// SPDX-License-Identifier: GPL-2.0 /* * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst * * Built-in idle CPU tracking policy. * * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. * Copyright (c) 2022 Tejun Heo * Copyright (c) 2022 David Vernet * Copyright (c) 2024 Andrea Righi */ #include "ext_idle.h" /* Enable/disable built-in idle CPU selection policy */ static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); /* Enable/disable per-node idle cpumasks */ static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node); #ifdef CONFIG_SMP /* Enable/disable LLC aware optimizations */ static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); /* Enable/disable NUMA aware optimizations */ static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); /* * cpumasks to track idle CPUs within each NUMA node. * * If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask * from is used to track all the idle CPUs in the system. */ struct scx_idle_cpus { cpumask_var_t cpu; cpumask_var_t smt; }; /* * Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE * is not enabled). */ static struct scx_idle_cpus scx_idle_global_masks; /* * Per-node idle cpumasks. */ static struct scx_idle_cpus **scx_idle_node_masks; /* * Return the idle masks associated to a target @node. * * NUMA_NO_NODE identifies the global idle cpumask. */ static struct scx_idle_cpus *idle_cpumask(int node) { return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node]; } /* * Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if * per-node idle cpumasks are disabled. */ static int scx_cpu_node_if_enabled(int cpu) { if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) return NUMA_NO_NODE; return cpu_to_node(cpu); } bool scx_idle_test_and_clear_cpu(int cpu) { int node = scx_cpu_node_if_enabled(cpu); struct cpumask *idle_cpus = idle_cpumask(node)->cpu; #ifdef CONFIG_SCHED_SMT /* * SMT mask should be cleared whether we can claim @cpu or not. The SMT * cluster is not wholly idle either way. This also prevents * scx_pick_idle_cpu() from getting caught in an infinite loop. */ if (sched_smt_active()) { const struct cpumask *smt = cpu_smt_mask(cpu); struct cpumask *idle_smts = idle_cpumask(node)->smt; /* * If offline, @cpu is not its own sibling and * scx_pick_idle_cpu() can get caught in an infinite loop as * @cpu is never cleared from the idle SMT mask. Ensure that * @cpu is eventually cleared. * * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to * reduce memory writes, which may help alleviate cache * coherence pressure. */ if (cpumask_intersects(smt, idle_smts)) cpumask_andnot(idle_smts, idle_smts, smt); else if (cpumask_test_cpu(cpu, idle_smts)) __cpumask_clear_cpu(cpu, idle_smts); } #endif return cpumask_test_and_clear_cpu(cpu, idle_cpus); } /* * Pick an idle CPU in a specific NUMA node. */ static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags) { int cpu; retry: if (sched_smt_active()) { cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed); if (cpu < nr_cpu_ids) goto found; if (flags & SCX_PICK_IDLE_CORE) return -EBUSY; } cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed); if (cpu >= nr_cpu_ids) return -EBUSY; found: if (scx_idle_test_and_clear_cpu(cpu)) return cpu; else goto retry; } /* * Tracks nodes that have not yet been visited when searching for an idle * CPU across all available nodes. */ static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited); /* * Search for an idle CPU across all nodes, excluding @node. */ static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags) { nodemask_t *unvisited; s32 cpu = -EBUSY; preempt_disable(); unvisited = this_cpu_ptr(&per_cpu_unvisited); /* * Restrict the search to the online nodes (excluding the current * node that has been visited already). */ nodes_copy(*unvisited, node_states[N_ONLINE]); node_clear(node, *unvisited); /* * Traverse all nodes in order of increasing distance, starting * from @node. * * This loop is O(N^2), with N being the amount of NUMA nodes, * which might be quite expensive in large NUMA systems. However, * this complexity comes into play only when a scheduler enables * SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU * without specifying a target NUMA node, so it shouldn't be a * bottleneck is most cases. * * As a future optimization we may want to cache the list of nodes * in a per-node array, instead of actually traversing them every * time. */ for_each_node_numadist(node, *unvisited) { cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags); if (cpu >= 0) break; } preempt_enable(); return cpu; } /* * Find an idle CPU in the system, starting from @node. */ s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags) { s32 cpu; /* * Always search in the starting node first (this is an * optimization that can save some cycles even when the search is * not limited to a single node). */ cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags); if (cpu >= 0) return cpu; /* * Stop the search if we are using only a single global cpumask * (NUMA_NO_NODE) or if the search is restricted to the first node * only. */ if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE) return -EBUSY; /* * Extend the search to the other online nodes. */ return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags); } /* * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC * domain is not defined). */ static unsigned int llc_weight(s32 cpu) { struct sched_domain *sd; sd = rcu_dereference(per_cpu(sd_llc, cpu)); if (!sd) return 0; return sd->span_weight; } /* * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC * domain is not defined). */ static struct cpumask *llc_span(s32 cpu) { struct sched_domain *sd; sd = rcu_dereference(per_cpu(sd_llc, cpu)); if (!sd) return 0; return sched_domain_span(sd); } /* * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the * NUMA domain is not defined). */ static unsigned int numa_weight(s32 cpu) { struct sched_domain *sd; struct sched_group *sg; sd = rcu_dereference(per_cpu(sd_numa, cpu)); if (!sd) return 0; sg = sd->groups; if (!sg) return 0; return sg->group_weight; } /* * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA * domain is not defined). */ static struct cpumask *numa_span(s32 cpu) { struct sched_domain *sd; struct sched_group *sg; sd = rcu_dereference(per_cpu(sd_numa, cpu)); if (!sd) return NULL; sg = sd->groups; if (!sg) return NULL; return sched_group_span(sg); } /* * Return true if the LLC domains do not perfectly overlap with the NUMA * domains, false otherwise. */ static bool llc_numa_mismatch(void) { int cpu; /* * We need to scan all online CPUs to verify whether their scheduling * domains overlap. * * While it is rare to encounter architectures with asymmetric NUMA * topologies, CPU hotplugging or virtualized environments can result * in asymmetric configurations. * * For example: * * NUMA 0: * - LLC 0: cpu0..cpu7 * - LLC 1: cpu8..cpu15 [offline] * * NUMA 1: * - LLC 0: cpu16..cpu23 * - LLC 1: cpu24..cpu31 * * In this case, if we only check the first online CPU (cpu0), we might * incorrectly assume that the LLC and NUMA domains are fully * overlapping, which is incorrect (as NUMA 1 has two distinct LLC * domains). */ for_each_online_cpu(cpu) if (llc_weight(cpu) != numa_weight(cpu)) return true; return false; } /* * Initialize topology-aware scheduling. * * Detect if the system has multiple LLC or multiple NUMA domains and enable * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle * selection policy. * * Assumption: the kernel's internal topology representation assumes that each * CPU belongs to a single LLC domain, and that each LLC domain is entirely * contained within a single NUMA node. */ void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops) { bool enable_llc = false, enable_numa = false; unsigned int nr_cpus; s32 cpu = cpumask_first(cpu_online_mask); /* * Enable LLC domain optimization only when there are multiple LLC * domains among the online CPUs. If all online CPUs are part of a * single LLC domain, the idle CPU selection logic can choose any * online CPU without bias. * * Note that it is sufficient to check the LLC domain of the first * online CPU to determine whether a single LLC domain includes all * CPUs. */ rcu_read_lock(); nr_cpus = llc_weight(cpu); if (nr_cpus > 0) { if (nr_cpus < num_online_cpus()) enable_llc = true; pr_debug("sched_ext: LLC=%*pb weight=%u\n", cpumask_pr_args(llc_span(cpu)), llc_weight(cpu)); } /* * Enable NUMA optimization only when there are multiple NUMA domains * among the online CPUs and the NUMA domains don't perfectly overlaps * with the LLC domains. * * If all CPUs belong to the same NUMA node and the same LLC domain, * enabling both NUMA and LLC optimizations is unnecessary, as checking * for an idle CPU in the same domain twice is redundant. * * If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA * optimization, as we would naturally select idle CPUs within * specific NUMA nodes querying the corresponding per-node cpumask. */ if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) { nr_cpus = numa_weight(cpu); if (nr_cpus > 0) { if (nr_cpus < num_online_cpus() && llc_numa_mismatch()) enable_numa = true; pr_debug("sched_ext: NUMA=%*pb weight=%u\n", cpumask_pr_args(numa_span(cpu)), nr_cpus); } } rcu_read_unlock(); pr_debug("sched_ext: LLC idle selection %s\n", str_enabled_disabled(enable_llc)); pr_debug("sched_ext: NUMA idle selection %s\n", str_enabled_disabled(enable_numa)); if (enable_llc) static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); else static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); if (enable_numa) static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); else static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); } /* * Built-in CPU idle selection policy: * * 1. Prioritize full-idle cores: * - always prioritize CPUs from fully idle cores (both logical CPUs are * idle) to avoid interference caused by SMT. * * 2. Reuse the same CPU: * - prefer the last used CPU to take advantage of cached data (L1, L2) and * branch prediction optimizations. * * 3. Pick a CPU within the same LLC (Last-Level Cache): * - if the above conditions aren't met, pick a CPU that shares the same LLC * to maintain cache locality. * * 4. Pick a CPU within the same NUMA node, if enabled: * - choose a CPU from the same NUMA node to reduce memory access latency. * * 5. Pick any idle CPU usable by the task. * * Step 3 and 4 are performed only if the system has, respectively, * multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and * scx_selcpu_topo_numa) and they don't contain the same subset of CPUs. * * If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always * begin in @prev_cpu's node and proceed to other nodes in order of * increasing distance. * * Return the picked CPU if idle, or a negative value otherwise. * * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because * we never call ops.select_cpu() for them, see select_task_rq(). */ s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, u64 flags) { const struct cpumask *llc_cpus = NULL; const struct cpumask *numa_cpus = NULL; int node = scx_cpu_node_if_enabled(prev_cpu); s32 cpu; /* * This is necessary to protect llc_cpus. */ rcu_read_lock(); /* * Determine the scheduling domain only if the task is allowed to run * on all CPUs. * * This is done primarily for efficiency, as it avoids the overhead of * updating a cpumask every time we need to select an idle CPU (which * can be costly in large SMP systems), but it also aligns logically: * if a task's scheduling domain is restricted by user-space (through * CPU affinity), the task will simply use the flat scheduling domain * defined by user-space. */ if (p->nr_cpus_allowed >= num_possible_cpus()) { if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) numa_cpus = numa_span(prev_cpu); if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) llc_cpus = llc_span(prev_cpu); } /* * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. */ if (wake_flags & SCX_WAKE_SYNC) { int waker_node; /* * If the waker's CPU is cache affine and prev_cpu is idle, * then avoid a migration. */ cpu = smp_processor_id(); if (cpus_share_cache(cpu, prev_cpu) && scx_idle_test_and_clear_cpu(prev_cpu)) { cpu = prev_cpu; goto out_unlock; } /* * If the waker's local DSQ is empty, and the system is under * utilized, try to wake up @p to the local DSQ of the waker. * * Checking only for an empty local DSQ is insufficient as it * could give the wakee an unfair advantage when the system is * oversaturated. * * Checking only for the presence of idle CPUs is also * insufficient as the local DSQ of the waker could have tasks * piled up on it even if there is an idle core elsewhere on * the system. */ waker_node = cpu_to_node(cpu); if (!(current->flags & PF_EXITING) && cpu_rq(cpu)->scx.local_dsq.nr == 0 && (!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) && !cpumask_empty(idle_cpumask(waker_node)->cpu)) { if (cpumask_test_cpu(cpu, p->cpus_ptr)) goto out_unlock; } } /* * If CPU has SMT, any wholly idle CPU is likely a better pick than * partially idle @prev_cpu. */ if (sched_smt_active()) { /* * Keep using @prev_cpu if it's part of a fully idle core. */ if (cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) && scx_idle_test_and_clear_cpu(prev_cpu)) { cpu = prev_cpu; goto out_unlock; } /* * Search for any fully idle core in the same LLC domain. */ if (llc_cpus) { cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE); if (cpu >= 0) goto out_unlock; } /* * Search for any fully idle core in the same NUMA node. */ if (numa_cpus) { cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE); if (cpu >= 0) goto out_unlock; } /* * Search for any full-idle core usable by the task. * * If the node-aware idle CPU selection policy is enabled * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always * begin in prev_cpu's node and proceed to other nodes in * order of increasing distance. */ cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags | SCX_PICK_IDLE_CORE); if (cpu >= 0) goto out_unlock; /* * Give up if we're strictly looking for a full-idle SMT * core. */ if (flags & SCX_PICK_IDLE_CORE) { cpu = prev_cpu; goto out_unlock; } } /* * Use @prev_cpu if it's idle. */ if (scx_idle_test_and_clear_cpu(prev_cpu)) { cpu = prev_cpu; goto out_unlock; } /* * Search for any idle CPU in the same LLC domain. */ if (llc_cpus) { cpu = pick_idle_cpu_in_node(llc_cpus, node, 0); if (cpu >= 0) goto out_unlock; } /* * Search for any idle CPU in the same NUMA node. */ if (numa_cpus) { cpu = pick_idle_cpu_in_node(numa_cpus, node, 0); if (cpu >= 0) goto out_unlock; } /* * Search for any idle CPU usable by the task. * * If the node-aware idle CPU selection policy is enabled * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin * in prev_cpu's node and proceed to other nodes in order of * increasing distance. */ cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags); if (cpu >= 0) goto out_unlock; out_unlock: rcu_read_unlock(); return cpu; } /* * Initialize global and per-node idle cpumasks. */ void scx_idle_init_masks(void) { int node; /* Allocate global idle cpumasks */ BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL)); /* Allocate per-node idle cpumasks */ scx_idle_node_masks = kcalloc(num_possible_nodes(), sizeof(*scx_idle_node_masks), GFP_KERNEL); BUG_ON(!scx_idle_node_masks); for_each_node(node) { scx_idle_node_masks[node] = kzalloc_node(sizeof(**scx_idle_node_masks), GFP_KERNEL, node); BUG_ON(!scx_idle_node_masks[node]); BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->cpu, GFP_KERNEL, node)); BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->smt, GFP_KERNEL, node)); } } static void update_builtin_idle(int cpu, bool idle) { int node = scx_cpu_node_if_enabled(cpu); struct cpumask *idle_cpus = idle_cpumask(node)->cpu; assign_cpu(cpu, idle_cpus, idle); #ifdef CONFIG_SCHED_SMT if (sched_smt_active()) { const struct cpumask *smt = cpu_smt_mask(cpu); struct cpumask *idle_smts = idle_cpumask(node)->smt; if (idle) { /* * idle_smt handling is racy but that's fine as it's * only for optimization and self-correcting. */ if (!cpumask_subset(smt, idle_cpus)) return; cpumask_or(idle_smts, idle_smts, smt); } else { cpumask_andnot(idle_smts, idle_smts, smt); } } #endif } /* * Update the idle state of a CPU to @idle. * * If @do_notify is true, ops.update_idle() is invoked to notify the scx * scheduler of an actual idle state transition (idle to busy or vice * versa). If @do_notify is false, only the idle state in the idle masks is * refreshed without invoking ops.update_idle(). * * This distinction is necessary, because an idle CPU can be "reserved" and * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as * busy even if no tasks are dispatched. In this case, the CPU may return * to idle without a true state transition. Refreshing the idle masks * without invoking ops.update_idle() ensures accurate idle state tracking * while avoiding unnecessary updates and maintaining balanced state * transitions. */ void __scx_update_idle(struct rq *rq, bool idle, bool do_notify) { int cpu = cpu_of(rq); lockdep_assert_rq_held(rq); /* * Trigger ops.update_idle() only when transitioning from a task to * the idle thread and vice versa. * * Idle transitions are indicated by do_notify being set to true, * managed by put_prev_task_idle()/set_next_task_idle(). */ if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq)) SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); /* * Update the idle masks: * - for real idle transitions (do_notify == true) * - for idle-to-idle transitions (indicated by the previous task * being the idle thread, managed by pick_task_idle()) * * Skip updating idle masks if the previous task is not the idle * thread, since set_next_task_idle() has already handled it when * transitioning from a task to the idle thread (calling this * function with do_notify == true). * * In this way we can avoid updating the idle masks twice, * unnecessarily. */ if (static_branch_likely(&scx_builtin_idle_enabled)) if (do_notify || is_idle_task(rq->curr)) update_builtin_idle(cpu, idle); } static void reset_idle_masks(struct sched_ext_ops *ops) { int node; /* * Consider all online cpus idle. Should converge to the actual state * quickly. */ if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) { cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask); cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask); return; } for_each_node(node) { const struct cpumask *node_mask = cpumask_of_node(node); cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask); cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask); } } #endif /* CONFIG_SMP */ void scx_idle_enable(struct sched_ext_ops *ops) { if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) static_branch_enable(&scx_builtin_idle_enabled); else static_branch_disable(&scx_builtin_idle_enabled); if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) static_branch_enable(&scx_builtin_idle_per_node); else static_branch_disable(&scx_builtin_idle_per_node); #ifdef CONFIG_SMP reset_idle_masks(ops); #endif } void scx_idle_disable(void) { static_branch_disable(&scx_builtin_idle_enabled); static_branch_disable(&scx_builtin_idle_per_node); } /******************************************************************************** * Helpers that can be called from the BPF scheduler. */ static int validate_node(int node) { if (!static_branch_likely(&scx_builtin_idle_per_node)) { scx_ops_error("per-node idle tracking is disabled"); return -EOPNOTSUPP; } /* Return no entry for NUMA_NO_NODE (not a critical scx error) */ if (node == NUMA_NO_NODE) return -ENOENT; /* Make sure node is in a valid range */ if (node < 0 || node >= nr_node_ids) { scx_ops_error("invalid node %d", node); return -EINVAL; } /* Make sure the node is part of the set of possible nodes */ if (!node_possible(node)) { scx_ops_error("unavailable node %d", node); return -EINVAL; } return node; } __bpf_kfunc_start_defs(); static bool check_builtin_idle_enabled(void) { if (static_branch_likely(&scx_builtin_idle_enabled)) return true; scx_ops_error("built-in idle tracking is disabled"); return false; } /** * scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or * trigger an error if @cpu is invalid * @cpu: target CPU */ __bpf_kfunc int scx_bpf_cpu_node(s32 cpu) { #ifdef CONFIG_NUMA if (!ops_cpu_valid(cpu, NULL)) return NUMA_NO_NODE; return cpu_to_node(cpu); #else return 0; #endif } /** * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() * @p: task_struct to select a CPU for * @prev_cpu: CPU @p was on previously * @wake_flags: %SCX_WAKE_* flags * @is_idle: out parameter indicating whether the returned CPU is idle * * Can only be called from ops.select_cpu() if the built-in CPU selection is * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. * @p, @prev_cpu and @wake_flags match ops.select_cpu(). * * Returns the picked CPU with *@is_idle indicating whether the picked CPU is * currently idle and thus a good candidate for direct dispatching. */ __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) { #ifdef CONFIG_SMP s32 cpu; #endif if (!ops_cpu_valid(prev_cpu, NULL)) goto prev_cpu; if (!check_builtin_idle_enabled()) goto prev_cpu; if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) goto prev_cpu; #ifdef CONFIG_SMP cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, 0); if (cpu >= 0) { *is_idle = true; return cpu; } #endif prev_cpu: *is_idle = false; return prev_cpu; } /** * scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the * idle-tracking per-CPU cpumask of a target NUMA node. * @node: target NUMA node * * Returns an empty cpumask if idle tracking is not enabled, if @node is * not valid, or running on a UP kernel. In this case the actual error will * be reported to the BPF scheduler via scx_ops_error(). */ __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) { node = validate_node(node); if (node < 0) return cpu_none_mask; #ifdef CONFIG_SMP return idle_cpumask(node)->cpu; #else return cpu_none_mask; #endif } /** * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking * per-CPU cpumask. * * Returns an empty mask if idle tracking is not enabled, or running on a * UP kernel. */ __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) { if (static_branch_unlikely(&scx_builtin_idle_per_node)) { scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled"); return cpu_none_mask; } if (!check_builtin_idle_enabled()) return cpu_none_mask; #ifdef CONFIG_SMP return idle_cpumask(NUMA_NO_NODE)->cpu; #else return cpu_none_mask; #endif } /** * scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the * idle-tracking, per-physical-core cpumask of a target NUMA node. Can be * used to determine if an entire physical core is free. * @node: target NUMA node * * Returns an empty cpumask if idle tracking is not enabled, if @node is * not valid, or running on a UP kernel. In this case the actual error will * be reported to the BPF scheduler via scx_ops_error(). */ __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) { node = validate_node(node); if (node < 0) return cpu_none_mask; #ifdef CONFIG_SMP if (sched_smt_active()) return idle_cpumask(node)->smt; else return idle_cpumask(node)->cpu; #else return cpu_none_mask; #endif } /** * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, * per-physical-core cpumask. Can be used to determine if an entire physical * core is free. * * Returns an empty mask if idle tracking is not enabled, or running on a * UP kernel. */ __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) { if (static_branch_unlikely(&scx_builtin_idle_per_node)) { scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled"); return cpu_none_mask; } if (!check_builtin_idle_enabled()) return cpu_none_mask; #ifdef CONFIG_SMP if (sched_smt_active()) return idle_cpumask(NUMA_NO_NODE)->smt; else return idle_cpumask(NUMA_NO_NODE)->cpu; #else return cpu_none_mask; #endif } /** * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to * either the percpu, or SMT idle-tracking cpumask. * @idle_mask: &cpumask to use */ __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) { /* * Empty function body because we aren't actually acquiring or releasing * a reference to a global idle cpumask, which is read-only in the * caller and is never released. The acquire / release semantics here * are just used to make the cpumask a trusted pointer in the caller. */ } /** * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state * @cpu: cpu to test and clear idle for * * Returns %true if @cpu was idle and its idle state was successfully cleared. * %false otherwise. * * Unavailable if ops.update_idle() is implemented and * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. */ __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) { if (!check_builtin_idle_enabled()) return false; if (ops_cpu_valid(cpu, NULL)) return scx_idle_test_and_clear_cpu(cpu); else return false; } /** * scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node * @cpus_allowed: Allowed cpumask * @node: target NUMA node * @flags: %SCX_PICK_IDLE_* flags * * Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node. * * Returns the picked idle cpu number on success, or -%EBUSY if no matching * cpu was found. * * The search starts from @node and proceeds to other online NUMA nodes in * order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified, * in which case the search is limited to the target @node). * * Always returns an error if ops.update_idle() is implemented and * %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if * %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set. */ __bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed, int node, u64 flags) { node = validate_node(node); if (node < 0) return node; return scx_pick_idle_cpu(cpus_allowed, node, flags); } /** * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu * @cpus_allowed: Allowed cpumask * @flags: %SCX_PICK_IDLE_CPU_* flags * * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu * number on success. -%EBUSY if no matching cpu was found. * * Idle CPU tracking may race against CPU scheduling state transitions. For * example, this function may return -%EBUSY as CPUs are transitioning into the * idle state. If the caller then assumes that there will be dispatch events on * the CPUs as they were all busy, the scheduler may end up stalling with CPUs * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch * event in the near future. * * Unavailable if ops.update_idle() is implemented and * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. * * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use * scx_bpf_pick_idle_cpu_node() instead. */ __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) { scx_ops_error("per-node idle tracking is enabled"); return -EBUSY; } if (!check_builtin_idle_enabled()) return -EBUSY; return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags); } /** * scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available * or pick any CPU from @node * @cpus_allowed: Allowed cpumask * @node: target NUMA node * @flags: %SCX_PICK_IDLE_CPU_* flags * * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is * empty. * * The search starts from @node and proceeds to other online NUMA nodes in * order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified, * in which case the search is limited to the target @node, regardless of * the CPU idle state). * * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not * set, this function can't tell which CPUs are idle and will always pick any * CPU. */ __bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed, int node, u64 flags) { s32 cpu; node = validate_node(node); if (node < 0) return node; cpu = scx_pick_idle_cpu(cpus_allowed, node, flags); if (cpu >= 0) return cpu; if (flags & SCX_PICK_IDLE_IN_NODE) cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed); else cpu = cpumask_any_distribute(cpus_allowed); if (cpu < nr_cpu_ids) return cpu; else return -EBUSY; } /** * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU * @cpus_allowed: Allowed cpumask * @flags: %SCX_PICK_IDLE_CPU_* flags * * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is * empty. * * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not * set, this function can't tell which CPUs are idle and will always pick any * CPU. * * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use * scx_bpf_pick_any_cpu_node() instead. */ __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, u64 flags) { s32 cpu; if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) { scx_ops_error("per-node idle tracking is enabled"); return -EBUSY; } if (static_branch_likely(&scx_builtin_idle_enabled)) { cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags); if (cpu >= 0) return cpu; } cpu = cpumask_any_distribute(cpus_allowed); if (cpu < nr_cpu_ids) return cpu; else return -EBUSY; } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(scx_kfunc_ids_idle) BTF_ID_FLAGS(func, scx_bpf_cpu_node) BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU) BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) BTF_KFUNCS_END(scx_kfunc_ids_idle) static const struct btf_kfunc_id_set scx_kfunc_set_idle = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_idle, }; BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { .owner = THIS_MODULE, .set = &scx_kfunc_ids_select_cpu, }; int scx_idle_init(void) { int ret; ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu) || register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) || register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) || register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle); return ret; }