// SPDX-License-Identifier: GPL-2.0+ // // soc-ops.c -- Generic ASoC operations // // Copyright 2005 Wolfson Microelectronics PLC. // Copyright 2005 Openedhand Ltd. // Copyright (C) 2010 Slimlogic Ltd. // Copyright (C) 2010 Texas Instruments Inc. // // Author: Liam Girdwood // with code, comments and ideas from :- // Richard Purdie #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * snd_soc_info_enum_double - enumerated double mixer info callback * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a double enumerated * mixer control. * * Returns 0 for success. */ int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2, e->items, e->texts); } EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); /** * snd_soc_get_enum_double - enumerated double mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a double enumerated mixer. * * Returns 0 for success. */ int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int val, item; unsigned int reg_val; reg_val = snd_soc_component_read(component, e->reg); val = (reg_val >> e->shift_l) & e->mask; item = snd_soc_enum_val_to_item(e, val); ucontrol->value.enumerated.item[0] = item; if (e->shift_l != e->shift_r) { val = (reg_val >> e->shift_r) & e->mask; item = snd_soc_enum_val_to_item(e, val); ucontrol->value.enumerated.item[1] = item; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); /** * snd_soc_put_enum_double - enumerated double mixer put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a double enumerated mixer. * * Returns 0 for success. */ int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int *item = ucontrol->value.enumerated.item; unsigned int val; unsigned int mask; if (item[0] >= e->items) return -EINVAL; val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l; mask = e->mask << e->shift_l; if (e->shift_l != e->shift_r) { if (item[1] >= e->items) return -EINVAL; val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r; mask |= e->mask << e->shift_r; } return snd_soc_component_update_bits(component, e->reg, mask, val); } EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); static int soc_mixer_reg_to_ctl(struct soc_mixer_control *mc, unsigned int reg_val, unsigned int mask, unsigned int shift, int max) { int val = (reg_val >> shift) & mask; if (mc->sign_bit) val = sign_extend32(val, mc->sign_bit); val -= mc->min; if (mc->invert) val = max - val; return val & mask; } static unsigned int soc_mixer_ctl_to_reg(struct soc_mixer_control *mc, int val, unsigned int mask, unsigned int shift, int max) { unsigned int reg_val; if (mc->invert) val = max - val; reg_val = val + mc->min; return (reg_val & mask) << shift; } static int soc_mixer_valid_ctl(struct soc_mixer_control *mc, long val, int max) { if (val < 0) return -EINVAL; if (mc->platform_max && val > mc->platform_max) return -EINVAL; if (val > max) return -EINVAL; return 0; } static int soc_mixer_mask(struct soc_mixer_control *mc) { if (mc->sign_bit) return GENMASK(mc->sign_bit, 0); else return GENMASK(fls(mc->max) - 1, 0); } static int soc_mixer_sx_mask(struct soc_mixer_control *mc) { // min + max will take us 1-bit over the size of the mask return GENMASK(fls(mc->min + mc->max) - 2, 0); } static int soc_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo, struct soc_mixer_control *mc, int max) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; if (max == 1) { /* Even two value controls ending in Volume should be integer */ const char *vol_string = strstr(kcontrol->id.name, " Volume"); if (!vol_string || strcmp(vol_string, " Volume")) uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; } if (mc->platform_max && mc->platform_max < max) max = mc->platform_max; uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = max; return 0; } static int soc_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol, struct soc_mixer_control *mc, int mask, int max) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); unsigned int val1, val_mask; unsigned int val2 = 0; bool double_r = false; int ret; ret = soc_mixer_valid_ctl(mc, ucontrol->value.integer.value[0], max); if (ret) return ret; val1 = soc_mixer_ctl_to_reg(mc, ucontrol->value.integer.value[0], mask, mc->shift, max); val_mask = mask << mc->shift; if (snd_soc_volsw_is_stereo(mc)) { ret = soc_mixer_valid_ctl(mc, ucontrol->value.integer.value[1], max); if (ret) return ret; if (mc->reg == mc->rreg) { val1 |= soc_mixer_ctl_to_reg(mc, ucontrol->value.integer.value[1], mask, mc->rshift, max); val_mask |= mask << mc->rshift; } else { val2 = soc_mixer_ctl_to_reg(mc, ucontrol->value.integer.value[1], mask, mc->shift, max); double_r = true; } } ret = snd_soc_component_update_bits(component, mc->reg, val_mask, val1); if (ret < 0) return ret; if (double_r) { int err = snd_soc_component_update_bits(component, mc->rreg, val_mask, val2); /* Don't drop change flag */ if (err) return err; } return ret; } static int soc_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol, struct soc_mixer_control *mc, int mask, int max) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); unsigned int reg_val; int val; reg_val = snd_soc_component_read(component, mc->reg); val = soc_mixer_reg_to_ctl(mc, reg_val, mask, mc->shift, max); ucontrol->value.integer.value[0] = val; if (snd_soc_volsw_is_stereo(mc)) { if (mc->reg == mc->rreg) { val = soc_mixer_reg_to_ctl(mc, reg_val, mask, mc->rshift, max); } else { reg_val = snd_soc_component_read(component, mc->rreg); val = soc_mixer_reg_to_ctl(mc, reg_val, mask, mc->shift, max); } ucontrol->value.integer.value[1] = val; } return 0; } /** * snd_soc_info_volsw - single mixer info callback with range. * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information, with a range, about a single mixer control, * or a double mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; return soc_info_volsw(kcontrol, uinfo, mc, mc->max - mc->min); } EXPORT_SYMBOL_GPL(snd_soc_info_volsw); /** * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a single mixer control, or a double * mixer control that spans 2 registers of the SX TLV type. SX TLV controls * have a range that represents both positive and negative values either side * of zero but without a sign bit. min is the minimum register value, max is * the number of steps. * * Returns 0 for success. */ int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; return soc_info_volsw(kcontrol, uinfo, mc, mc->max); } EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx); /** * snd_soc_get_volsw - single mixer get callback with range * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value, within a range, of a single mixer control, or a * double mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int mask = soc_mixer_mask(mc); return soc_get_volsw(kcontrol, ucontrol, mc, mask, mc->max - mc->min); } EXPORT_SYMBOL_GPL(snd_soc_get_volsw); /** * snd_soc_put_volsw - single mixer put callback with range * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value , within a range, of a single mixer control, or * a double mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int mask = soc_mixer_mask(mc); return soc_put_volsw(kcontrol, ucontrol, mc, mask, mc->max - mc->min); } EXPORT_SYMBOL_GPL(snd_soc_put_volsw); /** * snd_soc_get_volsw_sx - single mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a single mixer control, or a double mixer * control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int mask = soc_mixer_sx_mask(mc); return soc_get_volsw(kcontrol, ucontrol, mc, mask, mc->max); } EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx); /** * snd_soc_put_volsw_sx - double mixer set callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a double mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int mask = soc_mixer_sx_mask(mc); return soc_put_volsw(kcontrol, ucontrol, mc, mask, mc->max); } EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx); static int snd_soc_clip_to_platform_max(struct snd_kcontrol *kctl) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value; struct snd_ctl_elem_value uctl; int ret; if (!mc->platform_max) return 0; ret = kctl->get(kctl, &uctl); if (ret < 0) return ret; if (uctl.value.integer.value[0] > mc->platform_max) uctl.value.integer.value[0] = mc->platform_max; if (snd_soc_volsw_is_stereo(mc) && uctl.value.integer.value[1] > mc->platform_max) uctl.value.integer.value[1] = mc->platform_max; ret = kctl->put(kctl, &uctl); if (ret < 0) return ret; return 0; } /** * snd_soc_limit_volume - Set new limit to an existing volume control. * * @card: where to look for the control * @name: Name of the control * @max: new maximum limit * * Return 0 for success, else error. */ int snd_soc_limit_volume(struct snd_soc_card *card, const char *name, int max) { struct snd_kcontrol *kctl; int ret = -EINVAL; /* Sanity check for name and max */ if (unlikely(!name || max <= 0)) return -EINVAL; kctl = snd_soc_card_get_kcontrol(card, name); if (kctl) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value; if (max <= mc->max - mc->min) { mc->platform_max = max; ret = snd_soc_clip_to_platform_max(kctl); } } return ret; } EXPORT_SYMBOL_GPL(snd_soc_limit_volume); int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = params->num_regs * component->val_bytes; return 0; } EXPORT_SYMBOL_GPL(snd_soc_bytes_info); int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; int ret; if (component->regmap) ret = regmap_raw_read(component->regmap, params->base, ucontrol->value.bytes.data, params->num_regs * component->val_bytes); else ret = -EINVAL; /* Hide any masked bytes to ensure consistent data reporting */ if (ret == 0 && params->mask) { switch (component->val_bytes) { case 1: ucontrol->value.bytes.data[0] &= ~params->mask; break; case 2: ((u16 *)(&ucontrol->value.bytes.data))[0] &= cpu_to_be16(~params->mask); break; case 4: ((u32 *)(&ucontrol->value.bytes.data))[0] &= cpu_to_be32(~params->mask); break; default: return -EINVAL; } } return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_get); int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; unsigned int val, mask; int ret, len; if (!component->regmap || !params->num_regs) return -EINVAL; len = params->num_regs * component->val_bytes; void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA); if (!data) return -ENOMEM; /* * If we've got a mask then we need to preserve the register * bits. We shouldn't modify the incoming data so take a * copy. */ if (params->mask) { ret = regmap_read(component->regmap, params->base, &val); if (ret != 0) return ret; val &= params->mask; switch (component->val_bytes) { case 1: ((u8 *)data)[0] &= ~params->mask; ((u8 *)data)[0] |= val; break; case 2: mask = ~params->mask; ret = regmap_parse_val(component->regmap, &mask, &mask); if (ret != 0) return ret; ((u16 *)data)[0] &= mask; ret = regmap_parse_val(component->regmap, &val, &val); if (ret != 0) return ret; ((u16 *)data)[0] |= val; break; case 4: mask = ~params->mask; ret = regmap_parse_val(component->regmap, &mask, &mask); if (ret != 0) return ret; ((u32 *)data)[0] &= mask; ret = regmap_parse_val(component->regmap, &val, &val); if (ret != 0) return ret; ((u32 *)data)[0] |= val; break; default: return -EINVAL; } } return regmap_raw_write(component->regmap, params->base, data, len); } EXPORT_SYMBOL_GPL(snd_soc_bytes_put); int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *ucontrol) { struct soc_bytes_ext *params = (void *)kcontrol->private_value; ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; ucontrol->count = params->max; return 0; } EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext); int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *tlv) { struct soc_bytes_ext *params = (void *)kcontrol->private_value; unsigned int count = size < params->max ? size : params->max; int ret = -ENXIO; switch (op_flag) { case SNDRV_CTL_TLV_OP_READ: if (params->get) ret = params->get(kcontrol, tlv, count); break; case SNDRV_CTL_TLV_OP_WRITE: if (params->put) ret = params->put(kcontrol, tlv, count); break; } return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback); /** * snd_soc_info_xr_sx - signed multi register info callback * @kcontrol: mreg control * @uinfo: control element information * * Callback to provide information of a control that can span multiple * codec registers which together forms a single signed value. Note * that unlike the non-xr variant of sx controls these may or may not * include the sign bit, depending on nbits, and there is no shift. * * Returns 0 for success. */ int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = mc->min; uinfo->value.integer.max = mc->max; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx); /** * snd_soc_get_xr_sx - signed multi register get callback * @kcontrol: mreg control * @ucontrol: control element information * * Callback to get the value of a control that can span multiple codec * registers which together forms a single signed value. The control * supports specifying total no of bits used to allow for bitfields * across the multiple codec registers. Note that unlike the non-xr * variant of sx controls these may or may not include the sign bit, * depending on nbits, and there is no shift. * * Returns 0 for success. */ int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regbase = mc->regbase; unsigned int regcount = mc->regcount; unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; unsigned int regwmask = GENMASK(regwshift - 1, 0); unsigned long mask = GENMASK(mc->nbits - 1, 0); long val = 0; unsigned int i; for (i = 0; i < regcount; i++) { unsigned int regval = snd_soc_component_read(component, regbase + i); val |= (regval & regwmask) << (regwshift * (regcount - i - 1)); } val &= mask; if (mc->min < 0 && val > mc->max) val |= ~mask; if (mc->invert) val = mc->max - val; ucontrol->value.integer.value[0] = val; return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx); /** * snd_soc_put_xr_sx - signed multi register get callback * @kcontrol: mreg control * @ucontrol: control element information * * Callback to set the value of a control that can span multiple codec * registers which together forms a single signed value. The control * supports specifying total no of bits used to allow for bitfields * across the multiple codec registers. Note that unlike the non-xr * variant of sx controls these may or may not include the sign bit, * depending on nbits, and there is no shift. * * Returns 0 for success. */ int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regbase = mc->regbase; unsigned int regcount = mc->regcount; unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; unsigned int regwmask = GENMASK(regwshift - 1, 0); unsigned long mask = GENMASK(mc->nbits - 1, 0); long val = ucontrol->value.integer.value[0]; int ret = 0; unsigned int i; if (val < mc->min || val > mc->max) return -EINVAL; if (mc->invert) val = mc->max - val; val &= mask; for (i = 0; i < regcount; i++) { unsigned int regval = (val >> (regwshift * (regcount - i - 1))) & regwmask; unsigned int regmask = (mask >> (regwshift * (regcount - i - 1))) & regwmask; int err = snd_soc_component_update_bits(component, regbase + i, regmask, regval); if (err < 0) return err; if (err > 0) ret = err; } return ret; } EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx); /** * snd_soc_get_strobe - strobe get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback get the value of a strobe mixer control. * * Returns 0 for success. */ int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int invert = mc->invert != 0; unsigned int mask = BIT(mc->shift); unsigned int val; val = snd_soc_component_read(component, mc->reg); val &= mask; if (mc->shift != 0 && val != 0) val = val >> mc->shift; ucontrol->value.enumerated.item[0] = val ^ invert; return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_strobe); /** * snd_soc_put_strobe - strobe put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback strobe a register bit to high then low (or the inverse) * in one pass of a single mixer enum control. * * Returns 1 for success. */ int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int strobe = ucontrol->value.enumerated.item[0] != 0; unsigned int invert = mc->invert != 0; unsigned int mask = BIT(mc->shift); unsigned int val1 = (strobe ^ invert) ? mask : 0; unsigned int val2 = (strobe ^ invert) ? 0 : mask; int ret; ret = snd_soc_component_update_bits(component, mc->reg, mask, val1); if (ret < 0) return ret; return snd_soc_component_update_bits(component, mc->reg, mask, val2); } EXPORT_SYMBOL_GPL(snd_soc_put_strobe);