// SPDX-License-Identifier: GPL-2.0 // // TAS2781 HDA SPI driver // // Copyright 2024 Texas Instruments, Inc. // // Author: Baojun Xu #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tas2781-spi.h" #include "hda_local.h" #include "hda_auto_parser.h" #include "hda_component.h" #include "hda_jack.h" #include "hda_generic.h" /* * No standard control callbacks for SNDRV_CTL_ELEM_IFACE_CARD * Define two controls, one is Volume control callbacks, the other is * flag setting control callbacks. */ /* Volume control callbacks for tas2781 */ #define ACARD_SINGLE_RANGE_EXT_TLV(xname, xreg, xshift, xmin, xmax, xinvert, \ xhandler_get, xhandler_put, tlv_array) { \ .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw_range, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = (unsigned long)&(struct soc_mixer_control) { \ .reg = xreg, .rreg = xreg, \ .shift = xshift, .rshift = xshift,\ .min = xmin, .max = xmax, .invert = xinvert, \ } \ } /* Flag control callbacks for tas2781 */ #define ACARD_SINGLE_BOOL_EXT(xname, xdata, xhandler_get, xhandler_put) { \ .iface = SNDRV_CTL_ELEM_IFACE_CARD, \ .name = xname, \ .info = snd_ctl_boolean_mono_info, \ .get = xhandler_get, \ .put = xhandler_put, \ .private_value = xdata, \ } struct tas2781_hda { struct tasdevice_priv *priv; struct acpi_device *dacpi; struct snd_kcontrol *dsp_prog_ctl; struct snd_kcontrol *dsp_conf_ctl; struct snd_kcontrol *snd_ctls[3]; struct snd_kcontrol *prof_ctl; }; static const struct regmap_range_cfg tasdevice_ranges[] = { { .range_min = 0, .range_max = TASDEVICE_MAX_SIZE, .selector_reg = TASDEVICE_PAGE_SELECT, .selector_mask = GENMASK(7, 0), .selector_shift = 0, .window_start = 0, .window_len = TASDEVICE_MAX_PAGE, }, }; static const struct regmap_config tasdevice_regmap = { .reg_bits = 8, .val_bits = 8, .zero_flag_mask = true, .cache_type = REGCACHE_NONE, .ranges = tasdevice_ranges, .num_ranges = ARRAY_SIZE(tasdevice_ranges), .max_register = TASDEVICE_MAX_SIZE, }; static int tasdevice_spi_switch_book(struct tasdevice_priv *tas_priv, int reg) { struct regmap *map = tas_priv->regmap; if (tas_priv->cur_book != TASDEVICE_BOOK_ID(reg)) { int ret = regmap_write(map, TASDEVICE_BOOKCTL_REG, TASDEVICE_BOOK_ID(reg)); if (ret < 0) { dev_err(tas_priv->dev, "Switch Book E=%d\n", ret); return ret; } tas_priv->cur_book = TASDEVICE_BOOK_ID(reg); } return 0; } int tasdevice_spi_dev_read(struct tasdevice_priv *tas_priv, unsigned int reg, unsigned int *val) { struct regmap *map = tas_priv->regmap; int ret; ret = tasdevice_spi_switch_book(tas_priv, reg); if (ret < 0) return ret; /* * In our TAS2781 SPI mode, if read from other book (not book 0), * or read from page number larger than 1 in book 0, one more byte * read is needed, and first byte is a dummy byte, need to be ignored. */ if ((TASDEVICE_BOOK_ID(reg) > 0) || (TASDEVICE_PAGE_ID(reg) > 1)) { unsigned char data[2]; ret = regmap_bulk_read(map, TASDEVICE_PAGE_REG(reg) | 1, data, sizeof(data)); *val = data[1]; } else { ret = regmap_read(map, TASDEVICE_PAGE_REG(reg) | 1, val); } if (ret < 0) dev_err(tas_priv->dev, "%s, E=%d\n", __func__, ret); return ret; } int tasdevice_spi_dev_write(struct tasdevice_priv *tas_priv, unsigned int reg, unsigned int value) { struct regmap *map = tas_priv->regmap; int ret; ret = tasdevice_spi_switch_book(tas_priv, reg); if (ret < 0) return ret; ret = regmap_write(map, TASDEVICE_PAGE_REG(reg), value); if (ret < 0) dev_err(tas_priv->dev, "%s, E=%d\n", __func__, ret); return ret; } int tasdevice_spi_dev_bulk_write(struct tasdevice_priv *tas_priv, unsigned int reg, unsigned char *data, unsigned int len) { struct regmap *map = tas_priv->regmap; int ret; ret = tasdevice_spi_switch_book(tas_priv, reg); if (ret < 0) return ret; ret = regmap_bulk_write(map, TASDEVICE_PAGE_REG(reg), data, len); if (ret < 0) dev_err(tas_priv->dev, "%s, E=%d\n", __func__, ret); return ret; } int tasdevice_spi_dev_bulk_read(struct tasdevice_priv *tas_priv, unsigned int reg, unsigned char *data, unsigned int len) { struct regmap *map = tas_priv->regmap; int ret; ret = tasdevice_spi_switch_book(tas_priv, reg); if (ret < 0) return ret; if (len > TASDEVICE_MAX_PAGE) len = TASDEVICE_MAX_PAGE; /* * In our TAS2781 SPI mode, if read from other book (not book 0), * or read from page number larger than 1 in book 0, one more byte * read is needed, and first byte is a dummy byte, need to be ignored. */ if ((TASDEVICE_BOOK_ID(reg) > 0) || (TASDEVICE_PAGE_ID(reg) > 1)) { unsigned char buf[TASDEVICE_MAX_PAGE+1]; ret = regmap_bulk_read(map, TASDEVICE_PAGE_REG(reg) | 1, buf, len + 1); memcpy(data, buf + 1, len); } else { ret = regmap_bulk_read(map, TASDEVICE_PAGE_REG(reg) | 1, data, len); } if (ret < 0) dev_err(tas_priv->dev, "%s, E=%d\n", __func__, ret); return ret; } int tasdevice_spi_dev_update_bits(struct tasdevice_priv *tas_priv, unsigned int reg, unsigned int mask, unsigned int value) { struct regmap *map = tas_priv->regmap; int ret, val; /* * In our TAS2781 SPI mode, read/write was masked in last bit of * address, it cause regmap_update_bits() not work as expected. */ ret = tasdevice_spi_dev_read(tas_priv, reg, &val); if (ret < 0) { dev_err(tas_priv->dev, "%s, E=%d\n", __func__, ret); return ret; } ret = regmap_write(map, TASDEVICE_PAGE_REG(reg), (val & ~mask) | (mask & value)); if (ret < 0) dev_err(tas_priv->dev, "%s, E=%d\n", __func__, ret); return ret; } static void tas2781_spi_reset(struct tasdevice_priv *tas_dev) { int ret; if (tas_dev->reset) { gpiod_set_value_cansleep(tas_dev->reset, 0); fsleep(800); gpiod_set_value_cansleep(tas_dev->reset, 1); } ret = tasdevice_spi_dev_write(tas_dev, TAS2781_REG_SWRESET, TAS2781_REG_SWRESET_RESET); if (ret < 0) dev_err(tas_dev->dev, "dev sw-reset fail, %d\n", ret); fsleep(1000); } static int tascodec_spi_init(struct tasdevice_priv *tas_priv, void *codec, struct module *module, void (*cont)(const struct firmware *fw, void *context)) { int ret; /* * Codec Lock Hold to ensure that codec_probe and firmware parsing and * loading do not simultaneously execute. */ guard(mutex)(&tas_priv->codec_lock); scnprintf(tas_priv->rca_binaryname, sizeof(tas_priv->rca_binaryname), "%sRCA%d.bin", tas_priv->dev_name, tas_priv->index); crc8_populate_msb(tas_priv->crc8_lkp_tbl, TASDEVICE_CRC8_POLYNOMIAL); tas_priv->codec = codec; ret = request_firmware_nowait(module, FW_ACTION_UEVENT, tas_priv->rca_binaryname, tas_priv->dev, GFP_KERNEL, tas_priv, cont); if (ret) dev_err(tas_priv->dev, "request_firmware_nowait err:0x%08x\n", ret); return ret; } static void tasdevice_spi_init(struct tasdevice_priv *tas_priv) { tas_priv->cur_prog = -1; tas_priv->cur_conf = -1; tas_priv->cur_book = -1; tas_priv->cur_prog = -1; tas_priv->cur_conf = -1; /* Store default registers address for calibration data. */ tas_priv->cali_reg_array[0] = TASDEVICE_REG(0, 0x17, 0x74); tas_priv->cali_reg_array[1] = TASDEVICE_REG(0, 0x18, 0x0c); tas_priv->cali_reg_array[2] = TASDEVICE_REG(0, 0x18, 0x14); tas_priv->cali_reg_array[3] = TASDEVICE_REG(0, 0x13, 0x70); tas_priv->cali_reg_array[4] = TASDEVICE_REG(0, 0x18, 0x7c); mutex_init(&tas_priv->codec_lock); } static int tasdevice_spi_amp_putvol(struct tasdevice_priv *tas_priv, struct snd_ctl_elem_value *ucontrol, struct soc_mixer_control *mc) { unsigned int invert = mc->invert; unsigned char mask; int max = mc->max; int val, ret; mask = rounddown_pow_of_two(max); mask <<= mc->shift; val = clamp(invert ? max - ucontrol->value.integer.value[0] : ucontrol->value.integer.value[0], 0, max); ret = tasdevice_spi_dev_update_bits(tas_priv, mc->reg, mask, (unsigned int)(val << mc->shift)); if (ret) dev_err(tas_priv->dev, "set AMP vol error in dev %d\n", tas_priv->index); return ret; } static int tasdevice_spi_amp_getvol(struct tasdevice_priv *tas_priv, struct snd_ctl_elem_value *ucontrol, struct soc_mixer_control *mc) { unsigned int invert = mc->invert; unsigned char mask = 0; int max = mc->max; int ret, val; /* Read the primary device */ ret = tasdevice_spi_dev_read(tas_priv, mc->reg, &val); if (ret) { dev_err(tas_priv->dev, "%s, get AMP vol error\n", __func__); return ret; } mask = rounddown_pow_of_two(max); mask <<= mc->shift; val = (val & mask) >> mc->shift; val = clamp(invert ? max - val : val, 0, max); ucontrol->value.integer.value[0] = val; return ret; } static int tasdevice_spi_digital_putvol(struct tasdevice_priv *tas_priv, struct snd_ctl_elem_value *ucontrol, struct soc_mixer_control *mc) { unsigned int invert = mc->invert; int max = mc->max; int val, ret; val = clamp(invert ? max - ucontrol->value.integer.value[0] : ucontrol->value.integer.value[0], 0, max); ret = tasdevice_spi_dev_write(tas_priv, mc->reg, (unsigned int)val); if (ret) dev_err(tas_priv->dev, "set digital vol err in dev %d\n", tas_priv->index); return ret; } static int tasdevice_spi_digital_getvol(struct tasdevice_priv *tas_priv, struct snd_ctl_elem_value *ucontrol, struct soc_mixer_control *mc) { unsigned int invert = mc->invert; int max = mc->max; int ret, val; /* Read the primary device as the whole */ ret = tasdevice_spi_dev_read(tas_priv, mc->reg, &val); if (ret) { dev_err(tas_priv->dev, "%s, get digital vol err\n", __func__); return ret; } val = clamp(invert ? max - val : val, 0, max); ucontrol->value.integer.value[0] = val; return ret; } static int tas2781_read_acpi(struct tas2781_hda *tas_hda, const char *hid, int id) { struct tasdevice_priv *p = tas_hda->priv; struct acpi_device *adev; struct device *physdev; u32 values[HDA_MAX_COMPONENTS]; const char *property; size_t nval; int ret, i; adev = acpi_dev_get_first_match_dev(hid, NULL, -1); if (!adev) { dev_err(p->dev, "Failed to find ACPI device: %s\n", hid); return -ENODEV; } strscpy(p->dev_name, hid, sizeof(p->dev_name)); tas_hda->dacpi = adev; physdev = get_device(acpi_get_first_physical_node(adev)); acpi_dev_put(adev); property = "ti,dev-index"; ret = device_property_count_u32(physdev, property); if (ret <= 0 || ret > ARRAY_SIZE(values)) { ret = -EINVAL; goto err; } nval = ret; ret = device_property_read_u32_array(physdev, property, values, nval); if (ret) goto err; p->index = U8_MAX; for (i = 0; i < nval; i++) { if (values[i] == id) { p->index = i; break; } } if (p->index == U8_MAX) { dev_dbg(p->dev, "No index found in %s\n", property); ret = -ENODEV; goto err; } if (p->index == 0) { /* All of amps share same RESET pin. */ p->reset = devm_gpiod_get_index_optional(physdev, "reset", p->index, GPIOD_OUT_LOW); if (IS_ERR(p->reset)) { ret = PTR_ERR(p->reset); dev_err_probe(p->dev, ret, "Failed on reset GPIO\n"); goto err; } } put_device(physdev); return 0; err: dev_err(p->dev, "read acpi error, ret: %d\n", ret); put_device(physdev); acpi_dev_put(adev); return ret; } static void tas2781_hda_playback_hook(struct device *dev, int action) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); if (action == HDA_GEN_PCM_ACT_OPEN) { pm_runtime_get_sync(dev); guard(mutex)(&tas_hda->priv->codec_lock); tasdevice_spi_tuning_switch(tas_hda->priv, 0); } else if (action == HDA_GEN_PCM_ACT_CLOSE) { guard(mutex)(&tas_hda->priv->codec_lock); tasdevice_spi_tuning_switch(tas_hda->priv, 1); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); } } static int tasdevice_info_profile(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = tas_priv->rcabin.ncfgs - 1; return 0; } static int tasdevice_get_profile_id(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = tas_priv->rcabin.profile_cfg_id; return 0; } static int tasdevice_set_profile_id(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); int max = tas_priv->rcabin.ncfgs - 1; int val; val = clamp(ucontrol->value.integer.value[0], 0, max); if (tas_priv->rcabin.profile_cfg_id != val) { tas_priv->rcabin.profile_cfg_id = val; return 1; } return 0; } static int tasdevice_info_programs(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = tas_priv->fmw->nr_programs - 1; return 0; } static int tasdevice_info_config(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = tas_priv->fmw->nr_configurations - 1; return 0; } static int tasdevice_program_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = tas_priv->cur_prog; return 0; } static int tasdevice_program_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); int nr_program = ucontrol->value.integer.value[0]; int max = tas_priv->fmw->nr_programs - 1; int val; val = clamp(nr_program, 0, max); if (tas_priv->cur_prog != val) { tas_priv->cur_prog = val; return 1; } return 0; } static int tasdevice_config_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = tas_priv->cur_conf; return 0; } static int tasdevice_config_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); int max = tas_priv->fmw->nr_configurations - 1; int val; val = clamp(ucontrol->value.integer.value[0], 0, max); if (tas_priv->cur_conf != val) { tas_priv->cur_conf = val; return 1; } return 0; } /* * tas2781_digital_getvol - get the volum control * @kcontrol: control pointer * @ucontrol: User data * * Customer Kcontrol for tas2781 is primarily for regmap booking, paging * depends on internal regmap mechanism. * tas2781 contains book and page two-level register map, especially * book switching will set the register BXXP00R7F, after switching to the * correct book, then leverage the mechanism for paging to access the * register. * * Return 0 if succeeded. */ static int tas2781_digital_getvol(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; return tasdevice_spi_digital_getvol(tas_priv, ucontrol, mc); } static int tas2781_amp_getvol(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; return tasdevice_spi_amp_getvol(tas_priv, ucontrol, mc); } static int tas2781_digital_putvol(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; /* The check of the given value is in tasdevice_digital_putvol. */ return tasdevice_spi_digital_putvol(tas_priv, ucontrol, mc); } static int tas2781_amp_putvol(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; /* The check of the given value is in tasdevice_amp_putvol. */ return tasdevice_spi_amp_putvol(tas_priv, ucontrol, mc); } static int tas2781_force_fwload_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = (int)tas_priv->force_fwload_status; dev_dbg(tas_priv->dev, "%s : Force FWload %s\n", __func__, str_on_off(tas_priv->force_fwload_status)); return 0; } static int tas2781_force_fwload_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tasdevice_priv *tas_priv = snd_kcontrol_chip(kcontrol); bool change, val = (bool)ucontrol->value.integer.value[0]; if (tas_priv->force_fwload_status == val) { change = false; } else { change = true; tas_priv->force_fwload_status = val; } dev_dbg(tas_priv->dev, "%s : Force FWload %s\n", __func__, str_on_off(tas_priv->force_fwload_status)); return change; } static const struct snd_kcontrol_new tas2781_snd_controls[] = { ACARD_SINGLE_RANGE_EXT_TLV("Speaker Analog Gain 0", TAS2781_AMP_LEVEL, 1, 0, 20, 0, tas2781_amp_getvol, tas2781_amp_putvol, amp_vol_tlv), ACARD_SINGLE_RANGE_EXT_TLV("Speaker Digital Gain 0", TAS2781_DVC_LVL, 0, 0, 200, 1, tas2781_digital_getvol, tas2781_digital_putvol, dvc_tlv), ACARD_SINGLE_BOOL_EXT("Speaker Force Firmware Load 0", 0, tas2781_force_fwload_get, tas2781_force_fwload_put), ACARD_SINGLE_RANGE_EXT_TLV("Speaker Analog Gain 1", TAS2781_AMP_LEVEL, 1, 0, 20, 0, tas2781_amp_getvol, tas2781_amp_putvol, amp_vol_tlv), ACARD_SINGLE_RANGE_EXT_TLV("Speaker Digital Gain 1", TAS2781_DVC_LVL, 0, 0, 200, 1, tas2781_digital_getvol, tas2781_digital_putvol, dvc_tlv), ACARD_SINGLE_BOOL_EXT("Speaker Force Firmware Load 1", 0, tas2781_force_fwload_get, tas2781_force_fwload_put), }; static const struct snd_kcontrol_new tas2781_prof_ctrl[] = { { .name = "Speaker Profile Id - 0", .iface = SNDRV_CTL_ELEM_IFACE_CARD, .info = tasdevice_info_profile, .get = tasdevice_get_profile_id, .put = tasdevice_set_profile_id, }, { .name = "Speaker Profile Id - 1", .iface = SNDRV_CTL_ELEM_IFACE_CARD, .info = tasdevice_info_profile, .get = tasdevice_get_profile_id, .put = tasdevice_set_profile_id, }, }; static const struct snd_kcontrol_new tas2781_dsp_prog_ctrl[] = { { .name = "Speaker Program Id 0", .iface = SNDRV_CTL_ELEM_IFACE_CARD, .info = tasdevice_info_programs, .get = tasdevice_program_get, .put = tasdevice_program_put, }, { .name = "Speaker Program Id 1", .iface = SNDRV_CTL_ELEM_IFACE_CARD, .info = tasdevice_info_programs, .get = tasdevice_program_get, .put = tasdevice_program_put, }, }; static const struct snd_kcontrol_new tas2781_dsp_conf_ctrl[] = { { .name = "Speaker Config Id 0", .iface = SNDRV_CTL_ELEM_IFACE_CARD, .info = tasdevice_info_config, .get = tasdevice_config_get, .put = tasdevice_config_put, }, { .name = "Speaker Config Id 1", .iface = SNDRV_CTL_ELEM_IFACE_CARD, .info = tasdevice_info_config, .get = tasdevice_config_get, .put = tasdevice_config_put, }, }; static void tas2781_apply_calib(struct tasdevice_priv *tas_priv) { int i, rc; /* * If no calibration data exist in tasdevice_priv *tas_priv, * calibration apply will be ignored, and use default values * in firmware binary, which was loaded during firmware download. */ if (tas_priv->cali_data[0] == 0) return; /* * Calibration data was saved in tasdevice_priv *tas_priv as: * unsigned int cali_data[CALIB_MAX]; * and every data (in 4 bytes) will be saved in register which in * book 0, and page number in page_array[], offset was saved in * rgno_array[]. */ for (i = 0; i < CALIB_MAX; i++) { rc = tasdevice_spi_dev_bulk_write(tas_priv, tas_priv->cali_reg_array[i], (unsigned char *)&tas_priv->cali_data[i], 4); if (rc < 0) dev_err(tas_priv->dev, "chn %d calib %d bulk_wr err = %d\n", tas_priv->index, i, rc); } } /* * Update the calibration data, including speaker impedance, f0, etc, * into algo. Calibrate data is done by manufacturer in the factory. * These data are used by Algo for calculating the speaker temperature, * speaker membrane excursion and f0 in real time during playback. * Calibration data format in EFI is V2, since 2024. */ static int tas2781_save_calibration(struct tasdevice_priv *tas_priv) { /* * GUID was used for data access in BIOS, it was provided by board * manufactory, like HP: "{02f9af02-7734-4233-b43d-93fe5aa35db3}" */ efi_guid_t efi_guid = EFI_GUID(0x02f9af02, 0x7734, 0x4233, 0xb4, 0x3d, 0x93, 0xfe, 0x5a, 0xa3, 0x5d, 0xb3); static efi_char16_t efi_name[] = TASDEVICE_CALIBRATION_DATA_NAME; unsigned char data[TASDEVICE_CALIBRATION_DATA_SIZE], *buf; unsigned int attr, crc, offset, *tmp_val; struct tm *tm = &tas_priv->tm; unsigned long total_sz = 0; efi_status_t status; tas_priv->cali_data[0] = 0; status = efi.get_variable(efi_name, &efi_guid, &attr, &total_sz, data); if (status == EFI_BUFFER_TOO_SMALL) { if (total_sz > TASDEVICE_CALIBRATION_DATA_SIZE) return -ENOMEM; /* Get variable contents into buffer */ status = efi.get_variable(efi_name, &efi_guid, &attr, &total_sz, data); } if (status != EFI_SUCCESS) return status; tmp_val = (unsigned int *)data; if (tmp_val[0] == 2781) { /* * New features were added in calibrated Data V3: * 1. Added calibration registers address define in * a node, marked as Device id == 0x80. * New features were added in calibrated Data V2: * 1. Added some the fields to store the link_id and * uniqie_id for multi-link solutions * 2. Support flexible number of devices instead of * fixed one in V1. * Layout of calibrated data V2 in UEFI(total 256 bytes): * ChipID (2781, 4 bytes) * Device-Sum (4 bytes) * TimeStamp of Calibration (4 bytes) * for (i = 0; i < Device-Sum; i++) { * Device #i index_info () { * SDW link id (2bytes) * SDW unique_id (2bytes) * } // if Device number is 0x80, mean it's * calibration registers address. * Calibrated Data of Device #i (20 bytes) * } * CRC (4 bytes) * Reserved (the rest) */ crc = crc32(~0, data, (3 + tmp_val[1] * 6) * 4) ^ ~0; if (crc != tmp_val[3 + tmp_val[1] * 6]) return 0; time64_to_tm(tmp_val[2], 0, tm); for (int j = 0; j < tmp_val[1]; j++) { offset = j * 6 + 3; if (tmp_val[offset] == tas_priv->index) { for (int i = 0; i < CALIB_MAX; i++) tas_priv->cali_data[i] = tmp_val[offset + i + 1]; } else if (tmp_val[offset] == TASDEVICE_CALIBRATION_REG_ADDRESS) { for (int i = 0; i < CALIB_MAX; i++) { buf = &data[(offset + i + 1) * 4]; tas_priv->cali_reg_array[i] = TASDEVICE_REG(buf[1], buf[2], buf[3]); } } tas_priv->apply_calibration(tas_priv); } } else { /* * Calibration data is in V1 format. * struct cali_data { * char cali_data[20]; * } * * struct { * struct cali_data cali_data[4]; * int TimeStamp of Calibration (4 bytes) * int CRC (4 bytes) * } ueft; */ crc = crc32(~0, data, 84) ^ ~0; if (crc == tmp_val[21]) { time64_to_tm(tmp_val[20], 0, tm); for (int i = 0; i < CALIB_MAX; i++) tas_priv->cali_data[i] = tmp_val[tas_priv->index * 5 + i]; tas_priv->apply_calibration(tas_priv); } } return 0; } static void tas2781_hda_remove_controls(struct tas2781_hda *tas_hda) { struct hda_codec *codec = tas_hda->priv->codec; snd_ctl_remove(codec->card, tas_hda->dsp_prog_ctl); snd_ctl_remove(codec->card, tas_hda->dsp_conf_ctl); for (int i = ARRAY_SIZE(tas_hda->snd_ctls) - 1; i >= 0; i--) snd_ctl_remove(codec->card, tas_hda->snd_ctls[i]); snd_ctl_remove(codec->card, tas_hda->prof_ctl); } static void tasdev_fw_ready(const struct firmware *fmw, void *context) { struct tasdevice_priv *tas_priv = context; struct tas2781_hda *tas_hda = dev_get_drvdata(tas_priv->dev); struct hda_codec *codec = tas_priv->codec; int i, j, ret; pm_runtime_get_sync(tas_priv->dev); guard(mutex)(&tas_priv->codec_lock); ret = tasdevice_spi_rca_parser(tas_priv, fmw); if (ret) goto out; /* Add control one time only. */ tas_hda->prof_ctl = snd_ctl_new1(&tas2781_prof_ctrl[tas_priv->index], tas_priv); ret = snd_ctl_add(codec->card, tas_hda->prof_ctl); if (ret) { dev_err(tas_priv->dev, "Failed to add KControl %s = %d\n", tas2781_prof_ctrl[tas_priv->index].name, ret); goto out; } j = tas_priv->index * ARRAY_SIZE(tas2781_snd_controls) / 2; for (i = 0; i < 3; i++) { tas_hda->snd_ctls[i] = snd_ctl_new1(&tas2781_snd_controls[i+j], tas_priv); ret = snd_ctl_add(codec->card, tas_hda->snd_ctls[i]); if (ret) { dev_err(tas_priv->dev, "Failed to add KControl %s = %d\n", tas2781_snd_controls[i+tas_priv->index*3].name, ret); goto out; } } tasdevice_spi_dsp_remove(tas_priv); tas_priv->fw_state = TASDEVICE_DSP_FW_PENDING; scnprintf(tas_priv->coef_binaryname, 64, "TAS2XXX%08X-%01d.bin", codec->core.subsystem_id, tas_priv->index); ret = tasdevice_spi_dsp_parser(tas_priv); if (ret) { dev_err(tas_priv->dev, "dspfw load %s error\n", tas_priv->coef_binaryname); tas_priv->fw_state = TASDEVICE_DSP_FW_FAIL; goto out; } /* Add control one time only. */ tas_hda->dsp_prog_ctl = snd_ctl_new1(&tas2781_dsp_prog_ctrl[tas_priv->index], tas_priv); ret = snd_ctl_add(codec->card, tas_hda->dsp_prog_ctl); if (ret) { dev_err(tas_priv->dev, "Failed to add KControl %s = %d\n", tas2781_dsp_prog_ctrl[tas_priv->index].name, ret); goto out; } tas_hda->dsp_conf_ctl = snd_ctl_new1(&tas2781_dsp_conf_ctrl[tas_priv->index], tas_priv); ret = snd_ctl_add(codec->card, tas_hda->dsp_conf_ctl); if (ret) { dev_err(tas_priv->dev, "Failed to add KControl %s = %d\n", tas2781_dsp_conf_ctrl[tas_priv->index].name, ret); goto out; } /* Perform AMP reset before firmware download. */ tas_priv->rcabin.profile_cfg_id = TAS2781_PRE_POST_RESET_CFG; tasdevice_spi_tuning_switch(tas_priv, 0); tas2781_spi_reset(tas_priv); tas_priv->rcabin.profile_cfg_id = 0; tasdevice_spi_tuning_switch(tas_priv, 1); tas_priv->fw_state = TASDEVICE_DSP_FW_ALL_OK; ret = tasdevice_spi_prmg_load(tas_priv, 0); if (ret < 0) { dev_err(tas_priv->dev, "FW download failed = %d\n", ret); goto out; } if (tas_priv->fmw->nr_programs > 0) tas_priv->cur_prog = 0; if (tas_priv->fmw->nr_configurations > 0) tas_priv->cur_conf = 0; /* * If calibrated data occurs error, dsp will still works with default * calibrated data inside algo. */ tas_priv->save_calibration(tas_priv); out: if (fmw) release_firmware(fmw); pm_runtime_mark_last_busy(tas_hda->priv->dev); pm_runtime_put_autosuspend(tas_hda->priv->dev); } static int tas2781_hda_bind(struct device *dev, struct device *master, void *master_data) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); struct hda_component_parent *parent = master_data; struct hda_component *comp; struct hda_codec *codec; int ret; comp = hda_component_from_index(parent, tas_hda->priv->index); if (!comp) return -EINVAL; if (comp->dev) return -EBUSY; codec = parent->codec; pm_runtime_get_sync(dev); comp->dev = dev; strscpy(comp->name, dev_name(dev), sizeof(comp->name)); ret = tascodec_spi_init(tas_hda->priv, codec, THIS_MODULE, tasdev_fw_ready); if (!ret) comp->playback_hook = tas2781_hda_playback_hook; pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static void tas2781_hda_unbind(struct device *dev, struct device *master, void *master_data) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); struct hda_component_parent *parent = master_data; struct hda_component *comp; comp = hda_component_from_index(parent, tas_hda->priv->index); if (comp && (comp->dev == dev)) { comp->dev = NULL; memset(comp->name, 0, sizeof(comp->name)); comp->playback_hook = NULL; } tas2781_hda_remove_controls(tas_hda); tasdevice_spi_config_info_remove(tas_hda->priv); tasdevice_spi_dsp_remove(tas_hda->priv); tas_hda->priv->fw_state = TASDEVICE_DSP_FW_PENDING; } static const struct component_ops tas2781_hda_comp_ops = { .bind = tas2781_hda_bind, .unbind = tas2781_hda_unbind, }; static void tas2781_hda_remove(struct device *dev) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); component_del(tas_hda->priv->dev, &tas2781_hda_comp_ops); pm_runtime_get_sync(tas_hda->priv->dev); pm_runtime_disable(tas_hda->priv->dev); pm_runtime_put_noidle(tas_hda->priv->dev); mutex_destroy(&tas_hda->priv->codec_lock); } static int tas2781_hda_spi_probe(struct spi_device *spi) { struct tasdevice_priv *tas_priv; struct tas2781_hda *tas_hda; const char *device_name; int ret = 0; tas_hda = devm_kzalloc(&spi->dev, sizeof(*tas_hda), GFP_KERNEL); if (!tas_hda) return -ENOMEM; spi->max_speed_hz = TAS2781_SPI_MAX_FREQ; tas_priv = devm_kzalloc(&spi->dev, sizeof(*tas_priv), GFP_KERNEL); if (!tas_priv) return -ENOMEM; tas_priv->dev = &spi->dev; tas_hda->priv = tas_priv; tas_priv->regmap = devm_regmap_init_spi(spi, &tasdevice_regmap); if (IS_ERR(tas_priv->regmap)) { ret = PTR_ERR(tas_priv->regmap); dev_err(tas_priv->dev, "Failed to allocate regmap: %d\n", ret); return ret; } if (strstr(dev_name(&spi->dev), "TXNW2781")) { device_name = "TXNW2781"; tas_priv->save_calibration = tas2781_save_calibration; tas_priv->apply_calibration = tas2781_apply_calib; } else { dev_err(tas_priv->dev, "Unmatched spi dev %s\n", dev_name(&spi->dev)); return -ENODEV; } tas_priv->irq = spi->irq; dev_set_drvdata(&spi->dev, tas_hda); ret = tas2781_read_acpi(tas_hda, device_name, spi_get_chipselect(spi, 0)); if (ret) return dev_err_probe(tas_priv->dev, ret, "Platform not supported\n"); tasdevice_spi_init(tas_priv); ret = component_add(tas_priv->dev, &tas2781_hda_comp_ops); if (ret) { dev_err(tas_priv->dev, "Register component fail: %d\n", ret); return ret; } pm_runtime_set_autosuspend_delay(tas_priv->dev, 3000); pm_runtime_use_autosuspend(tas_priv->dev); pm_runtime_mark_last_busy(tas_priv->dev); pm_runtime_set_active(tas_priv->dev); pm_runtime_get_noresume(tas_priv->dev); pm_runtime_enable(tas_priv->dev); pm_runtime_put_autosuspend(tas_priv->dev); return 0; } static void tas2781_hda_spi_remove(struct spi_device *spi) { tas2781_hda_remove(&spi->dev); } static int tas2781_runtime_suspend(struct device *dev) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); guard(mutex)(&tas_hda->priv->codec_lock); tasdevice_spi_tuning_switch(tas_hda->priv, 1); tas_hda->priv->cur_book = -1; tas_hda->priv->cur_conf = -1; return 0; } static int tas2781_runtime_resume(struct device *dev) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); guard(mutex)(&tas_hda->priv->codec_lock); tasdevice_spi_tuning_switch(tas_hda->priv, 0); return 0; } static int tas2781_system_suspend(struct device *dev) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); int ret; ret = pm_runtime_force_suspend(dev); if (ret) return ret; /* Shutdown chip before system suspend */ tasdevice_spi_tuning_switch(tas_hda->priv, 1); tas2781_spi_reset(tas_hda->priv); /* * Reset GPIO may be shared, so cannot reset here. * However beyond this point, amps may be powered down. */ return 0; } static int tas2781_system_resume(struct device *dev) { struct tas2781_hda *tas_hda = dev_get_drvdata(dev); int ret, val; ret = pm_runtime_force_resume(dev); if (ret) return ret; guard(mutex)(&tas_hda->priv->codec_lock); ret = tasdevice_spi_dev_read(tas_hda->priv, TAS2781_REG_CLK_CONFIG, &val); if (ret < 0) return ret; if (val == TAS2781_REG_CLK_CONFIG_RESET) { tas_hda->priv->cur_book = -1; tas_hda->priv->cur_conf = -1; tas_hda->priv->cur_prog = -1; ret = tasdevice_spi_prmg_load(tas_hda->priv, 0); if (ret < 0) { dev_err(tas_hda->priv->dev, "FW download failed = %d\n", ret); return ret; } if (tas_hda->priv->playback_started) tasdevice_spi_tuning_switch(tas_hda->priv, 0); } return ret; } static const struct dev_pm_ops tas2781_hda_pm_ops = { RUNTIME_PM_OPS(tas2781_runtime_suspend, tas2781_runtime_resume, NULL) SYSTEM_SLEEP_PM_OPS(tas2781_system_suspend, tas2781_system_resume) }; static const struct spi_device_id tas2781_hda_spi_id[] = { { "tas2781-hda", }, {} }; static const struct acpi_device_id tas2781_acpi_hda_match[] = { {"TXNW2781", }, {} }; MODULE_DEVICE_TABLE(acpi, tas2781_acpi_hda_match); static struct spi_driver tas2781_hda_spi_driver = { .driver = { .name = "tas2781-hda", .acpi_match_table = tas2781_acpi_hda_match, .pm = &tas2781_hda_pm_ops, }, .id_table = tas2781_hda_spi_id, .probe = tas2781_hda_spi_probe, .remove = tas2781_hda_spi_remove, }; module_spi_driver(tas2781_hda_spi_driver); MODULE_DESCRIPTION("TAS2781 HDA SPI Driver"); MODULE_AUTHOR("Baojun, Xu, "); MODULE_LICENSE("GPL");