/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _RESCTRL_H #define _RESCTRL_H #include #include #include #include #include /* CLOSID, RMID value used by the default control group */ #define RESCTRL_RESERVED_CLOSID 0 #define RESCTRL_RESERVED_RMID 0 #define RESCTRL_PICK_ANY_CPU -1 #ifdef CONFIG_PROC_CPU_RESCTRL int proc_resctrl_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk); #endif /* max value for struct rdt_domain's mbps_val */ #define MBA_MAX_MBPS U32_MAX /* Walk all possible resources, with variants for only controls or monitors. */ #define for_each_rdt_resource(_r) \ for ((_r) = resctrl_arch_get_resource(0); \ (_r) && (_r)->rid < RDT_NUM_RESOURCES; \ (_r) = resctrl_arch_get_resource((_r)->rid + 1)) #define for_each_capable_rdt_resource(r) \ for_each_rdt_resource((r)) \ if ((r)->alloc_capable || (r)->mon_capable) #define for_each_alloc_capable_rdt_resource(r) \ for_each_rdt_resource((r)) \ if ((r)->alloc_capable) #define for_each_mon_capable_rdt_resource(r) \ for_each_rdt_resource((r)) \ if ((r)->mon_capable) /** * enum resctrl_conf_type - The type of configuration. * @CDP_NONE: No prioritisation, both code and data are controlled or monitored. * @CDP_CODE: Configuration applies to instruction fetches. * @CDP_DATA: Configuration applies to reads and writes. */ enum resctrl_conf_type { CDP_NONE, CDP_CODE, CDP_DATA, }; #define CDP_NUM_TYPES (CDP_DATA + 1) /* * struct pseudo_lock_region - pseudo-lock region information * @s: Resctrl schema for the resource to which this * pseudo-locked region belongs * @closid: The closid that this pseudo-locked region uses * @d: RDT domain to which this pseudo-locked region * belongs * @cbm: bitmask of the pseudo-locked region * @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread * completion * @thread_done: variable used by waitqueue to test if pseudo-locking * thread completed * @cpu: core associated with the cache on which the setup code * will be run * @line_size: size of the cache lines * @size: size of pseudo-locked region in bytes * @kmem: the kernel memory associated with pseudo-locked region * @minor: minor number of character device associated with this * region * @debugfs_dir: pointer to this region's directory in the debugfs * filesystem * @pm_reqs: Power management QoS requests related to this region */ struct pseudo_lock_region { struct resctrl_schema *s; u32 closid; struct rdt_ctrl_domain *d; u32 cbm; wait_queue_head_t lock_thread_wq; int thread_done; int cpu; unsigned int line_size; unsigned int size; void *kmem; unsigned int minor; struct dentry *debugfs_dir; struct list_head pm_reqs; }; /** * struct resctrl_staged_config - parsed configuration to be applied * @new_ctrl: new ctrl value to be loaded * @have_new_ctrl: whether the user provided new_ctrl is valid */ struct resctrl_staged_config { u32 new_ctrl; bool have_new_ctrl; }; enum resctrl_domain_type { RESCTRL_CTRL_DOMAIN, RESCTRL_MON_DOMAIN, }; /** * struct rdt_domain_hdr - common header for different domain types * @list: all instances of this resource * @id: unique id for this instance * @type: type of this instance * @cpu_mask: which CPUs share this resource */ struct rdt_domain_hdr { struct list_head list; int id; enum resctrl_domain_type type; struct cpumask cpu_mask; }; /** * struct rdt_ctrl_domain - group of CPUs sharing a resctrl control resource * @hdr: common header for different domain types * @plr: pseudo-locked region (if any) associated with domain * @staged_config: parsed configuration to be applied * @mbps_val: When mba_sc is enabled, this holds the array of user * specified control values for mba_sc in MBps, indexed * by closid */ struct rdt_ctrl_domain { struct rdt_domain_hdr hdr; struct pseudo_lock_region *plr; struct resctrl_staged_config staged_config[CDP_NUM_TYPES]; u32 *mbps_val; }; /** * struct rdt_mon_domain - group of CPUs sharing a resctrl monitor resource * @hdr: common header for different domain types * @ci: cache info for this domain * @rmid_busy_llc: bitmap of which limbo RMIDs are above threshold * @mbm_total: saved state for MBM total bandwidth * @mbm_local: saved state for MBM local bandwidth * @mbm_over: worker to periodically read MBM h/w counters * @cqm_limbo: worker to periodically read CQM h/w counters * @mbm_work_cpu: worker CPU for MBM h/w counters * @cqm_work_cpu: worker CPU for CQM h/w counters */ struct rdt_mon_domain { struct rdt_domain_hdr hdr; struct cacheinfo *ci; unsigned long *rmid_busy_llc; struct mbm_state *mbm_total; struct mbm_state *mbm_local; struct delayed_work mbm_over; struct delayed_work cqm_limbo; int mbm_work_cpu; int cqm_work_cpu; }; /** * struct resctrl_cache - Cache allocation related data * @cbm_len: Length of the cache bit mask * @min_cbm_bits: Minimum number of consecutive bits to be set. * The value 0 means the architecture can support * zero CBM. * @shareable_bits: Bitmask of shareable resource with other * executing entities * @arch_has_sparse_bitmasks: True if a bitmask like f00f is valid. * @arch_has_per_cpu_cfg: True if QOS_CFG register for this cache * level has CPU scope. */ struct resctrl_cache { unsigned int cbm_len; unsigned int min_cbm_bits; unsigned int shareable_bits; bool arch_has_sparse_bitmasks; bool arch_has_per_cpu_cfg; }; /** * enum membw_throttle_mode - System's memory bandwidth throttling mode * @THREAD_THROTTLE_UNDEFINED: Not relevant to the system * @THREAD_THROTTLE_MAX: Memory bandwidth is throttled at the core * always using smallest bandwidth percentage * assigned to threads, aka "max throttling" * @THREAD_THROTTLE_PER_THREAD: Memory bandwidth is throttled at the thread */ enum membw_throttle_mode { THREAD_THROTTLE_UNDEFINED = 0, THREAD_THROTTLE_MAX, THREAD_THROTTLE_PER_THREAD, }; /** * struct resctrl_membw - Memory bandwidth allocation related data * @min_bw: Minimum memory bandwidth percentage user can request * @max_bw: Maximum memory bandwidth value, used as the reset value * @bw_gran: Granularity at which the memory bandwidth is allocated * @delay_linear: True if memory B/W delay is in linear scale * @arch_needs_linear: True if we can't configure non-linear resources * @throttle_mode: Bandwidth throttling mode when threads request * different memory bandwidths * @mba_sc: True if MBA software controller(mba_sc) is enabled * @mb_map: Mapping of memory B/W percentage to memory B/W delay */ struct resctrl_membw { u32 min_bw; u32 max_bw; u32 bw_gran; u32 delay_linear; bool arch_needs_linear; enum membw_throttle_mode throttle_mode; bool mba_sc; u32 *mb_map; }; struct resctrl_schema; enum resctrl_scope { RESCTRL_L2_CACHE = 2, RESCTRL_L3_CACHE = 3, RESCTRL_L3_NODE, }; /** * enum resctrl_schema_fmt - The format user-space provides for a schema. * @RESCTRL_SCHEMA_BITMAP: The schema is a bitmap in hex. * @RESCTRL_SCHEMA_RANGE: The schema is a decimal number. */ enum resctrl_schema_fmt { RESCTRL_SCHEMA_BITMAP, RESCTRL_SCHEMA_RANGE, }; /** * struct rdt_resource - attributes of a resctrl resource * @rid: The index of the resource * @alloc_capable: Is allocation available on this machine * @mon_capable: Is monitor feature available on this machine * @num_rmid: Number of RMIDs available * @ctrl_scope: Scope of this resource for control functions * @mon_scope: Scope of this resource for monitor functions * @cache: Cache allocation related data * @membw: If the component has bandwidth controls, their properties. * @ctrl_domains: RCU list of all control domains for this resource * @mon_domains: RCU list of all monitor domains for this resource * @name: Name to use in "schemata" file. * @schema_fmt: Which format string and parser is used for this schema. * @evt_list: List of monitoring events * @mbm_cfg_mask: Bandwidth sources that can be tracked when bandwidth * monitoring events can be configured. * @cdp_capable: Is the CDP feature available on this resource */ struct rdt_resource { int rid; bool alloc_capable; bool mon_capable; int num_rmid; enum resctrl_scope ctrl_scope; enum resctrl_scope mon_scope; struct resctrl_cache cache; struct resctrl_membw membw; struct list_head ctrl_domains; struct list_head mon_domains; char *name; enum resctrl_schema_fmt schema_fmt; struct list_head evt_list; unsigned int mbm_cfg_mask; bool cdp_capable; }; /* * Get the resource that exists at this level. If the level is not supported * a dummy/not-capable resource can be returned. Levels >= RDT_NUM_RESOURCES * will return NULL. */ struct rdt_resource *resctrl_arch_get_resource(enum resctrl_res_level l); /** * struct resctrl_schema - configuration abilities of a resource presented to * user-space * @list: Member of resctrl_schema_all. * @name: The name to use in the "schemata" file. * @fmt_str: Format string to show domain value. * @conf_type: Whether this schema is specific to code/data. * @res: The resource structure exported by the architecture to describe * the hardware that is configured by this schema. * @num_closid: The number of closid that can be used with this schema. When * features like CDP are enabled, this will be lower than the * hardware supports for the resource. */ struct resctrl_schema { struct list_head list; char name[8]; const char *fmt_str; enum resctrl_conf_type conf_type; struct rdt_resource *res; u32 num_closid; }; struct resctrl_cpu_defaults { u32 closid; u32 rmid; }; struct resctrl_mon_config_info { struct rdt_resource *r; struct rdt_mon_domain *d; u32 evtid; u32 mon_config; }; /** * resctrl_arch_sync_cpu_closid_rmid() - Refresh this CPU's CLOSID and RMID. * Call via IPI. * @info: If non-NULL, a pointer to a struct resctrl_cpu_defaults * specifying the new CLOSID and RMID for tasks in the default * resctrl ctrl and mon group when running on this CPU. If NULL, * this CPU is not re-assigned to a different default group. * * Propagates reassignment of CPUs and/or tasks to different resctrl groups * when requested by the resctrl core code. * * This function records the per-cpu defaults specified by @info (if any), * and then reconfigures the CPU's hardware CLOSID and RMID for subsequent * execution based on @current, in the same way as during a task switch. */ void resctrl_arch_sync_cpu_closid_rmid(void *info); /** * resctrl_get_default_ctrl() - Return the default control value for this * resource. * @r: The resource whose default control type is queried. */ static inline u32 resctrl_get_default_ctrl(struct rdt_resource *r) { switch (r->schema_fmt) { case RESCTRL_SCHEMA_BITMAP: return BIT_MASK(r->cache.cbm_len) - 1; case RESCTRL_SCHEMA_RANGE: return r->membw.max_bw; } return WARN_ON_ONCE(1); } /* The number of closid supported by this resource regardless of CDP */ u32 resctrl_arch_get_num_closid(struct rdt_resource *r); u32 resctrl_arch_system_num_rmid_idx(void); int resctrl_arch_update_domains(struct rdt_resource *r, u32 closid); __init bool resctrl_arch_is_evt_configurable(enum resctrl_event_id evt); /** * resctrl_arch_mon_event_config_write() - Write the config for an event. * @config_info: struct resctrl_mon_config_info describing the resource, domain * and event. * * Reads resource, domain and eventid from @config_info and writes the * event config_info->mon_config into hardware. * * Called via IPI to reach a CPU that is a member of the specified domain. */ void resctrl_arch_mon_event_config_write(void *config_info); /** * resctrl_arch_mon_event_config_read() - Read the config for an event. * @config_info: struct resctrl_mon_config_info describing the resource, domain * and event. * * Reads resource, domain and eventid from @config_info and reads the * hardware config value into config_info->mon_config. * * Called via IPI to reach a CPU that is a member of the specified domain. */ void resctrl_arch_mon_event_config_read(void *config_info); /* For use by arch code to remap resctrl's smaller CDP CLOSID range */ static inline u32 resctrl_get_config_index(u32 closid, enum resctrl_conf_type type) { switch (type) { default: case CDP_NONE: return closid; case CDP_CODE: return closid * 2 + 1; case CDP_DATA: return closid * 2; } } /* * Update the ctrl_val and apply this config right now. * Must be called on one of the domain's CPUs. */ int resctrl_arch_update_one(struct rdt_resource *r, struct rdt_ctrl_domain *d, u32 closid, enum resctrl_conf_type t, u32 cfg_val); u32 resctrl_arch_get_config(struct rdt_resource *r, struct rdt_ctrl_domain *d, u32 closid, enum resctrl_conf_type type); int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d); int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d); void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d); void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d); void resctrl_online_cpu(unsigned int cpu); void resctrl_offline_cpu(unsigned int cpu); /** * resctrl_arch_rmid_read() - Read the eventid counter corresponding to rmid * for this resource and domain. * @r: resource that the counter should be read from. * @d: domain that the counter should be read from. * @closid: closid that matches the rmid. Depending on the architecture, the * counter may match traffic of both @closid and @rmid, or @rmid * only. * @rmid: rmid of the counter to read. * @eventid: eventid to read, e.g. L3 occupancy. * @val: result of the counter read in bytes. * @arch_mon_ctx: An architecture specific value from * resctrl_arch_mon_ctx_alloc(), for MPAM this identifies * the hardware monitor allocated for this read request. * * Some architectures need to sleep when first programming some of the counters. * (specifically: arm64's MPAM cache occupancy counters can return 'not ready' * for a short period of time). Call from a non-migrateable process context on * a CPU that belongs to domain @d. e.g. use smp_call_on_cpu() or * schedule_work_on(). This function can be called with interrupts masked, * e.g. using smp_call_function_any(), but may consistently return an error. * * Return: * 0 on success, or -EIO, -EINVAL etc on error. */ int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d, u32 closid, u32 rmid, enum resctrl_event_id eventid, u64 *val, void *arch_mon_ctx); /** * resctrl_arch_rmid_read_context_check() - warn about invalid contexts * * When built with CONFIG_DEBUG_ATOMIC_SLEEP generate a warning when * resctrl_arch_rmid_read() is called with preemption disabled. * * The contract with resctrl_arch_rmid_read() is that if interrupts * are unmasked, it can sleep. This allows NOHZ_FULL systems to use an * IPI, (and fail if the call needed to sleep), while most of the time * the work is scheduled, allowing the call to sleep. */ static inline void resctrl_arch_rmid_read_context_check(void) { if (!irqs_disabled()) might_sleep(); } /** * resctrl_find_domain() - Search for a domain id in a resource domain list. * @h: The domain list to search. * @id: The domain id to search for. * @pos: A pointer to position in the list id should be inserted. * * Search the domain list to find the domain id. If the domain id is * found, return the domain. NULL otherwise. If the domain id is not * found (and NULL returned) then the first domain with id bigger than * the input id can be returned to the caller via @pos. */ struct rdt_domain_hdr *resctrl_find_domain(struct list_head *h, int id, struct list_head **pos); /** * resctrl_arch_reset_rmid() - Reset any private state associated with rmid * and eventid. * @r: The domain's resource. * @d: The rmid's domain. * @closid: closid that matches the rmid. Depending on the architecture, the * counter may match traffic of both @closid and @rmid, or @rmid only. * @rmid: The rmid whose counter values should be reset. * @eventid: The eventid whose counter values should be reset. * * This can be called from any CPU. */ void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d, u32 closid, u32 rmid, enum resctrl_event_id eventid); /** * resctrl_arch_reset_rmid_all() - Reset all private state associated with * all rmids and eventids. * @r: The resctrl resource. * @d: The domain for which all architectural counter state will * be cleared. * * This can be called from any CPU. */ void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d); /** * resctrl_arch_reset_all_ctrls() - Reset the control for each CLOSID to its * default. * @r: The resctrl resource to reset. * * This can be called from any CPU. */ void resctrl_arch_reset_all_ctrls(struct rdt_resource *r); extern unsigned int resctrl_rmid_realloc_threshold; extern unsigned int resctrl_rmid_realloc_limit; int __init resctrl_init(void); void __exit resctrl_exit(void); #endif /* _RESCTRL_H */