/* * Thermal throttle event support code (such as syslog messaging and rate * limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c). * * This allows consistent reporting of CPU thermal throttle events. * * Maintains a counter in /sys that keeps track of the number of thermal * events, such that the user knows how bad the thermal problem might be * (since the logging to syslog and mcelog is rate limited). * * Author: Dmitriy Zavin (dmitriyz@google.com) * * Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c. * Inspired by Ross Biro's and Al Borchers' counter code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* How long to wait between reporting thermal events */ #define CHECK_INTERVAL (300 * HZ) #define THERMAL_THROTTLING_EVENT 0 #define POWER_LIMIT_EVENT 1 /* * Current thermal event state: */ struct _thermal_state { bool new_event; int event; u64 next_check; unsigned long count; unsigned long last_count; }; struct thermal_state { struct _thermal_state core_throttle; struct _thermal_state core_power_limit; struct _thermal_state package_throttle; struct _thermal_state package_power_limit; struct _thermal_state core_thresh0; struct _thermal_state core_thresh1; }; /* Callback to handle core threshold interrupts */ int (*platform_thermal_notify)(__u64 msr_val); EXPORT_SYMBOL(platform_thermal_notify); static DEFINE_PER_CPU(struct thermal_state, thermal_state); static atomic_t therm_throt_en = ATOMIC_INIT(0); static u32 lvtthmr_init __read_mostly; #ifdef CONFIG_SYSFS #define define_therm_throt_sysdev_one_ro(_name) \ static SYSDEV_ATTR(_name, 0444, \ therm_throt_sysdev_show_##_name, \ NULL) \ #define define_therm_throt_sysdev_show_func(event, name) \ \ static ssize_t therm_throt_sysdev_show_##event##_##name( \ struct sys_device *dev, \ struct sysdev_attribute *attr, \ char *buf) \ { \ unsigned int cpu = dev->id; \ ssize_t ret; \ \ preempt_disable(); /* CPU hotplug */ \ if (cpu_online(cpu)) { \ ret = sprintf(buf, "%lu\n", \ per_cpu(thermal_state, cpu).event.name); \ } else \ ret = 0; \ preempt_enable(); \ \ return ret; \ } define_therm_throt_sysdev_show_func(core_throttle, count); define_therm_throt_sysdev_one_ro(core_throttle_count); define_therm_throt_sysdev_show_func(core_power_limit, count); define_therm_throt_sysdev_one_ro(core_power_limit_count); define_therm_throt_sysdev_show_func(package_throttle, count); define_therm_throt_sysdev_one_ro(package_throttle_count); define_therm_throt_sysdev_show_func(package_power_limit, count); define_therm_throt_sysdev_one_ro(package_power_limit_count); static struct attribute *thermal_throttle_attrs[] = { &attr_core_throttle_count.attr, NULL }; static struct attribute_group thermal_attr_group = { .attrs = thermal_throttle_attrs, .name = "thermal_throttle" }; #endif /* CONFIG_SYSFS */ #define CORE_LEVEL 0 #define PACKAGE_LEVEL 1 /*** * therm_throt_process - Process thermal throttling event from interrupt * @curr: Whether the condition is current or not (boolean), since the * thermal interrupt normally gets called both when the thermal * event begins and once the event has ended. * * This function is called by the thermal interrupt after the * IRQ has been acknowledged. * * It will take care of rate limiting and printing messages to the syslog. * * Returns: 0 : Event should NOT be further logged, i.e. still in * "timeout" from previous log message. * 1 : Event should be logged further, and a message has been * printed to the syslog. */ static int therm_throt_process(bool new_event, int event, int level) { struct _thermal_state *state; unsigned int this_cpu = smp_processor_id(); bool old_event; u64 now; struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); now = get_jiffies_64(); if (level == CORE_LEVEL) { if (event == THERMAL_THROTTLING_EVENT) state = &pstate->core_throttle; else if (event == POWER_LIMIT_EVENT) state = &pstate->core_power_limit; else return 0; } else if (level == PACKAGE_LEVEL) { if (event == THERMAL_THROTTLING_EVENT) state = &pstate->package_throttle; else if (event == POWER_LIMIT_EVENT) state = &pstate->package_power_limit; else return 0; } else return 0; old_event = state->new_event; state->new_event = new_event; if (new_event) state->count++; if (time_before64(now, state->next_check) && state->count != state->last_count) return 0; state->next_check = now + CHECK_INTERVAL; state->last_count = state->count; /* if we just entered the thermal event */ if (new_event) { if (event == THERMAL_THROTTLING_EVENT) printk(KERN_CRIT "CPU%d: %s temperature above threshold, cpu clock throttled (total events = %lu)\n", this_cpu, level == CORE_LEVEL ? "Core" : "Package", state->count); else printk(KERN_CRIT "CPU%d: %s power limit notification (total events = %lu)\n", this_cpu, level == CORE_LEVEL ? "Core" : "Package", state->count); return 1; } if (old_event) { if (event == THERMAL_THROTTLING_EVENT) printk(KERN_INFO "CPU%d: %s temperature/speed normal\n", this_cpu, level == CORE_LEVEL ? "Core" : "Package"); else printk(KERN_INFO "CPU%d: %s power limit normal\n", this_cpu, level == CORE_LEVEL ? "Core" : "Package"); return 1; } return 0; } static int thresh_event_valid(int event) { struct _thermal_state *state; unsigned int this_cpu = smp_processor_id(); struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu); u64 now = get_jiffies_64(); state = (event == 0) ? &pstate->core_thresh0 : &pstate->core_thresh1; if (time_before64(now, state->next_check)) return 0; state->next_check = now + CHECK_INTERVAL; return 1; } #ifdef CONFIG_SYSFS /* Add/Remove thermal_throttle interface for CPU device: */ static __cpuinit int thermal_throttle_add_dev(struct sys_device *sys_dev, unsigned int cpu) { int err; struct cpuinfo_x86 *c = &cpu_data(cpu); err = sysfs_create_group(&sys_dev->kobj, &thermal_attr_group); if (err) return err; if (cpu_has(c, X86_FEATURE_PLN)) err = sysfs_add_file_to_group(&sys_dev->kobj, &attr_core_power_limit_count.attr, thermal_attr_group.name); if (cpu_has(c, X86_FEATURE_PTS)) { err = sysfs_add_file_to_group(&sys_dev->kobj, &attr_package_throttle_count.attr, thermal_attr_group.name); if (cpu_has(c, X86_FEATURE_PLN)) err = sysfs_add_file_to_group(&sys_dev->kobj, &attr_package_power_limit_count.attr, thermal_attr_group.name); } return err; } static __cpuinit void thermal_throttle_remove_dev(struct sys_device *sys_dev) { sysfs_remove_group(&sys_dev->kobj, &thermal_attr_group); } /* Mutex protecting device creation against CPU hotplug: */ static DEFINE_MUTEX(therm_cpu_lock); /* Get notified when a cpu comes on/off. Be hotplug friendly. */ static __cpuinit int thermal_throttle_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct sys_device *sys_dev; int err = 0; sys_dev = get_cpu_sysdev(cpu); switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: mutex_lock(&therm_cpu_lock); err = thermal_throttle_add_dev(sys_dev, cpu); mutex_unlock(&therm_cpu_lock); WARN_ON(err); break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: mutex_lock(&therm_cpu_lock); thermal_throttle_remove_dev(sys_dev); mutex_unlock(&therm_cpu_lock); break; } return notifier_from_errno(err); } static struct notifier_block thermal_throttle_cpu_notifier __cpuinitdata = { .notifier_call = thermal_throttle_cpu_callback, }; static __init int thermal_throttle_init_device(void) { unsigned int cpu = 0; int err; if (!atomic_read(&therm_throt_en)) return 0; register_hotcpu_notifier(&thermal_throttle_cpu_notifier); #ifdef CONFIG_HOTPLUG_CPU mutex_lock(&therm_cpu_lock); #endif /* connect live CPUs to sysfs */ for_each_online_cpu(cpu) { err = thermal_throttle_add_dev(get_cpu_sysdev(cpu), cpu); WARN_ON(err); } #ifdef CONFIG_HOTPLUG_CPU mutex_unlock(&therm_cpu_lock); #endif return 0; } device_initcall(thermal_throttle_init_device); #endif /* CONFIG_SYSFS */ static void notify_thresholds(__u64 msr_val) { /* check whether the interrupt handler is defined; * otherwise simply return */ if (!platform_thermal_notify) return; /* lower threshold reached */ if ((msr_val & THERM_LOG_THRESHOLD0) && thresh_event_valid(0)) platform_thermal_notify(msr_val); /* higher threshold reached */ if ((msr_val & THERM_LOG_THRESHOLD1) && thresh_event_valid(1)) platform_thermal_notify(msr_val); } /* Thermal transition interrupt handler */ static void intel_thermal_interrupt(void) { __u64 msr_val; rdmsrl(MSR_IA32_THERM_STATUS, msr_val); /* Check for violation of core thermal thresholds*/ notify_thresholds(msr_val); if (therm_throt_process(msr_val & THERM_STATUS_PROCHOT, THERMAL_THROTTLING_EVENT, CORE_LEVEL) != 0) mce_log_therm_throt_event(msr_val); if (this_cpu_has(X86_FEATURE_PLN)) therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT, POWER_LIMIT_EVENT, CORE_LEVEL); if (this_cpu_has(X86_FEATURE_PTS)) { rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val); therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT, THERMAL_THROTTLING_EVENT, PACKAGE_LEVEL); if (this_cpu_has(X86_FEATURE_PLN)) therm_throt_process(msr_val & PACKAGE_THERM_STATUS_POWER_LIMIT, POWER_LIMIT_EVENT, PACKAGE_LEVEL); } } static void unexpected_thermal_interrupt(void) { printk(KERN_ERR "CPU%d: Unexpected LVT thermal interrupt!\n", smp_processor_id()); } static void (*smp_thermal_vector)(void) = unexpected_thermal_interrupt; asmlinkage void smp_thermal_interrupt(struct pt_regs *regs) { exit_idle(); irq_enter(); inc_irq_stat(irq_thermal_count); smp_thermal_vector(); irq_exit(); /* Ack only at the end to avoid potential reentry */ ack_APIC_irq(); } /* Thermal monitoring depends on APIC, ACPI and clock modulation */ static int intel_thermal_supported(struct cpuinfo_x86 *c) { if (!cpu_has_apic) return 0; if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC)) return 0; return 1; } void __init mcheck_intel_therm_init(void) { /* * This function is only called on boot CPU. Save the init thermal * LVT value on BSP and use that value to restore APs' thermal LVT * entry BIOS programmed later */ if (intel_thermal_supported(&boot_cpu_data)) lvtthmr_init = apic_read(APIC_LVTTHMR); } void intel_init_thermal(struct cpuinfo_x86 *c) { unsigned int cpu = smp_processor_id(); int tm2 = 0; u32 l, h; if (!intel_thermal_supported(c)) return; /* * First check if its enabled already, in which case there might * be some SMM goo which handles it, so we can't even put a handler * since it might be delivered via SMI already: */ rdmsr(MSR_IA32_MISC_ENABLE, l, h); h = lvtthmr_init; /* * The initial value of thermal LVT entries on all APs always reads * 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI * sequence to them and LVT registers are reset to 0s except for * the mask bits which are set to 1s when APs receive INIT IPI. * If BIOS takes over the thermal interrupt and sets its interrupt * delivery mode to SMI (not fixed), it restores the value that the * BIOS has programmed on AP based on BSP's info we saved since BIOS * is always setting the same value for all threads/cores. */ if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED) apic_write(APIC_LVTTHMR, lvtthmr_init); if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) { printk(KERN_DEBUG "CPU%d: Thermal monitoring handled by SMI\n", cpu); return; } /* Check whether a vector already exists */ if (h & APIC_VECTOR_MASK) { printk(KERN_DEBUG "CPU%d: Thermal LVT vector (%#x) already installed\n", cpu, (h & APIC_VECTOR_MASK)); return; } /* early Pentium M models use different method for enabling TM2 */ if (cpu_has(c, X86_FEATURE_TM2)) { if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) { rdmsr(MSR_THERM2_CTL, l, h); if (l & MSR_THERM2_CTL_TM_SELECT) tm2 = 1; } else if (l & MSR_IA32_MISC_ENABLE_TM2) tm2 = 1; } /* We'll mask the thermal vector in the lapic till we're ready: */ h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED; apic_write(APIC_LVTTHMR, h); rdmsr(MSR_IA32_THERM_INTERRUPT, l, h); if (cpu_has(c, X86_FEATURE_PLN)) wrmsr(MSR_IA32_THERM_INTERRUPT, l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h); else wrmsr(MSR_IA32_THERM_INTERRUPT, l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h); if (cpu_has(c, X86_FEATURE_PTS)) { rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); if (cpu_has(c, X86_FEATURE_PLN)) wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE | PACKAGE_THERM_INT_PLN_ENABLE), h); else wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l | (PACKAGE_THERM_INT_LOW_ENABLE | PACKAGE_THERM_INT_HIGH_ENABLE), h); } smp_thermal_vector = intel_thermal_interrupt; rdmsr(MSR_IA32_MISC_ENABLE, l, h); wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h); /* Unmask the thermal vector: */ l = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED); printk_once(KERN_INFO "CPU0: Thermal monitoring enabled (%s)\n", tm2 ? "TM2" : "TM1"); /* enable thermal throttle processing */ atomic_set(&therm_throt_en, 1); }