// SPDX-License-Identifier: GPL-2.0-only /* Miscellaneous routines. * * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include #include "internal.h" /** * netfs_alloc_folioq_buffer - Allocate buffer space into a folio queue * @mapping: Address space to set on the folio (or NULL). * @_buffer: Pointer to the folio queue to add to (may point to a NULL; updated). * @_cur_size: Current size of the buffer (updated). * @size: Target size of the buffer. * @gfp: The allocation constraints. */ int netfs_alloc_folioq_buffer(struct address_space *mapping, struct folio_queue **_buffer, size_t *_cur_size, ssize_t size, gfp_t gfp) { struct folio_queue *tail = *_buffer, *p; size = round_up(size, PAGE_SIZE); if (*_cur_size >= size) return 0; if (tail) while (tail->next) tail = tail->next; do { struct folio *folio; int order = 0, slot; if (!tail || folioq_full(tail)) { p = netfs_folioq_alloc(0, GFP_NOFS, netfs_trace_folioq_alloc_buffer); if (!p) return -ENOMEM; if (tail) { tail->next = p; p->prev = tail; } else { *_buffer = p; } tail = p; } if (size - *_cur_size > PAGE_SIZE) order = umin(ilog2(size - *_cur_size) - PAGE_SHIFT, MAX_PAGECACHE_ORDER); folio = folio_alloc(gfp, order); if (!folio && order > 0) folio = folio_alloc(gfp, 0); if (!folio) return -ENOMEM; folio->mapping = mapping; folio->index = *_cur_size / PAGE_SIZE; trace_netfs_folio(folio, netfs_folio_trace_alloc_buffer); slot = folioq_append_mark(tail, folio); *_cur_size += folioq_folio_size(tail, slot); } while (*_cur_size < size); return 0; } EXPORT_SYMBOL(netfs_alloc_folioq_buffer); /** * netfs_free_folioq_buffer - Free a folio queue. * @fq: The start of the folio queue to free * * Free up a chain of folio_queues and, if marked, the marked folios they point * to. */ void netfs_free_folioq_buffer(struct folio_queue *fq) { struct folio_queue *next; struct folio_batch fbatch; folio_batch_init(&fbatch); for (; fq; fq = next) { for (int slot = 0; slot < folioq_count(fq); slot++) { struct folio *folio = folioq_folio(fq, slot); if (!folio || !folioq_is_marked(fq, slot)) continue; trace_netfs_folio(folio, netfs_folio_trace_put); if (folio_batch_add(&fbatch, folio)) folio_batch_release(&fbatch); } netfs_stat_d(&netfs_n_folioq); next = fq->next; kfree(fq); } folio_batch_release(&fbatch); } EXPORT_SYMBOL(netfs_free_folioq_buffer); /* * Reset the subrequest iterator to refer just to the region remaining to be * read. The iterator may or may not have been advanced by socket ops or * extraction ops to an extent that may or may not match the amount actually * read. */ void netfs_reset_iter(struct netfs_io_subrequest *subreq) { struct iov_iter *io_iter = &subreq->io_iter; size_t remain = subreq->len - subreq->transferred; if (io_iter->count > remain) iov_iter_advance(io_iter, io_iter->count - remain); else if (io_iter->count < remain) iov_iter_revert(io_iter, remain - io_iter->count); iov_iter_truncate(&subreq->io_iter, remain); } /** * netfs_dirty_folio - Mark folio dirty and pin a cache object for writeback * @mapping: The mapping the folio belongs to. * @folio: The folio being dirtied. * * Set the dirty flag on a folio and pin an in-use cache object in memory so * that writeback can later write to it. This is intended to be called from * the filesystem's ->dirty_folio() method. * * Return: true if the dirty flag was set on the folio, false otherwise. */ bool netfs_dirty_folio(struct address_space *mapping, struct folio *folio) { struct inode *inode = mapping->host; struct netfs_inode *ictx = netfs_inode(inode); struct fscache_cookie *cookie = netfs_i_cookie(ictx); bool need_use = false; _enter(""); if (!filemap_dirty_folio(mapping, folio)) return false; if (!fscache_cookie_valid(cookie)) return true; if (!(inode->i_state & I_PINNING_NETFS_WB)) { spin_lock(&inode->i_lock); if (!(inode->i_state & I_PINNING_NETFS_WB)) { inode->i_state |= I_PINNING_NETFS_WB; need_use = true; } spin_unlock(&inode->i_lock); if (need_use) fscache_use_cookie(cookie, true); } return true; } EXPORT_SYMBOL(netfs_dirty_folio); /** * netfs_unpin_writeback - Unpin writeback resources * @inode: The inode on which the cookie resides * @wbc: The writeback control * * Unpin the writeback resources pinned by netfs_dirty_folio(). This is * intended to be called as/by the netfs's ->write_inode() method. */ int netfs_unpin_writeback(struct inode *inode, struct writeback_control *wbc) { struct fscache_cookie *cookie = netfs_i_cookie(netfs_inode(inode)); if (wbc->unpinned_netfs_wb) fscache_unuse_cookie(cookie, NULL, NULL); return 0; } EXPORT_SYMBOL(netfs_unpin_writeback); /** * netfs_clear_inode_writeback - Clear writeback resources pinned by an inode * @inode: The inode to clean up * @aux: Auxiliary data to apply to the inode * * Clear any writeback resources held by an inode when the inode is evicted. * This must be called before clear_inode() is called. */ void netfs_clear_inode_writeback(struct inode *inode, const void *aux) { struct fscache_cookie *cookie = netfs_i_cookie(netfs_inode(inode)); if (inode->i_state & I_PINNING_NETFS_WB) { loff_t i_size = i_size_read(inode); fscache_unuse_cookie(cookie, aux, &i_size); } } EXPORT_SYMBOL(netfs_clear_inode_writeback); /** * netfs_invalidate_folio - Invalidate or partially invalidate a folio * @folio: Folio proposed for release * @offset: Offset of the invalidated region * @length: Length of the invalidated region * * Invalidate part or all of a folio for a network filesystem. The folio will * be removed afterwards if the invalidated region covers the entire folio. */ void netfs_invalidate_folio(struct folio *folio, size_t offset, size_t length) { struct netfs_folio *finfo; struct netfs_inode *ctx = netfs_inode(folio_inode(folio)); size_t flen = folio_size(folio); _enter("{%lx},%zx,%zx", folio->index, offset, length); if (offset == 0 && length == flen) { unsigned long long i_size = i_size_read(&ctx->inode); unsigned long long fpos = folio_pos(folio), end; end = umin(fpos + flen, i_size); if (fpos < i_size && end > ctx->zero_point) ctx->zero_point = end; } folio_wait_private_2(folio); /* [DEPRECATED] */ if (!folio_test_private(folio)) return; finfo = netfs_folio_info(folio); if (offset == 0 && length >= flen) goto erase_completely; if (finfo) { /* We have a partially uptodate page from a streaming write. */ unsigned int fstart = finfo->dirty_offset; unsigned int fend = fstart + finfo->dirty_len; unsigned int iend = offset + length; if (offset >= fend) return; if (iend <= fstart) return; /* The invalidation region overlaps the data. If the region * covers the start of the data, we either move along the start * or just erase the data entirely. */ if (offset <= fstart) { if (iend >= fend) goto erase_completely; /* Move the start of the data. */ finfo->dirty_len = fend - iend; finfo->dirty_offset = offset; return; } /* Reduce the length of the data if the invalidation region * covers the tail part. */ if (iend >= fend) { finfo->dirty_len = offset - fstart; return; } /* A partial write was split. The caller has already zeroed * it, so just absorb the hole. */ } return; erase_completely: netfs_put_group(netfs_folio_group(folio)); folio_detach_private(folio); folio_clear_uptodate(folio); kfree(finfo); return; } EXPORT_SYMBOL(netfs_invalidate_folio); /** * netfs_release_folio - Try to release a folio * @folio: Folio proposed for release * @gfp: Flags qualifying the release * * Request release of a folio and clean up its private state if it's not busy. * Returns true if the folio can now be released, false if not */ bool netfs_release_folio(struct folio *folio, gfp_t gfp) { struct netfs_inode *ctx = netfs_inode(folio_inode(folio)); unsigned long long end; if (folio_test_dirty(folio)) return false; end = umin(folio_pos(folio) + folio_size(folio), i_size_read(&ctx->inode)); if (end > ctx->zero_point) ctx->zero_point = end; if (folio_test_private(folio)) return false; if (unlikely(folio_test_private_2(folio))) { /* [DEPRECATED] */ if (current_is_kswapd() || !(gfp & __GFP_FS)) return false; folio_wait_private_2(folio); } fscache_note_page_release(netfs_i_cookie(ctx)); return true; } EXPORT_SYMBOL(netfs_release_folio);