// SPDX-License-Identifier: MIT /* * Copyright © 2021-2024 Intel Corporation */ #include #include #include #include #include "regs/xe_bars.h" #include "regs/xe_gt_regs.h" #include "regs/xe_regs.h" #include "xe_assert.h" #include "xe_device.h" #include "xe_force_wake.h" #include "xe_gt_mcr.h" #include "xe_gt_sriov_vf.h" #include "xe_mmio.h" #include "xe_module.h" #include "xe_sriov.h" #include "xe_ttm_vram_mgr.h" #include "xe_vram.h" #include "xe_vram_types.h" #define BAR_SIZE_SHIFT 20 static void _resize_bar(struct xe_device *xe, int resno, resource_size_t size) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); int bar_size = pci_rebar_bytes_to_size(size); int ret; if (pci_resource_len(pdev, resno)) pci_release_resource(pdev, resno); ret = pci_resize_resource(pdev, resno, bar_size); if (ret) { drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n", resno, 1 << bar_size, ERR_PTR(ret)); return; } drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size); } /* * if force_vram_bar_size is set, attempt to set to the requested size * else set to maximum possible size */ static void resize_vram_bar(struct xe_device *xe) { int force_vram_bar_size = xe_modparam.force_vram_bar_size; struct pci_dev *pdev = to_pci_dev(xe->drm.dev); struct pci_bus *root = pdev->bus; resource_size_t current_size; resource_size_t rebar_size; struct resource *root_res; u32 bar_size_mask; u32 pci_cmd; int i; /* gather some relevant info */ current_size = pci_resource_len(pdev, LMEM_BAR); bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR); if (!bar_size_mask) return; if (force_vram_bar_size < 0) return; /* set to a specific size? */ if (force_vram_bar_size) { u32 bar_size_bit; rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M; bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size)); if (!bar_size_bit) { drm_info(&xe->drm, "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n", (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20); return; } rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT); if (rebar_size == current_size) return; } else { rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT); /* only resize if larger than current */ if (rebar_size <= current_size) return; } drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n", (u64)current_size >> 20, (u64)rebar_size >> 20); while (root->parent) root = root->parent; pci_bus_for_each_resource(root, root_res, i) { if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && (u64)root_res->start > 0x100000000ul) break; } if (!root_res) { drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n"); return; } pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY); _resize_bar(xe, LMEM_BAR, rebar_size); pci_assign_unassigned_bus_resources(pdev->bus); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd); } static bool resource_is_valid(struct pci_dev *pdev, int bar) { if (!pci_resource_flags(pdev, bar)) return false; if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET) return false; if (!pci_resource_len(pdev, bar)) return false; return true; } static int determine_lmem_bar_size(struct xe_device *xe, struct xe_vram_region *lmem_bar) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); if (!resource_is_valid(pdev, LMEM_BAR)) { drm_err(&xe->drm, "pci resource is not valid\n"); return -ENXIO; } resize_vram_bar(xe); lmem_bar->io_start = pci_resource_start(pdev, LMEM_BAR); lmem_bar->io_size = pci_resource_len(pdev, LMEM_BAR); if (!lmem_bar->io_size) return -EIO; /* XXX: Need to change when xe link code is ready */ lmem_bar->dpa_base = 0; /* set up a map to the total memory area. */ lmem_bar->mapping = devm_ioremap_wc(&pdev->dev, lmem_bar->io_start, lmem_bar->io_size); return 0; } static inline u64 get_flat_ccs_offset(struct xe_gt *gt, u64 tile_size) { struct xe_device *xe = gt_to_xe(gt); u64 offset; u32 reg; if (GRAPHICS_VER(xe) >= 20) { u64 ccs_size = tile_size / 512; u64 offset_hi, offset_lo; u32 nodes, num_enabled; reg = xe_mmio_read32(>->mmio, MIRROR_FUSE3); nodes = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, reg); num_enabled = hweight32(nodes); /* Number of enabled l3 nodes */ reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); offset_lo = REG_FIELD_GET(XE2_FLAT_CCS_BASE_LOWER_ADDR_MASK, reg); reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_UPPER); offset_hi = REG_FIELD_GET(XE2_FLAT_CCS_BASE_UPPER_ADDR_MASK, reg); offset = offset_hi << 32; /* HW view bits 39:32 */ offset |= offset_lo << 6; /* HW view bits 31:6 */ offset *= num_enabled; /* convert to SW view */ offset = round_up(offset, SZ_128K); /* SW must round up to nearest 128K */ /* We don't expect any holes */ xe_assert_msg(xe, offset == (xe_mmio_read64_2x32(>_to_tile(gt)->mmio, GSMBASE) - ccs_size), "Hole between CCS and GSM.\n"); } else { reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR); offset = (u64)REG_FIELD_GET(XEHP_FLAT_CCS_PTR, reg) * SZ_64K; } return offset; } /* * tile_vram_size() - Collect vram size and offset information * @tile: tile to get info for * @vram_size: available vram (size - device reserved portions) * @tile_size: actual vram size * @tile_offset: physical start point in the vram address space * * There are 4 places for size information: * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1) * - TILEx size (actual vram size) * - GSMBASE offset (TILEx - "stolen") * - CSSBASE offset (TILEx - CSS space necessary) * * CSSBASE is always a lower/smaller offset then GSMBASE. * * The actual available size of memory is to the CCS or GSM base. * NOTE: multi-tile bases will include the tile offset. * */ static int tile_vram_size(struct xe_tile *tile, u64 *vram_size, u64 *tile_size, u64 *tile_offset) { struct xe_device *xe = tile_to_xe(tile); struct xe_gt *gt = tile->primary_gt; unsigned int fw_ref; u64 offset; u32 reg; if (IS_SRIOV_VF(xe)) { struct xe_tile *t; int id; offset = 0; for_each_tile(t, xe, id) for_each_if(t->id < tile->id) offset += xe_gt_sriov_vf_lmem(t->primary_gt); *tile_size = xe_gt_sriov_vf_lmem(gt); *vram_size = *tile_size; *tile_offset = offset; return 0; } fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (!fw_ref) return -ETIMEDOUT; /* actual size */ if (unlikely(xe->info.platform == XE_DG1)) { *tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR); *tile_offset = 0; } else { reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id)); *tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G; *tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G; } /* minus device usage */ if (xe->info.has_flat_ccs) { offset = get_flat_ccs_offset(gt, *tile_size); } else { offset = xe_mmio_read64_2x32(&tile->mmio, GSMBASE); } /* remove the tile offset so we have just the available size */ *vram_size = offset - *tile_offset; xe_force_wake_put(gt_to_fw(gt), fw_ref); return 0; } static void vram_fini(void *arg) { struct xe_device *xe = arg; struct xe_tile *tile; int id; xe->mem.vram->mapping = NULL; for_each_tile(tile, xe, id) tile->mem.vram->mapping = NULL; } struct xe_vram_region *xe_vram_region_alloc(struct xe_device *xe, u8 id, u32 placement) { struct xe_vram_region *vram; struct drm_device *drm = &xe->drm; xe_assert(xe, id < xe->info.tile_count); vram = drmm_kzalloc(drm, sizeof(*vram), GFP_KERNEL); if (!vram) return NULL; vram->xe = xe; vram->id = id; vram->placement = placement; #if defined(CONFIG_DRM_XE_PAGEMAP) vram->migrate = xe->tiles[id].migrate; #endif return vram; } static void print_vram_region_info(struct xe_device *xe, struct xe_vram_region *vram) { struct drm_device *drm = &xe->drm; if (vram->io_size < vram->usable_size) drm_info(drm, "Small BAR device\n"); drm_info(drm, "VRAM[%u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", vram->id, &vram->actual_physical_size, &vram->usable_size, &vram->io_size); drm_info(drm, "VRAM[%u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", vram->id, &vram->dpa_base, vram->dpa_base + (u64)vram->actual_physical_size, &vram->io_start, vram->io_start + (u64)vram->io_size); } static int vram_region_init(struct xe_device *xe, struct xe_vram_region *vram, struct xe_vram_region *lmem_bar, u64 offset, u64 usable_size, u64 region_size, resource_size_t remain_io_size) { /* Check if VRAM region is already initialized */ if (vram->mapping) return 0; vram->actual_physical_size = region_size; vram->io_start = lmem_bar->io_start + offset; vram->io_size = min_t(u64, usable_size, remain_io_size); if (!vram->io_size) { drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n"); return -ENODEV; } vram->dpa_base = lmem_bar->dpa_base + offset; vram->mapping = lmem_bar->mapping + offset; vram->usable_size = usable_size; print_vram_region_info(xe, vram); return 0; } /** * xe_vram_probe() - Probe VRAM configuration * @xe: the &xe_device * * Collect VRAM size and offset information for all tiles. * * Return: 0 on success, error code on failure */ int xe_vram_probe(struct xe_device *xe) { struct xe_tile *tile; struct xe_vram_region lmem_bar; resource_size_t remain_io_size; u64 available_size = 0; u64 total_size = 0; int err; u8 id; if (!IS_DGFX(xe)) return 0; err = determine_lmem_bar_size(xe, &lmem_bar); if (err) return err; drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &lmem_bar.io_start, &lmem_bar.io_size); remain_io_size = lmem_bar.io_size; for_each_tile(tile, xe, id) { u64 region_size; u64 usable_size; u64 tile_offset; err = tile_vram_size(tile, &usable_size, ®ion_size, &tile_offset); if (err) return err; total_size += region_size; available_size += usable_size; err = vram_region_init(xe, tile->mem.vram, &lmem_bar, tile_offset, usable_size, region_size, remain_io_size); if (err) return err; if (total_size > lmem_bar.io_size) { drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n", &total_size, &lmem_bar.io_size); } remain_io_size -= min_t(u64, tile->mem.vram->actual_physical_size, remain_io_size); } err = vram_region_init(xe, xe->mem.vram, &lmem_bar, 0, available_size, total_size, lmem_bar.io_size); if (err) return err; return devm_add_action_or_reset(xe->drm.dev, vram_fini, xe); } /** * xe_vram_region_io_start - Get the IO start of a VRAM region * @vram: the VRAM region * * Return: the IO start of the VRAM region, or 0 if not valid */ resource_size_t xe_vram_region_io_start(const struct xe_vram_region *vram) { return vram ? vram->io_start : 0; } /** * xe_vram_region_io_size - Get the IO size of a VRAM region * @vram: the VRAM region * * Return: the IO size of the VRAM region, or 0 if not valid */ resource_size_t xe_vram_region_io_size(const struct xe_vram_region *vram) { return vram ? vram->io_size : 0; } /** * xe_vram_region_dpa_base - Get the DPA base of a VRAM region * @vram: the VRAM region * * Return: the DPA base of the VRAM region, or 0 if not valid */ resource_size_t xe_vram_region_dpa_base(const struct xe_vram_region *vram) { return vram ? vram->dpa_base : 0; } /** * xe_vram_region_usable_size - Get the usable size of a VRAM region * @vram: the VRAM region * * Return: the usable size of the VRAM region, or 0 if not valid */ resource_size_t xe_vram_region_usable_size(const struct xe_vram_region *vram) { return vram ? vram->usable_size : 0; } /** * xe_vram_region_actual_physical_size - Get the actual physical size of a VRAM region * @vram: the VRAM region * * Return: the actual physical size of the VRAM region, or 0 if not valid */ resource_size_t xe_vram_region_actual_physical_size(const struct xe_vram_region *vram) { return vram ? vram->actual_physical_size : 0; } EXPORT_SYMBOL_IF_KUNIT(xe_vram_region_actual_physical_size);