// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Texas Instruments INA238 power monitor chip * Datasheet: https://www.ti.com/product/ina238 * * Copyright (C) 2021 Nathan Rossi */ #include #include #include #include #include #include #include #include #include /* INA238 register definitions */ #define INA238_CONFIG 0x0 #define INA238_ADC_CONFIG 0x1 #define INA238_SHUNT_CALIBRATION 0x2 #define SQ52206_SHUNT_TEMPCO 0x3 #define INA238_SHUNT_VOLTAGE 0x4 #define INA238_BUS_VOLTAGE 0x5 #define INA238_DIE_TEMP 0x6 #define INA238_CURRENT 0x7 #define INA238_POWER 0x8 #define SQ52206_ENERGY 0x9 #define SQ52206_CHARGE 0xa #define INA238_DIAG_ALERT 0xb #define INA238_SHUNT_OVER_VOLTAGE 0xc #define INA238_SHUNT_UNDER_VOLTAGE 0xd #define INA238_BUS_OVER_VOLTAGE 0xe #define INA238_BUS_UNDER_VOLTAGE 0xf #define INA238_TEMP_LIMIT 0x10 #define INA238_POWER_LIMIT 0x11 #define SQ52206_POWER_PEAK 0x20 #define INA238_DEVICE_ID 0x3f /* not available on INA237 */ #define INA238_CONFIG_ADCRANGE BIT(4) #define SQ52206_CONFIG_ADCRANGE_HIGH BIT(4) #define SQ52206_CONFIG_ADCRANGE_LOW BIT(3) #define INA238_DIAG_ALERT_TMPOL BIT(7) #define INA238_DIAG_ALERT_SHNTOL BIT(6) #define INA238_DIAG_ALERT_SHNTUL BIT(5) #define INA238_DIAG_ALERT_BUSOL BIT(4) #define INA238_DIAG_ALERT_BUSUL BIT(3) #define INA238_DIAG_ALERT_POL BIT(2) #define INA238_REGISTERS 0x20 #define INA238_RSHUNT_DEFAULT 2500 /* uOhm */ /* Default configuration of device on reset. */ #define INA238_CONFIG_DEFAULT 0 #define SQ52206_CONFIG_DEFAULT 0x0005 /* 16 sample averaging, 1052us conversion time, continuous mode */ #define INA238_ADC_CONFIG_DEFAULT 0xfb6a /* Configure alerts to be based on averaged value (SLOWALERT) */ #define INA238_DIAG_ALERT_DEFAULT 0x2000 #define INA238_DIAG_ALERT_APOL BIT(12) /* * This driver uses a fixed calibration value in order to scale current/power * based on a fixed shunt resistor value. This allows for conversion within the * device to avoid integer limits whilst current/power accuracy is scaled * relative to the shunt resistor value within the driver. This is similar to * how the ina2xx driver handles current/power scaling. * * To achieve the best possible dynamic range, the value of the shunt voltage * register should match the value of the current register. With that, the shunt * voltage of 0x7fff = 32,767 uV = 163,785 uV matches the maximum current, * and no accuracy is lost. Experiments with a real chip show that this is * achieved by setting the SHUNT_CAL register to a value of 0x1000 = 4,096. * Per datasheet, * SHUNT_CAL = 819.2 x 10^6 x CURRENT_LSB x Rshunt * = 819,200,000 x CURRENT_LSB x Rshunt * With SHUNT_CAL set to 4,096, we get * CURRENT_LSB = 4,096 / (819,200,000 x Rshunt) * Assuming an Rshunt value of 5 mOhm, we get * CURRENT_LSB = 4,096 / (819,200,000 x 0.005) = 1mA * and thus a dynamic range of 1mA ... 32,767mA, which is sufficient for most * applications. The actual dynamic range is of course determined by the actual * shunt resistor value. * * Power and energy values are scaled accordingly. */ #define INA238_CALIBRATION_VALUE 4096 #define INA238_FIXED_SHUNT 5000 #define INA238_SHUNT_VOLTAGE_LSB 5000 /* 5 uV/lsb, in nV */ #define INA238_BUS_VOLTAGE_LSB 3125000 /* 3.125 mV/lsb, in nV */ #define SQ52206_BUS_VOLTAGE_LSB 3750000 /* 3.75 mV/lsb, in nV */ #define NUNIT_PER_MUNIT 1000000 /* n[AV] -> m[AV] */ static const struct regmap_config ina238_regmap_config = { .max_register = INA238_REGISTERS, .reg_bits = 8, .val_bits = 16, }; enum ina238_ids { ina228, ina237, ina238, ina700, ina780, sq52206 }; struct ina238_config { bool has_20bit_voltage_current; /* vshunt, vbus and current are 20-bit fields */ bool has_power_highest; /* chip detection power peak */ bool has_energy; /* chip detection energy */ u8 temp_resolution; /* temperature register resolution in bit */ u16 config_default; /* Power-on default state */ u32 power_calculate_factor; /* fixed parameter for power calculation, from datasheet */ u32 bus_voltage_lsb; /* bus voltage LSB, in nV */ int current_lsb; /* current LSB, in uA */ }; struct ina238_data { const struct ina238_config *config; struct i2c_client *client; struct mutex config_lock; struct regmap *regmap; u32 rshunt; int gain; u32 voltage_lsb[2]; /* shunt, bus voltage LSB, in nV */ int current_lsb; /* current LSB, in uA */ int power_lsb; /* power LSB, in uW */ int energy_lsb; /* energy LSB, in uJ */ }; static const struct ina238_config ina238_config[] = { [ina228] = { .has_20bit_voltage_current = true, .has_energy = true, .has_power_highest = false, .power_calculate_factor = 20, .config_default = INA238_CONFIG_DEFAULT, .bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB, .temp_resolution = 16, }, [ina237] = { .has_20bit_voltage_current = false, .has_energy = false, .has_power_highest = false, .power_calculate_factor = 20, .config_default = INA238_CONFIG_DEFAULT, .bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB, .temp_resolution = 12, }, [ina238] = { .has_20bit_voltage_current = false, .has_energy = false, .has_power_highest = false, .power_calculate_factor = 20, .config_default = INA238_CONFIG_DEFAULT, .bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB, .temp_resolution = 12, }, [ina700] = { .has_20bit_voltage_current = false, .has_energy = true, .has_power_highest = false, .power_calculate_factor = 20, .config_default = INA238_CONFIG_DEFAULT, .bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB, .temp_resolution = 12, .current_lsb = 480, }, [ina780] = { .has_20bit_voltage_current = false, .has_energy = true, .has_power_highest = false, .power_calculate_factor = 20, .config_default = INA238_CONFIG_DEFAULT, .bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB, .temp_resolution = 12, .current_lsb = 2400, }, [sq52206] = { .has_20bit_voltage_current = false, .has_energy = true, .has_power_highest = true, .power_calculate_factor = 24, .config_default = SQ52206_CONFIG_DEFAULT, .bus_voltage_lsb = SQ52206_BUS_VOLTAGE_LSB, .temp_resolution = 16, }, }; static int ina238_read_reg24(const struct i2c_client *client, u8 reg, u32 *val) { u8 data[3]; int err; /* 24-bit register read */ err = i2c_smbus_read_i2c_block_data(client, reg, 3, data); if (err < 0) return err; if (err != 3) return -EIO; *val = (data[0] << 16) | (data[1] << 8) | data[2]; return 0; } static int ina238_read_reg40(const struct i2c_client *client, u8 reg, u64 *val) { u8 data[5]; u32 low; int err; /* 40-bit register read */ err = i2c_smbus_read_i2c_block_data(client, reg, 5, data); if (err < 0) return err; if (err != 5) return -EIO; low = (data[1] << 24) | (data[2] << 16) | (data[3] << 8) | data[4]; *val = ((long long)data[0] << 32) | low; return 0; } static int ina238_read_field_s20(const struct i2c_client *client, u8 reg, s32 *val) { u32 regval; int err; err = ina238_read_reg24(client, reg, ®val); if (err) return err; /* bits 3-0 Reserved, always zero */ regval >>= 4; *val = sign_extend32(regval, 19); return 0; } static int ina228_read_voltage(struct ina238_data *data, int channel, long *val) { int reg = channel ? INA238_BUS_VOLTAGE : INA238_CURRENT; u32 lsb = data->voltage_lsb[channel]; u32 factor = NUNIT_PER_MUNIT; int err, regval; if (data->config->has_20bit_voltage_current) { err = ina238_read_field_s20(data->client, reg, ®val); if (err) return err; /* Adjust accuracy: LSB in units of 500 pV */ lsb /= 8; factor *= 2; } else { err = regmap_read(data->regmap, reg, ®val); if (err) return err; regval = (s16)regval; } *val = DIV_S64_ROUND_CLOSEST((s64)regval * lsb, factor); return 0; } static int ina238_read_in(struct device *dev, u32 attr, int channel, long *val) { struct ina238_data *data = dev_get_drvdata(dev); int reg, mask = 0; int regval; int err; if (attr == hwmon_in_input) return ina228_read_voltage(data, channel, val); switch (channel) { case 0: switch (attr) { case hwmon_in_max: reg = INA238_SHUNT_OVER_VOLTAGE; break; case hwmon_in_min: reg = INA238_SHUNT_UNDER_VOLTAGE; break; case hwmon_in_max_alarm: reg = INA238_DIAG_ALERT; mask = INA238_DIAG_ALERT_SHNTOL; break; case hwmon_in_min_alarm: reg = INA238_DIAG_ALERT; mask = INA238_DIAG_ALERT_SHNTUL; break; default: return -EOPNOTSUPP; } break; case 1: switch (attr) { case hwmon_in_max: reg = INA238_BUS_OVER_VOLTAGE; break; case hwmon_in_min: reg = INA238_BUS_UNDER_VOLTAGE; break; case hwmon_in_max_alarm: reg = INA238_DIAG_ALERT; mask = INA238_DIAG_ALERT_BUSOL; break; case hwmon_in_min_alarm: reg = INA238_DIAG_ALERT; mask = INA238_DIAG_ALERT_BUSUL; break; default: return -EOPNOTSUPP; } break; default: return -EOPNOTSUPP; } err = regmap_read(data->regmap, reg, ®val); if (err < 0) return err; if (mask) *val = !!(regval & mask); else *val = DIV_S64_ROUND_CLOSEST((s64)(s16)regval * data->voltage_lsb[channel], NUNIT_PER_MUNIT); return 0; } static int ina238_write_in(struct device *dev, u32 attr, int channel, long val) { struct ina238_data *data = dev_get_drvdata(dev); static const int low_limits[2] = {-164, 0}; static const int high_limits[2] = {164, 150000}; static const u8 low_regs[2] = {INA238_SHUNT_UNDER_VOLTAGE, INA238_BUS_UNDER_VOLTAGE}; static const u8 high_regs[2] = {INA238_SHUNT_OVER_VOLTAGE, INA238_BUS_OVER_VOLTAGE}; int regval; /* Initial clamp to avoid overflows */ val = clamp_val(val, low_limits[channel], high_limits[channel]); val = DIV_S64_ROUND_CLOSEST((s64)val * NUNIT_PER_MUNIT, data->voltage_lsb[channel]); /* Final clamp to register limits */ regval = clamp_val(val, S16_MIN, S16_MAX) & 0xffff; switch (attr) { case hwmon_in_min: return regmap_write(data->regmap, low_regs[channel], regval); case hwmon_in_max: return regmap_write(data->regmap, high_regs[channel], regval); default: return -EOPNOTSUPP; } } static int __ina238_read_curr(struct ina238_data *data, long *val) { u32 lsb = data->current_lsb; int err, regval; if (data->config->has_20bit_voltage_current) { err = ina238_read_field_s20(data->client, INA238_CURRENT, ®val); if (err) return err; lsb /= 16; /* Adjust accuracy */ } else { err = regmap_read(data->regmap, INA238_CURRENT, ®val); if (err) return err; regval = (s16)regval; } *val = DIV_S64_ROUND_CLOSEST((s64)regval * lsb, 1000); return 0; } static int ina238_read_curr(struct device *dev, u32 attr, long *val) { struct ina238_data *data = dev_get_drvdata(dev); int reg, mask = 0; int regval; int err; if (attr == hwmon_curr_input) return __ina238_read_curr(data, val); switch (attr) { case hwmon_curr_min: reg = INA238_SHUNT_UNDER_VOLTAGE; break; case hwmon_curr_min_alarm: reg = INA238_DIAG_ALERT; mask = INA238_DIAG_ALERT_SHNTUL; break; case hwmon_curr_max: reg = INA238_SHUNT_OVER_VOLTAGE; break; case hwmon_curr_max_alarm: reg = INA238_DIAG_ALERT; mask = INA238_DIAG_ALERT_SHNTOL; break; default: return -EOPNOTSUPP; } err = regmap_read(data->regmap, reg, ®val); if (err < 0) return err; if (mask) *val = !!(regval & mask); else *val = DIV_S64_ROUND_CLOSEST((s64)(s16)regval * data->current_lsb, 1000); return 0; } static int ina238_write_curr(struct device *dev, u32 attr, long val) { struct ina238_data *data = dev_get_drvdata(dev); int regval; /* Set baseline range to avoid over/underflows */ val = clamp_val(val, -1000000, 1000000); /* Scale */ val = DIV_ROUND_CLOSEST(val * 1000, data->current_lsb); /* Clamp to register size */ regval = clamp_val(val, S16_MIN, S16_MAX) & 0xffff; switch (attr) { case hwmon_curr_min: return regmap_write(data->regmap, INA238_SHUNT_UNDER_VOLTAGE, regval); case hwmon_curr_max: return regmap_write(data->regmap, INA238_SHUNT_OVER_VOLTAGE, regval); default: return -EOPNOTSUPP; } } static int ina238_read_power(struct device *dev, u32 attr, long *val) { struct ina238_data *data = dev_get_drvdata(dev); long long power; int regval; int err; switch (attr) { case hwmon_power_input: err = ina238_read_reg24(data->client, INA238_POWER, ®val); if (err) return err; power = (long long)regval * data->power_lsb; /* Clamp value to maximum value of long */ *val = clamp_val(power, 0, LONG_MAX); break; case hwmon_power_input_highest: err = ina238_read_reg24(data->client, SQ52206_POWER_PEAK, ®val); if (err) return err; power = (long long)regval * data->power_lsb; /* Clamp value to maximum value of long */ *val = clamp_val(power, 0, LONG_MAX); break; case hwmon_power_max: err = regmap_read(data->regmap, INA238_POWER_LIMIT, ®val); if (err) return err; /* * Truncated 24-bit compare register, lower 8-bits are * truncated. Same conversion to/from uW as POWER register. */ power = ((long long)regval << 8) * data->power_lsb; /* Clamp value to maximum value of long */ *val = clamp_val(power, 0, LONG_MAX); break; case hwmon_power_max_alarm: err = regmap_read(data->regmap, INA238_DIAG_ALERT, ®val); if (err) return err; *val = !!(regval & INA238_DIAG_ALERT_POL); break; default: return -EOPNOTSUPP; } return 0; } static int ina238_write_power_max(struct device *dev, long val) { struct ina238_data *data = dev_get_drvdata(dev); /* * Unsigned postive values. Compared against the 24-bit power register, * lower 8-bits are truncated. Same conversion to/from uW as POWER * register. * The first clamp_val() is to establish a baseline to avoid overflows. */ val = clamp_val(val, 0, LONG_MAX / 2); val = DIV_ROUND_CLOSEST(val, data->power_lsb); val = clamp_val(val >> 8, 0, U16_MAX); return regmap_write(data->regmap, INA238_POWER_LIMIT, val); } static int ina238_temp_from_reg(s16 regval, u8 resolution) { return ((regval >> (16 - resolution)) * 1000) >> (resolution - 9); } static int ina238_read_temp(struct device *dev, u32 attr, long *val) { struct ina238_data *data = dev_get_drvdata(dev); int regval; int err; switch (attr) { case hwmon_temp_input: err = regmap_read(data->regmap, INA238_DIE_TEMP, ®val); if (err) return err; *val = ina238_temp_from_reg(regval, data->config->temp_resolution); break; case hwmon_temp_max: err = regmap_read(data->regmap, INA238_TEMP_LIMIT, ®val); if (err) return err; /* Signed, result in mC */ *val = ina238_temp_from_reg(regval, data->config->temp_resolution); break; case hwmon_temp_max_alarm: err = regmap_read(data->regmap, INA238_DIAG_ALERT, ®val); if (err) return err; *val = !!(regval & INA238_DIAG_ALERT_TMPOL); break; default: return -EOPNOTSUPP; } return 0; } static u16 ina238_temp_to_reg(long val, u8 resolution) { int fraction = 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 9)); val = clamp_val(val, -255000 - fraction, 255000 + fraction); return (DIV_ROUND_CLOSEST(val << (resolution - 9), 1000) << (16 - resolution)) & 0xffff; } static int ina238_write_temp_max(struct device *dev, long val) { struct ina238_data *data = dev_get_drvdata(dev); int regval; regval = ina238_temp_to_reg(val, data->config->temp_resolution); return regmap_write(data->regmap, INA238_TEMP_LIMIT, regval); } static int ina238_read_energy(struct device *dev, s64 *energy) { struct ina238_data *data = dev_get_drvdata(dev); u64 regval; int ret; ret = ina238_read_reg40(data->client, SQ52206_ENERGY, ®val); if (ret) return ret; /* result in uJ */ *energy = regval * data->energy_lsb; return 0; } static int ina238_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_in: return ina238_read_in(dev, attr, channel, val); case hwmon_curr: return ina238_read_curr(dev, attr, val); case hwmon_power: return ina238_read_power(dev, attr, val); case hwmon_energy64: return ina238_read_energy(dev, (s64 *)val); case hwmon_temp: return ina238_read_temp(dev, attr, val); default: return -EOPNOTSUPP; } return 0; } static int ina238_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct ina238_data *data = dev_get_drvdata(dev); int err; mutex_lock(&data->config_lock); switch (type) { case hwmon_in: err = ina238_write_in(dev, attr, channel, val); break; case hwmon_curr: err = ina238_write_curr(dev, attr, val); break; case hwmon_power: err = ina238_write_power_max(dev, val); break; case hwmon_temp: err = ina238_write_temp_max(dev, val); break; default: err = -EOPNOTSUPP; break; } mutex_unlock(&data->config_lock); return err; } static umode_t ina238_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { const struct ina238_data *data = drvdata; bool has_power_highest = data->config->has_power_highest; bool has_energy = data->config->has_energy; switch (type) { case hwmon_in: switch (attr) { case hwmon_in_input: case hwmon_in_max_alarm: case hwmon_in_min_alarm: return 0444; case hwmon_in_max: case hwmon_in_min: return 0644; default: return 0; } case hwmon_curr: switch (attr) { case hwmon_curr_input: case hwmon_curr_max_alarm: case hwmon_curr_min_alarm: return 0444; case hwmon_curr_max: case hwmon_curr_min: return 0644; default: return 0; } case hwmon_power: switch (attr) { case hwmon_power_input: case hwmon_power_max_alarm: return 0444; case hwmon_power_max: return 0644; case hwmon_power_input_highest: if (has_power_highest) return 0444; return 0; default: return 0; } case hwmon_energy64: /* hwmon_energy_input */ if (has_energy) return 0444; return 0; case hwmon_temp: switch (attr) { case hwmon_temp_input: case hwmon_temp_max_alarm: return 0444; case hwmon_temp_max: return 0644; default: return 0; } default: return 0; } } #define INA238_HWMON_IN_CONFIG (HWMON_I_INPUT | \ HWMON_I_MAX | HWMON_I_MAX_ALARM | \ HWMON_I_MIN | HWMON_I_MIN_ALARM) static const struct hwmon_channel_info * const ina238_info[] = { HWMON_CHANNEL_INFO(in, /* 0: shunt voltage */ INA238_HWMON_IN_CONFIG, /* 1: bus voltage */ INA238_HWMON_IN_CONFIG), HWMON_CHANNEL_INFO(curr, /* 0: current through shunt */ HWMON_C_INPUT | HWMON_C_MIN | HWMON_C_MIN_ALARM | HWMON_C_MAX | HWMON_C_MAX_ALARM), HWMON_CHANNEL_INFO(power, /* 0: power */ HWMON_P_INPUT | HWMON_P_MAX | HWMON_P_MAX_ALARM | HWMON_P_INPUT_HIGHEST), HWMON_CHANNEL_INFO(energy64, HWMON_E_INPUT), HWMON_CHANNEL_INFO(temp, /* 0: die temperature */ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_ALARM), NULL }; static const struct hwmon_ops ina238_hwmon_ops = { .is_visible = ina238_is_visible, .read = ina238_read, .write = ina238_write, }; static const struct hwmon_chip_info ina238_chip_info = { .ops = &ina238_hwmon_ops, .info = ina238_info, }; static int ina238_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct device *hwmon_dev; struct ina238_data *data; enum ina238_ids chip; int config; int ret; chip = (uintptr_t)i2c_get_match_data(client); data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; /* set the device type */ data->config = &ina238_config[chip]; mutex_init(&data->config_lock); data->regmap = devm_regmap_init_i2c(client, &ina238_regmap_config); if (IS_ERR(data->regmap)) { dev_err(dev, "failed to allocate register map\n"); return PTR_ERR(data->regmap); } /* Setup CONFIG register */ config = data->config->config_default; if (data->config->current_lsb) { data->voltage_lsb[0] = INA238_SHUNT_VOLTAGE_LSB; data->current_lsb = data->config->current_lsb; } else { /* load shunt value */ if (device_property_read_u32(dev, "shunt-resistor", &data->rshunt) < 0) data->rshunt = INA238_RSHUNT_DEFAULT; if (data->rshunt == 0) { dev_err(dev, "invalid shunt resister value %u\n", data->rshunt); return -EINVAL; } /* load shunt gain value */ if (device_property_read_u32(dev, "ti,shunt-gain", &data->gain) < 0) data->gain = 4; /* Default of ADCRANGE = 0 */ if (data->gain != 1 && data->gain != 2 && data->gain != 4) { dev_err(dev, "invalid shunt gain value %u\n", data->gain); return -EINVAL; } /* Setup SHUNT_CALIBRATION register with fixed value */ ret = regmap_write(data->regmap, INA238_SHUNT_CALIBRATION, INA238_CALIBRATION_VALUE); if (ret < 0) { dev_err(dev, "error configuring the device: %d\n", ret); return -ENODEV; } if (chip == sq52206) { if (data->gain == 1) /* ADCRANGE = 10/11 is /1 */ config |= SQ52206_CONFIG_ADCRANGE_HIGH; else if (data->gain == 2) /* ADCRANGE = 01 is /2 */ config |= SQ52206_CONFIG_ADCRANGE_LOW; } else if (data->gain == 1) { /* ADCRANGE = 1 is /1 */ config |= INA238_CONFIG_ADCRANGE; } data->voltage_lsb[0] = INA238_SHUNT_VOLTAGE_LSB * data->gain / 4; data->current_lsb = DIV_U64_ROUND_CLOSEST(250ULL * INA238_FIXED_SHUNT * data->gain, data->rshunt); } ret = regmap_write(data->regmap, INA238_CONFIG, config); if (ret < 0) { dev_err(dev, "error configuring the device: %d\n", ret); return -ENODEV; } /* Setup ADC_CONFIG register */ ret = regmap_write(data->regmap, INA238_ADC_CONFIG, INA238_ADC_CONFIG_DEFAULT); if (ret < 0) { dev_err(dev, "error configuring the device: %d\n", ret); return -ENODEV; } /* Setup alert/alarm configuration */ config = INA238_DIAG_ALERT_DEFAULT; if (device_property_read_bool(dev, "ti,alert-polarity-active-high")) config |= INA238_DIAG_ALERT_APOL; ret = regmap_write(data->regmap, INA238_DIAG_ALERT, config); if (ret < 0) { dev_err(dev, "error configuring the device: %d\n", ret); return -ENODEV; } data->voltage_lsb[1] = data->config->bus_voltage_lsb; data->power_lsb = DIV_ROUND_CLOSEST(data->current_lsb * data->config->power_calculate_factor, 100); data->energy_lsb = data->power_lsb * 16; hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &ina238_chip_info, NULL); if (IS_ERR(hwmon_dev)) return PTR_ERR(hwmon_dev); if (data->rshunt) dev_info(dev, "power monitor %s (Rshunt = %u uOhm, gain = %u)\n", client->name, data->rshunt, data->gain); return 0; } static const struct i2c_device_id ina238_id[] = { { "ina228", ina228 }, { "ina237", ina237 }, { "ina238", ina238 }, { "ina700", ina700 }, { "ina780", ina780 }, { "sq52206", sq52206 }, { } }; MODULE_DEVICE_TABLE(i2c, ina238_id); static const struct of_device_id __maybe_unused ina238_of_match[] = { { .compatible = "ti,ina228", .data = (void *)ina228 }, { .compatible = "ti,ina237", .data = (void *)ina237 }, { .compatible = "ti,ina238", .data = (void *)ina238 }, { .compatible = "ti,ina700", .data = (void *)ina700 }, { .compatible = "ti,ina780", .data = (void *)ina780 }, { .compatible = "silergy,sq52206", .data = (void *)sq52206 }, { } }; MODULE_DEVICE_TABLE(of, ina238_of_match); static struct i2c_driver ina238_driver = { .driver = { .name = "ina238", .of_match_table = of_match_ptr(ina238_of_match), }, .probe = ina238_probe, .id_table = ina238_id, }; module_i2c_driver(ina238_driver); MODULE_AUTHOR("Nathan Rossi "); MODULE_DESCRIPTION("ina238 driver"); MODULE_LICENSE("GPL");