// SPDX-License-Identifier: GPL-2.0 //! String representations. use crate::alloc::{flags::*, AllocError, KVec}; use core::fmt::{self, Write}; use core::ops::{self, Deref, DerefMut, Index}; use crate::error::{code::*, Error}; /// Byte string without UTF-8 validity guarantee. #[repr(transparent)] pub struct BStr([u8]); impl BStr { /// Returns the length of this string. #[inline] pub const fn len(&self) -> usize { self.0.len() } /// Returns `true` if the string is empty. #[inline] pub const fn is_empty(&self) -> bool { self.len() == 0 } /// Creates a [`BStr`] from a `[u8]`. #[inline] pub const fn from_bytes(bytes: &[u8]) -> &Self { // SAFETY: `BStr` is transparent to `[u8]`. unsafe { &*(bytes as *const [u8] as *const BStr) } } } impl fmt::Display for BStr { /// Formats printable ASCII characters, escaping the rest. /// /// ``` /// # use kernel::{fmt, b_str, str::{BStr, CString}}; /// let ascii = b_str!("Hello, BStr!"); /// let s = CString::try_from_fmt(fmt!("{}", ascii))?; /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes()); /// /// let non_ascii = b_str!("🦀"); /// let s = CString::try_from_fmt(fmt!("{}", non_ascii))?; /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); /// # Ok::<(), kernel::error::Error>(()) /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for &b in &self.0 { match b { // Common escape codes. b'\t' => f.write_str("\\t")?, b'\n' => f.write_str("\\n")?, b'\r' => f.write_str("\\r")?, // Printable characters. 0x20..=0x7e => f.write_char(b as char)?, _ => write!(f, "\\x{:02x}", b)?, } } Ok(()) } } impl fmt::Debug for BStr { /// Formats printable ASCII characters with a double quote on either end, /// escaping the rest. /// /// ``` /// # use kernel::{fmt, b_str, str::{BStr, CString}}; /// // Embedded double quotes are escaped. /// let ascii = b_str!("Hello, \"BStr\"!"); /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?; /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); /// /// let non_ascii = b_str!("😺"); /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii))?; /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); /// # Ok::<(), kernel::error::Error>(()) /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_char('"')?; for &b in &self.0 { match b { // Common escape codes. b'\t' => f.write_str("\\t")?, b'\n' => f.write_str("\\n")?, b'\r' => f.write_str("\\r")?, // String escape characters. b'\"' => f.write_str("\\\"")?, b'\\' => f.write_str("\\\\")?, // Printable characters. 0x20..=0x7e => f.write_char(b as char)?, _ => write!(f, "\\x{:02x}", b)?, } } f.write_char('"') } } impl Deref for BStr { type Target = [u8]; #[inline] fn deref(&self) -> &Self::Target { &self.0 } } /// Creates a new [`BStr`] from a string literal. /// /// `b_str!` converts the supplied string literal to byte string, so non-ASCII /// characters can be included. /// /// # Examples /// /// ``` /// # use kernel::b_str; /// # use kernel::str::BStr; /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); /// ``` #[macro_export] macro_rules! b_str { ($str:literal) => {{ const S: &'static str = $str; const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); C }}; } /// Possible errors when using conversion functions in [`CStr`]. #[derive(Debug, Clone, Copy)] pub enum CStrConvertError { /// Supplied bytes contain an interior `NUL`. InteriorNul, /// Supplied bytes are not terminated by `NUL`. NotNulTerminated, } impl From for Error { #[inline] fn from(_: CStrConvertError) -> Error { EINVAL } } /// A string that is guaranteed to have exactly one `NUL` byte, which is at the /// end. /// /// Used for interoperability with kernel APIs that take C strings. #[repr(transparent)] pub struct CStr([u8]); impl CStr { /// Returns the length of this string excluding `NUL`. #[inline] pub const fn len(&self) -> usize { self.len_with_nul() - 1 } /// Returns the length of this string with `NUL`. #[inline] pub const fn len_with_nul(&self) -> usize { if self.0.is_empty() { // SAFETY: This is one of the invariant of `CStr`. // We add a `unreachable_unchecked` here to hint the optimizer that // the value returned from this function is non-zero. unsafe { core::hint::unreachable_unchecked() }; } self.0.len() } /// Returns `true` if the string only includes `NUL`. #[inline] pub const fn is_empty(&self) -> bool { self.len() == 0 } /// Wraps a raw C string pointer. /// /// # Safety /// /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` /// must not be mutated. #[inline] pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self { // SAFETY: The safety precondition guarantees `ptr` is a valid pointer // to a `NUL`-terminated C string. let len = unsafe { bindings::strlen(ptr) } + 1; // SAFETY: Lifetime guaranteed by the safety precondition. let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) }; // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. // As we have added 1 to `len`, the last byte is known to be `NUL`. unsafe { Self::from_bytes_with_nul_unchecked(bytes) } } /// Creates a [`CStr`] from a `[u8]`. /// /// The provided slice must be `NUL`-terminated, does not contain any /// interior `NUL` bytes. pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { if bytes.is_empty() { return Err(CStrConvertError::NotNulTerminated); } if bytes[bytes.len() - 1] != 0 { return Err(CStrConvertError::NotNulTerminated); } let mut i = 0; // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. while i + 1 < bytes.len() { if bytes[i] == 0 { return Err(CStrConvertError::InteriorNul); } i += 1; } // SAFETY: We just checked that all properties hold. Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) } /// Creates a [`CStr`] from a `[u8]` without performing any additional /// checks. /// /// # Safety /// /// `bytes` *must* end with a `NUL` byte, and should only have a single /// `NUL` byte (or the string will be truncated). #[inline] pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { // SAFETY: Properties of `bytes` guaranteed by the safety precondition. unsafe { core::mem::transmute(bytes) } } /// Creates a mutable [`CStr`] from a `[u8]` without performing any /// additional checks. /// /// # Safety /// /// `bytes` *must* end with a `NUL` byte, and should only have a single /// `NUL` byte (or the string will be truncated). #[inline] pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr { // SAFETY: Properties of `bytes` guaranteed by the safety precondition. unsafe { &mut *(bytes as *mut [u8] as *mut CStr) } } /// Returns a C pointer to the string. #[inline] pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char { self.0.as_ptr() } /// Convert the string to a byte slice without the trailing `NUL` byte. #[inline] pub fn as_bytes(&self) -> &[u8] { &self.0[..self.len()] } /// Convert the string to a byte slice containing the trailing `NUL` byte. #[inline] pub const fn as_bytes_with_nul(&self) -> &[u8] { &self.0 } /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. /// /// If the contents of the [`CStr`] are valid UTF-8 data, this /// function will return the corresponding [`&str`] slice. Otherwise, /// it will return an error with details of where UTF-8 validation failed. /// /// # Examples /// /// ``` /// # use kernel::str::CStr; /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?; /// assert_eq!(cstr.to_str(), Ok("foo")); /// # Ok::<(), kernel::error::Error>(()) /// ``` #[inline] pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { core::str::from_utf8(self.as_bytes()) } /// Unsafely convert this [`CStr`] into a [`&str`], without checking for /// valid UTF-8. /// /// # Safety /// /// The contents must be valid UTF-8. /// /// # Examples /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// let bar = c_str!("ツ"); /// // SAFETY: String literals are guaranteed to be valid UTF-8 /// // by the Rust compiler. /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); /// ``` #[inline] pub unsafe fn as_str_unchecked(&self) -> &str { // SAFETY: TODO. unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } } /// Convert this [`CStr`] into a [`CString`] by allocating memory and /// copying over the string data. pub fn to_cstring(&self) -> Result { CString::try_from(self) } /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To return a new lowercased value without modifying the existing one, use /// [`to_ascii_lowercase()`]. /// /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase pub fn make_ascii_lowercase(&mut self) { // INVARIANT: This doesn't introduce or remove NUL bytes in the C // string. self.0.make_ascii_lowercase(); } /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To return a new uppercased value without modifying the existing one, use /// [`to_ascii_uppercase()`]. /// /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase pub fn make_ascii_uppercase(&mut self) { // INVARIANT: This doesn't introduce or remove NUL bytes in the C // string. self.0.make_ascii_uppercase(); } /// Returns a copy of this [`CString`] where each character is mapped to its /// ASCII lower case equivalent. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To lowercase the value in-place, use [`make_ascii_lowercase`]. /// /// [`make_ascii_lowercase`]: str::make_ascii_lowercase pub fn to_ascii_lowercase(&self) -> Result { let mut s = self.to_cstring()?; s.make_ascii_lowercase(); Ok(s) } /// Returns a copy of this [`CString`] where each character is mapped to its /// ASCII upper case equivalent. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To uppercase the value in-place, use [`make_ascii_uppercase`]. /// /// [`make_ascii_uppercase`]: str::make_ascii_uppercase pub fn to_ascii_uppercase(&self) -> Result { let mut s = self.to_cstring()?; s.make_ascii_uppercase(); Ok(s) } } impl fmt::Display for CStr { /// Formats printable ASCII characters, escaping the rest. /// /// ``` /// # use kernel::c_str; /// # use kernel::fmt; /// # use kernel::str::CStr; /// # use kernel::str::CString; /// let penguin = c_str!("🐧"); /// let s = CString::try_from_fmt(fmt!("{}", penguin))?; /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); /// /// let ascii = c_str!("so \"cool\""); /// let s = CString::try_from_fmt(fmt!("{}", ascii))?; /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); /// # Ok::<(), kernel::error::Error>(()) /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for &c in self.as_bytes() { if (0x20..0x7f).contains(&c) { // Printable character. f.write_char(c as char)?; } else { write!(f, "\\x{:02x}", c)?; } } Ok(()) } } impl fmt::Debug for CStr { /// Formats printable ASCII characters with a double quote on either end, escaping the rest. /// /// ``` /// # use kernel::c_str; /// # use kernel::fmt; /// # use kernel::str::CStr; /// # use kernel::str::CString; /// let penguin = c_str!("🐧"); /// let s = CString::try_from_fmt(fmt!("{:?}", penguin))?; /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); /// /// // Embedded double quotes are escaped. /// let ascii = c_str!("so \"cool\""); /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?; /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); /// # Ok::<(), kernel::error::Error>(()) /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str("\"")?; for &c in self.as_bytes() { match c { // Printable characters. b'\"' => f.write_str("\\\"")?, 0x20..=0x7e => f.write_char(c as char)?, _ => write!(f, "\\x{:02x}", c)?, } } f.write_str("\"") } } impl AsRef for CStr { #[inline] fn as_ref(&self) -> &BStr { BStr::from_bytes(self.as_bytes()) } } impl Deref for CStr { type Target = BStr; #[inline] fn deref(&self) -> &Self::Target { self.as_ref() } } impl Index> for CStr { type Output = CStr; #[inline] fn index(&self, index: ops::RangeFrom) -> &Self::Output { // Delegate bounds checking to slice. // Assign to _ to mute clippy's unnecessary operation warning. let _ = &self.as_bytes()[index.start..]; // SAFETY: We just checked the bounds. unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } } } impl Index for CStr { type Output = CStr; #[inline] fn index(&self, _index: ops::RangeFull) -> &Self::Output { self } } mod private { use core::ops; // Marker trait for index types that can be forward to `BStr`. pub trait CStrIndex {} impl CStrIndex for usize {} impl CStrIndex for ops::Range {} impl CStrIndex for ops::RangeInclusive {} impl CStrIndex for ops::RangeToInclusive {} } impl Index for CStr where Idx: private::CStrIndex, BStr: Index, { type Output = >::Output; #[inline] fn index(&self, index: Idx) -> &Self::Output { &self.as_ref()[index] } } /// Creates a new [`CStr`] from a string literal. /// /// The string literal should not contain any `NUL` bytes. /// /// # Examples /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); /// ``` #[macro_export] macro_rules! c_str { ($str:expr) => {{ const S: &str = concat!($str, "\0"); const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { Ok(v) => v, Err(_) => panic!("string contains interior NUL"), }; C }}; } #[cfg(test)] #[expect(clippy::items_after_test_module)] mod tests { use super::*; struct String(CString); impl String { fn from_fmt(args: fmt::Arguments<'_>) -> Self { String(CString::try_from_fmt(args).unwrap()) } } impl Deref for String { type Target = str; fn deref(&self) -> &str { self.0.to_str().unwrap() } } macro_rules! format { ($($f:tt)*) => ({ &*String::from_fmt(kernel::fmt!($($f)*)) }) } const ALL_ASCII_CHARS: &str = "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ !\"#$%&'()*+,-./0123456789:;<=>?@\ ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; #[test] fn test_cstr_to_str() { let good_bytes = b"\xf0\x9f\xa6\x80\0"; let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); let checked_str = checked_cstr.to_str().unwrap(); assert_eq!(checked_str, "🦀"); } #[test] #[should_panic] fn test_cstr_to_str_panic() { let bad_bytes = b"\xc3\x28\0"; let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); checked_cstr.to_str().unwrap(); } #[test] fn test_cstr_as_str_unchecked() { let good_bytes = b"\xf0\x9f\x90\xA7\0"; let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); // SAFETY: The contents come from a string literal which contains valid UTF-8. let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; assert_eq!(unchecked_str, "🐧"); } #[test] fn test_cstr_display() { let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); assert_eq!(format!("{}", hello_world), "hello, world!"); let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a"); let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); } #[test] fn test_cstr_display_all_bytes() { let mut bytes: [u8; 256] = [0; 256]; // fill `bytes` with [1..=255] + [0] for i in u8::MIN..=u8::MAX { bytes[i as usize] = i.wrapping_add(1); } let cstr = CStr::from_bytes_with_nul(&bytes).unwrap(); assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS); } #[test] fn test_cstr_debug() { let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\""); let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); } #[test] fn test_bstr_display() { let hello_world = BStr::from_bytes(b"hello, world!"); assert_eq!(format!("{}", hello_world), "hello, world!"); let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_"); let others = BStr::from_bytes(b"\x01"); assert_eq!(format!("{}", others), "\\x01"); let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); } #[test] fn test_bstr_debug() { let hello_world = BStr::from_bytes(b"hello, world!"); assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); let others = BStr::from_bytes(b"\x01"); assert_eq!(format!("{:?}", others), "\"\\x01\""); let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); } } /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// It does not fail if callers write past the end of the buffer so that they can calculate the /// size required to fit everything. /// /// # Invariants /// /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` /// is less than `end`. pub(crate) struct RawFormatter { // Use `usize` to use `saturating_*` functions. beg: usize, pos: usize, end: usize, } impl RawFormatter { /// Creates a new instance of [`RawFormatter`] with an empty buffer. fn new() -> Self { // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. Self { beg: 0, pos: 0, end: 0, } } /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. /// /// # Safety /// /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { // INVARIANT: The safety requirements guarantee the type invariants. Self { beg: pos as _, pos: pos as _, end: end as _, } } /// Creates a new instance of [`RawFormatter`] with the given buffer. /// /// # Safety /// /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes /// for the lifetime of the returned [`RawFormatter`]. pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { let pos = buf as usize; // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements // guarantees that the memory region is valid for writes. Self { pos, beg: pos, end: pos.saturating_add(len), } } /// Returns the current insert position. /// /// N.B. It may point to invalid memory. pub(crate) fn pos(&self) -> *mut u8 { self.pos as _ } /// Returns the number of bytes written to the formatter. pub(crate) fn bytes_written(&self) -> usize { self.pos - self.beg } } impl fmt::Write for RawFormatter { fn write_str(&mut self, s: &str) -> fmt::Result { // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we // don't want it to wrap around to 0. let pos_new = self.pos.saturating_add(s.len()); // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); if len_to_copy > 0 { // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` // yet, so it is valid for write per the type invariants. unsafe { core::ptr::copy_nonoverlapping( s.as_bytes().as_ptr(), self.pos as *mut u8, len_to_copy, ) }; } self.pos = pos_new; Ok(()) } } /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// Fails if callers attempt to write more than will fit in the buffer. pub(crate) struct Formatter(RawFormatter); impl Formatter { /// Creates a new instance of [`Formatter`] with the given buffer. /// /// # Safety /// /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes /// for the lifetime of the returned [`Formatter`]. pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { // SAFETY: The safety requirements of this function satisfy those of the callee. Self(unsafe { RawFormatter::from_buffer(buf, len) }) } } impl Deref for Formatter { type Target = RawFormatter; fn deref(&self) -> &Self::Target { &self.0 } } impl fmt::Write for Formatter { fn write_str(&mut self, s: &str) -> fmt::Result { self.0.write_str(s)?; // Fail the request if we go past the end of the buffer. if self.0.pos > self.0.end { Err(fmt::Error) } else { Ok(()) } } } /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. /// /// Used for interoperability with kernel APIs that take C strings. /// /// # Invariants /// /// The string is always `NUL`-terminated and contains no other `NUL` bytes. /// /// # Examples /// /// ``` /// use kernel::{str::CString, fmt}; /// /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?; /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); /// /// let tmp = "testing"; /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?; /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); /// /// // This fails because it has an embedded `NUL` byte. /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); /// assert_eq!(s.is_ok(), false); /// # Ok::<(), kernel::error::Error>(()) /// ``` pub struct CString { buf: KVec, } impl CString { /// Creates an instance of [`CString`] from the given formatted arguments. pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result { // Calculate the size needed (formatted string plus `NUL` terminator). let mut f = RawFormatter::new(); f.write_fmt(args)?; f.write_str("\0")?; let size = f.bytes_written(); // Allocate a vector with the required number of bytes, and write to it. let mut buf = KVec::with_capacity(size, GFP_KERNEL)?; // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; f.write_fmt(args)?; f.write_str("\0")?; // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. unsafe { buf.set_len(f.bytes_written()) }; // Check that there are no `NUL` bytes before the end. // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) // so `f.bytes_written() - 1` doesn't underflow. let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) }; if !ptr.is_null() { return Err(EINVAL); } // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes // exist in the buffer. Ok(Self { buf }) } } impl Deref for CString { type Target = CStr; fn deref(&self) -> &Self::Target { // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no // other `NUL` bytes exist. unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } } } impl DerefMut for CString { fn deref_mut(&mut self) -> &mut Self::Target { // SAFETY: A `CString` is always NUL-terminated and contains no other // NUL bytes. unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } } } impl<'a> TryFrom<&'a CStr> for CString { type Error = AllocError; fn try_from(cstr: &'a CStr) -> Result { let mut buf = KVec::new(); buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?; // INVARIANT: The `CStr` and `CString` types have the same invariants for // the string data, and we copied it over without changes. Ok(CString { buf }) } } impl fmt::Debug for CString { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } /// A convenience alias for [`core::format_args`]. #[macro_export] macro_rules! fmt { ($($f:tt)*) => ( core::format_args!($($f)*) ) }