ret = stm32_ospi_send(mem->spi, op); mutex_unlock(&ospi->lock); pm_runtime_mark_last_busy(ospi->dev); pm_runtime_put_autosuspend(ospi->dev); return ret; } static int stm32_ospi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct stm32_ospi *ospi = spi_controller_get_devdata(mem->spi->controller); int ret; ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) return ret; mutex_lock(&ospi->lock); if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes) ospi->fmode = CR_FMODE_INDR; else ospi->fmode = CR_FMODE_INDW; ret = stm32_ospi_send(mem->spi, op); mutex_unlock(&ospi->lock); pm_runtime_mark_last_busy(ospi->dev); pm_runtime_put_autosuspend(ospi->dev); return ret; } static int stm32_ospi_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct stm32_ospi *ospi = spi_controller_get_devdata(desc->mem->spi->controller); if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) return -EOPNOTSUPP; /* Should never happen, as mm_base == null is an error probe exit condition */ if (!ospi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN) return -EOPNOTSUPP; if (!ospi->mm_size) return -EOPNOTSUPP; return 0; } static ssize_t stm32_ospi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct stm32_ospi *ospi = spi_controller_get_devdata(desc->mem->spi->controller); struct spi_mem_op op; u32 addr_max; int ret; ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) return ret; mutex_lock(&ospi->lock); /* * Make a local copy of desc op_tmpl and complete dirmap rdesc * spi_mem_op template with offs, len and *buf in order to get * all needed transfer information into struct spi_mem_op */ memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op)); dev_dbg(ospi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf); op.data.nbytes = len; op.addr.val = desc->info.offset + offs; op.data.buf.in = buf; addr_max = op.addr.val + op.data.nbytes + 1; if (addr_max < ospi->mm_size && op.addr.buswidth) ospi->fmode = CR_FMODE_MM; else ospi->fmode = CR_FMODE_INDR; ret = stm32_ospi_send(desc->mem->spi, &op); mutex_unlock(&ospi->lock); pm_runtime_mark_last_busy(ospi->dev); pm_runtime_put_autosuspend(ospi->dev); return ret ?: len; } static int stm32_ospi_transfer_one_message(struct spi_controller *ctrl, struct spi_message *msg) { struct stm32_ospi *ospi = spi_controller_get_devdata(ctrl); struct spi_transfer *transfer; struct spi_device *spi = msg->spi; struct spi_mem_op op; struct gpio_desc *cs_gpiod = spi->cs_gpiod[ffs(spi->cs_index_mask) - 1]; int ret = 0; if (!cs_gpiod) return -EOPNOTSUPP; ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) return ret; mutex_lock(&ospi->lock); gpiod_set_value_cansleep(cs_gpiod, true); list_for_each_entry(transfer, &msg->transfers, transfer_list) { u8 dummy_bytes = 0; memset(&op, 0, sizeof(op)); dev_dbg(ospi->dev, "tx_buf:%p tx_nbits:%d rx_buf:%p rx_nbits:%d len:%d dummy_data:%d\n", transfer->tx_buf, transfer->tx_nbits, transfer->rx_buf, transfer->rx_nbits, transfer->len, transfer->dummy_data); /* * OSPI hardware supports dummy bytes transfer. * If current transfer is dummy byte, merge it with the next * transfer in order to take into account OSPI block constraint */ if (transfer->dummy_data) { op.dummy.buswidth = transfer->tx_nbits; op.dummy.nbytes = transfer->len; dummy_bytes = transfer->len; /* If happens, means that message is not correctly built */ if (list_is_last(&transfer->transfer_list, &msg->transfers)) { ret = -EINVAL; goto end_of_transfer; } transfer = list_next_entry(transfer, transfer_list); } op.data.nbytes = transfer->len; if (transfer->rx_buf) { ospi->fmode = CR_FMODE_INDR; op.data.buswidth = transfer->rx_nbits; op.data.dir = SPI_MEM_DATA_IN; op.data.buf.in = transfer->rx_buf; } else { ospi->fmode = CR_FMODE_INDW; op.data.buswidth = transfer->tx_nbits; op.data.dir = SPI_MEM_DATA_OUT; op.data.buf.out = transfer->tx_buf; } ret = stm32_ospi_send(spi, &op); if (ret) goto end_of_transfer; msg->actual_length += transfer->len + dummy_bytes; } end_of_transfer: gpiod_set_value_cansleep(cs_gpiod, false); mutex_unlock(&ospi->lock); msg->status = ret; spi_finalize_current_message(ctrl); pm_runtime_mark_last_busy(ospi->dev); pm_runtime_put_autosuspend(ospi->dev); return ret; } static int stm32_ospi_setup(struct spi_device *spi) { struct spi_controller *ctrl = spi->controller; struct stm32_ospi *ospi = spi_controller_get_devdata(ctrl); void __iomem *regs_base = ospi->regs_base; int ret; u8 cs = spi->chip_select[ffs(spi->cs_index_mask) - 1]; if (ctrl->busy) return -EBUSY; if (!spi->max_speed_hz) return -EINVAL; ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) return ret; ospi->flash_presc[cs] = DIV_ROUND_UP(ospi->clk_rate, spi->max_speed_hz) - 1; mutex_lock(&ospi->lock); ospi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_EN; writel_relaxed(ospi->cr_reg, regs_base + OSPI_CR); /* set dcr fsize to max address */ ospi->dcr_reg = DCR1_DEVSIZE_MASK | DCR1_DLYBYP; writel_relaxed(ospi->dcr_reg, regs_base + OSPI_DCR1); mutex_unlock(&ospi->lock); pm_runtime_mark_last_busy(ospi->dev); pm_runtime_put_autosuspend(ospi->dev); return 0; } /* * No special host constraint, so use default spi_mem_default_supports_op * to check supported mode. */ static const struct spi_controller_mem_ops stm32_ospi_mem_ops = { .exec_op = stm32_ospi_exec_op, .dirmap_create = stm32_ospi_dirmap_create, .dirmap_read = stm32_ospi_dirmap_read, .poll_status = stm32_ospi_poll_status, }; static int stm32_ospi_get_resources(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stm32_ospi *ospi = platform_get_drvdata(pdev); struct resource *res; struct reserved_mem *rmem = NULL; struct device_node *node; int ret; ospi->regs_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(ospi->regs_base)) return PTR_ERR(ospi->regs_base); ospi->regs_phys_base = res->start; ospi->clk = devm_clk_get(dev, NULL); if (IS_ERR(ospi->clk)) return dev_err_probe(dev, PTR_ERR(ospi->clk), "Can't get clock\n"); ospi->clk_rate = clk_get_rate(ospi->clk); if (!ospi->clk_rate) { dev_err(dev, "Invalid clock rate\n"); return -EINVAL; } ospi->irq = platform_get_irq(pdev, 0); if (ospi->irq < 0) return ospi->irq; ret = devm_request_irq(dev, ospi->irq, stm32_ospi_irq, 0, dev_name(dev), ospi); if (ret) { dev_err(dev, "Failed to request irq\n"); return ret; } ospi->rstc = devm_reset_control_array_get_optional_exclusive(dev); if (IS_ERR(ospi->rstc)) return dev_err_probe(dev, PTR_ERR(ospi->rstc), "Can't get reset\n"); ospi->dma_chrx = dma_request_chan(dev, "rx"); if (IS_ERR(ospi->dma_chrx)) { ret = PTR_ERR(ospi->dma_chrx); ospi->dma_chrx = NULL; if (ret == -EPROBE_DEFER) goto err_dma; } ospi->dma_chtx = dma_request_chan(dev, "tx"); if (IS_ERR(ospi->dma_chtx)) { ret = PTR_ERR(ospi->dma_chtx); ospi->dma_chtx = NULL; if (ret == -EPROBE_DEFER) goto err_dma; } node = of_parse_phandle(dev->of_node, "memory-region", 0); if (node) rmem = of_reserved_mem_lookup(node); of_node_put(node); if (rmem) { ospi->mm_size = rmem->size; ospi->mm_base = devm_ioremap(dev, rmem->base, rmem->size); if (!ospi->mm_base) { dev_err(dev, "unable to map memory region: %pa+%pa\n", &rmem->base, &rmem->size); ret = -ENOMEM; goto err_dma; } if (ospi->mm_size > STM32_OSPI_MAX_MMAP_SZ) { dev_err(dev, "Memory map size outsize bounds\n"); ret = -EINVAL; goto err_dma; } } else { dev_info(dev, "No memory-map region found\n"); } init_completion(&ospi->data_completion); init_completion(&ospi->match_completion); return 0; err_dma: dev_info(dev, "Can't get all resources (%d)\n", ret); if (ospi->dma_chtx) dma_release_channel(ospi->dma_chtx); if (ospi->dma_chrx) dma_release_channel(ospi->dma_chrx); return ret; }; static int stm32_ospi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *ctrl; struct stm32_ospi *ospi; struct dma_slave_config dma_cfg; struct device_node *child; int ret; u8 spi_flash_count = 0; /* * Flash subnodes sanity check: * 1 or 2 spi-nand/spi-nor flashes => supported * All other flash node configuration => not supported */ for_each_available_child_of_node(dev->of_node, child) { if (of_device_is_compatible(child, "jedec,spi-nor") || of_device_is_compatible(child, "spi-nand")) spi_flash_count++; } if (spi_flash_count == 0 || spi_flash_count > 2) { dev_err(dev, "Incorrect DT flash node\n"); return -ENODEV; } ctrl = devm_spi_alloc_host(dev, sizeof(*ospi)); if (!ctrl) return -ENOMEM; ospi = spi_controller_get_devdata(ctrl); ospi->ctrl = ctrl; ospi->dev = &pdev->dev; platform_set_drvdata(pdev, ospi); ret = stm32_ospi_get_resources(pdev); if (ret) return ret; memset(&dma_cfg, 0, sizeof(dma_cfg)); dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_cfg.src_addr = ospi->regs_phys_base + OSPI_DR; dma_cfg.dst_addr = ospi->regs_phys_base + OSPI_DR; dma_cfg.src_maxburst = 4; dma_cfg.dst_maxburst = 4; stm32_ospi_dma_setup(ospi, &dma_cfg); mutex_init(&ospi->lock); ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_OCTAL; ctrl->flags = SPI_CONTROLLER_HALF_DUPLEX; ctrl->setup = stm32_ospi_setup; ctrl->bus_num = -1; ctrl->mem_ops = &stm32_ospi_mem_ops; ctrl->use_gpio_descriptors = true; ctrl->transfer_one_message = stm32_ospi_transfer_one_message; ctrl->num_chipselect = STM32_OSPI_MAX_NORCHIP; ctrl->dev.of_node = dev->of_node; pm_runtime_enable(ospi->dev); pm_runtime_set_autosuspend_delay(ospi->dev, STM32_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(ospi->dev); ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) goto err_pm_enable; if (ospi->rstc) { reset_control_assert(ospi->rstc); udelay(2); reset_control_deassert(ospi->rstc); } ret = spi_register_controller(ctrl); if (ret) { /* Disable ospi */ writel_relaxed(0, ospi->regs_base + OSPI_CR); goto err_pm_resume; } pm_runtime_mark_last_busy(ospi->dev); pm_runtime_put_autosuspend(ospi->dev); return 0; err_pm_resume: pm_runtime_put_sync_suspend(ospi->dev); err_pm_enable: pm_runtime_force_suspend(ospi->dev); mutex_destroy(&ospi->lock); return ret; } static void stm32_ospi_remove(struct platform_device *pdev) { struct stm32_ospi *ospi = platform_get_drvdata(pdev); int ret; ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) return; spi_unregister_controller(ospi->ctrl); /* Disable ospi */ writel_relaxed(0, ospi->regs_base + OSPI_CR); mutex_destroy(&ospi->lock); if (ospi->dma_chtx) dma_release_channel(ospi->dma_chtx); if (ospi->dma_chrx) dma_release_channel(ospi->dma_chrx); pm_runtime_put_sync_suspend(ospi->dev); pm_runtime_force_suspend(ospi->dev); } static int __maybe_unused stm32_ospi_suspend(struct device *dev) { struct stm32_ospi *ospi = dev_get_drvdata(dev); pinctrl_pm_select_sleep_state(dev); return pm_runtime_force_suspend(ospi->dev); } static int __maybe_unused stm32_ospi_resume(struct device *dev) { struct stm32_ospi *ospi = dev_get_drvdata(dev); void __iomem *regs_base = ospi->regs_base; int ret; ret = pm_runtime_force_resume(ospi->dev); if (ret < 0) return ret; pinctrl_pm_select_default_state(dev); ret = pm_runtime_resume_and_get(ospi->dev); if (ret < 0) return ret; writel_relaxed(ospi->cr_reg, regs_base + OSPI_CR); writel_relaxed(ospi->dcr_reg, regs_base + OSPI_DCR1); pm_runtime_mark_last_busy(ospi->dev); pm_runtime_put_autosuspend(ospi->dev); return 0; } static int __maybe_unused stm32_ospi_runtime_suspend(struct device *dev) { struct stm32_ospi *ospi = dev_get_drvdata(dev); clk_disable_unprepare(ospi->clk); return 0; } static int __maybe_unused stm32_ospi_runtime_resume(struct device *dev) { struct stm32_ospi *ospi = dev_get_drvdata(dev); return clk_prepare_enable(ospi->clk); } static const struct dev_pm_ops stm32_ospi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(stm32_ospi_suspend, stm32_ospi_resume) SET_RUNTIME_PM_OPS(stm32_ospi_runtime_suspend, stm32_ospi_runtime_resume, NULL) }; static const struct of_device_id stm32_ospi_of_match[] = { { .compatible = "st,stm32mp25-ospi" }, {}, }; MODULE_DEVICE_TABLE(of, stm32_ospi_of_match); static struct platform_driver stm32_ospi_driver = { .probe = stm32_ospi_probe, .remove = stm32_ospi_remove, .driver = { .name = "stm32-ospi", .pm = &stm32_ospi_pm_ops, .of_match_table = stm32_ospi_of_match, }, }; module_platform_driver(stm32_ospi_driver); MODULE_DESCRIPTION("STMicroelectronics STM32 OCTO SPI driver"); MODULE_LICENSE("GPL");