// SPDX-License-Identifier: (GPL-2.0-only OR MIT) /* * Copyright (C) 2025 Amlogic, Inc. All rights reserved * * Driver for the SPI Mode of Amlogic Flash Controller * Authors: * Liang Yang * Feng Chen * Xianwei Zhao */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define SFC_CMD 0x00 #define SFC_CFG 0x04 #define SFC_DADR 0x08 #define SFC_IADR 0x0c #define SFC_BUF 0x10 #define SFC_INFO 0x14 #define SFC_DC 0x18 #define SFC_ADR 0x1c #define SFC_DL 0x20 #define SFC_DH 0x24 #define SFC_CADR 0x28 #define SFC_SADR 0x2c #define SFC_RX_IDX 0x34 #define SFC_RX_DAT 0x38 #define SFC_SPI_CFG 0x40 /* settings in SFC_CMD */ /* 4 bits support 4 chip select, high false, low select but spi support 2*/ #define CHIP_SELECT_MASK GENMASK(13, 10) #define CS_NONE 0xf #define CS_0 0xe #define CS_1 0xd #define CLE (0x5 << 14) #define ALE (0x6 << 14) #define DWR (0x4 << 14) #define DRD (0x8 << 14) #define DUMMY (0xb << 14) #define IDLE (0xc << 14) #define IDLE_CYCLE_MASK GENMASK(9, 0) #define EXT_CYCLE_MASK GENMASK(9, 0) #define OP_M2N ((0 << 17) | (2 << 20)) #define OP_N2M ((1 << 17) | (2 << 20)) #define OP_STS ((3 << 17) | (2 << 20)) #define OP_ADL ((0 << 16) | (3 << 20)) #define OP_ADH ((1 << 16) | (3 << 20)) #define OP_AIL ((2 << 16) | (3 << 20)) #define OP_AIH ((3 << 16) | (3 << 20)) #define OP_ASL ((4 << 16) | (3 << 20)) #define OP_ASH ((5 << 16) | (3 << 20)) #define OP_SEED ((8 << 16) | (3 << 20)) #define SEED_MASK GENMASK(14, 0) #define ENABLE_RANDOM BIT(19) #define CMD_COMMAND(cs_sel, cmd) (CLE | ((cs_sel) << 10) | (cmd)) #define CMD_ADDR(cs_sel, addr) (ALE | ((cs_sel) << 10) | (addr)) #define CMD_DUMMY(cs_sel, cyc) (DUMMY | ((cs_sel) << 10) | ((cyc) & EXT_CYCLE_MASK)) #define CMD_IDLE(cs_sel, cyc) (IDLE | ((cs_sel) << 10) | ((cyc) & IDLE_CYCLE_MASK)) #define CMD_MEM2NAND(bch, pages) (OP_M2N | ((bch) << 14) | (pages)) #define CMD_NAND2MEM(bch, pages) (OP_N2M | ((bch) << 14) | (pages)) #define CMD_DATA_ADDRL(addr) (OP_ADL | ((addr) & 0xffff)) #define CMD_DATA_ADDRH(addr) (OP_ADH | (((addr) >> 16) & 0xffff)) #define CMD_INFO_ADDRL(addr) (OP_AIL | ((addr) & 0xffff)) #define CMD_INFO_ADDRH(addr) (OP_AIH | (((addr) >> 16) & 0xffff)) #define CMD_SEED(seed) (OP_SEED | ((seed) & SEED_MASK)) #define GET_CMD_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) #define DEFAULT_PULLUP_CYCLE 2 #define CS_SETUP_CYCLE 1 #define CS_HOLD_CYCLE 2 #define DEFAULT_BUS_CYCLE 4 #define RAW_SIZE GENMASK(13, 0) #define RAW_SIZE_BW 14 #define DMA_ADDR_ALIGN 8 /* Bit fields in SFC_SPI_CFG */ #define SPI_MODE_EN BIT(31) #define RAW_EXT_SIZE GENMASK(29, 18) #define ADDR_LANE GENMASK(17, 16) #define CPOL BIT(15) #define CPHA BIT(14) #define EN_HOLD BIT(13) #define EN_WP BIT(12) #define TXADJ GENMASK(11, 8) #define RXADJ GENMASK(7, 4) #define CMD_LANE GENMASK(3, 2) #define DATA_LANE GENMASK(1, 0) #define LANE_MAX 0x3 /* raw ext size[25:14] + raw size[13:0] */ #define RAW_MAX_RW_SIZE_MASK GENMASK(25, 0) /* Ecc fields */ #define ECC_COMPLETE BIT(31) #define ECC_UNCORRECTABLE 0x3f #define ECC_ERR_CNT(x) (((x) >> 24) & 0x3f) #define ECC_ZERO_CNT(x) (((x) >> 16) & 0x3f) #define ECC_BCH8_512 1 #define ECC_BCH8_1K 2 #define ECC_BCH8_PARITY_BYTES 14 #define ECC_BCH8_USER_BYTES 2 #define ECC_BCH8_INFO_BYTES (ECC_BCH8_USER_BYTES + ECC_BCH8_PARITY_BYTES) #define ECC_BCH8_STRENGTH 8 #define ECC_BCH8_DEFAULT_STEP 512 #define ECC_DEFAULT_BCH_MODE ECC_BCH8_512 #define ECC_PER_INFO_BYTE 8 #define ECC_PATTERN 0x5a #define ECC_BCH_MAX_SECT_SIZE 63 /* soft flags for sfc */ #define SFC_HWECC BIT(0) #define SFC_DATA_RANDOM BIT(1) #define SFC_DATA_ONLY BIT(2) #define SFC_OOB_ONLY BIT(3) #define SFC_DATA_OOB BIT(4) #define SFC_AUTO_OOB BIT(5) #define SFC_RAW_RW BIT(6) #define SFC_XFER_MDOE_MASK GENMASK(6, 2) #define SFC_DATABUF_SIZE 8192 #define SFC_INFOBUF_SIZE 256 #define SFC_BUF_SIZE (SFC_DATABUF_SIZE + SFC_INFOBUF_SIZE) /* !!! PCB and SPI-NAND chip limitations */ #define SFC_MAX_FREQUENCY (250 * 1000 * 1000) #define SFC_MIN_FREQUENCY (4 * 1000 * 1000) #define SFC_BUS_DEFAULT_CLK 40000000 #define SFC_MAX_CS_NUM 2 /* SPI-FLASH R/W operation cmd */ #define SPIFLASH_RD_OCTALIO 0xcb #define SPIFLASH_RD_OCTAL 0x8b #define SPIFLASH_RD_QUADIO 0xeb #define SPIFLASH_RD_QUAD 0x6b #define SPIFLASH_RD_DUALIO 0xbb #define SPIFLASH_RD_DUAL 0x3b #define SPIFLASH_RD_FAST 0x0b #define SPIFLASH_RD 0x03 #define SPIFLASH_WR_OCTALIO 0xC2 #define SPIFLASH_WR_OCTAL 0x82 #define SPIFLASH_WR_QUAD 0x32 #define SPIFLASH_WR 0x02 #define SPIFLASH_UP_QUAD 0x34 #define SPIFLASH_UP 0x84 struct aml_sfc_ecc_cfg { u32 stepsize; u32 nsteps; u32 strength; u32 oobsize; u32 bch; }; struct aml_ecc_stats { u32 corrected; u32 bitflips; u32 failed; }; struct aml_sfc_caps { struct aml_sfc_ecc_cfg *ecc_caps; u32 num_ecc_caps; }; struct aml_sfc { struct device *dev; struct clk *gate_clk; struct clk *core_clk; struct spi_controller *ctrl; struct regmap *regmap_base; const struct aml_sfc_caps *caps; struct nand_ecc_engine ecc_eng; struct aml_ecc_stats ecc_stats; dma_addr_t daddr; dma_addr_t iaddr; u32 info_bytes; u32 bus_rate; u32 flags; u32 rx_adj; u32 cs_sel; u8 *data_buf; __le64 *info_buf; u8 *priv; }; #define AML_ECC_DATA(sz, s, b) { .stepsize = (sz), .strength = (s), .bch = (b) } static struct aml_sfc_ecc_cfg aml_a113l2_ecc_caps[] = { AML_ECC_DATA(512, 8, ECC_BCH8_512), AML_ECC_DATA(1024, 8, ECC_BCH8_1K), }; static const struct aml_sfc_caps aml_a113l2_sfc_caps = { .ecc_caps = aml_a113l2_ecc_caps, .num_ecc_caps = ARRAY_SIZE(aml_a113l2_ecc_caps) }; static struct aml_sfc *nand_to_aml_sfc(struct nand_device *nand) { struct nand_ecc_engine *eng = nand->ecc.engine; return container_of(eng, struct aml_sfc, ecc_eng); } static inline void *aml_sfc_to_ecc_ctx(struct aml_sfc *sfc) { return sfc->priv; } static int aml_sfc_wait_cmd_finish(struct aml_sfc *sfc, u64 timeout_ms) { u32 cmd_size = 0; int ret; /* * The SPINAND flash controller employs a two-stage pipeline: * 1) command prefetch; 2) command execution. * * All commands are stored in the FIFO, with one prefetched for execution. * * There are cases where the FIFO is detected as empty, yet a command may * still be in execution and a prefetched command pending execution. * * So, send two idle commands to ensure all previous commands have * been executed. */ regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, 0)); regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, 0)); /* Wait for the FIFO to empty. */ ret = regmap_read_poll_timeout(sfc->regmap_base, SFC_CMD, cmd_size, !GET_CMD_SIZE(cmd_size), 10, timeout_ms * 1000); if (ret) dev_err(sfc->dev, "wait for empty CMD FIFO time out\n"); return ret; } static int aml_sfc_pre_transfer(struct aml_sfc *sfc, u32 idle_cycle, u32 cs2clk_cycle) { int ret; ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(CS_NONE, idle_cycle)); if (ret) return ret; return regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, cs2clk_cycle)); } static int aml_sfc_end_transfer(struct aml_sfc *sfc, u32 clk2cs_cycle) { int ret; ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, clk2cs_cycle)); if (ret) return ret; return aml_sfc_wait_cmd_finish(sfc, 0); } static int aml_sfc_set_bus_width(struct aml_sfc *sfc, u8 buswidth, u32 mask) { int i; u32 conf = 0; for (i = 0; i <= LANE_MAX; i++) { if (buswidth == 1 << i) { conf = i << __bf_shf(mask); return regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG, mask, conf); } } return 0; } static int aml_sfc_send_cmd(struct aml_sfc *sfc, const struct spi_mem_op *op) { int i, ret; u8 val; ret = aml_sfc_set_bus_width(sfc, op->cmd.buswidth, CMD_LANE); if (ret) return ret; for (i = 0; i < op->cmd.nbytes; i++) { val = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_COMMAND(sfc->cs_sel, val)); if (ret) return ret; } return 0; } static int aml_sfc_send_addr(struct aml_sfc *sfc, const struct spi_mem_op *op) { int i, ret; u8 val; ret = aml_sfc_set_bus_width(sfc, op->addr.buswidth, ADDR_LANE); if (ret) return ret; for (i = 0; i < op->addr.nbytes; i++) { val = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_ADDR(sfc->cs_sel, val)); if (ret) return ret; } return 0; } static bool aml_sfc_is_xio_op(const struct spi_mem_op *op) { switch (op->cmd.opcode) { case SPIFLASH_RD_OCTALIO: case SPIFLASH_RD_QUADIO: case SPIFLASH_RD_DUALIO: return true; default: break; } return false; } static int aml_sfc_send_cmd_addr_dummy(struct aml_sfc *sfc, const struct spi_mem_op *op) { u32 dummy_cycle, cmd; int ret; ret = aml_sfc_send_cmd(sfc, op); if (ret) return ret; ret = aml_sfc_send_addr(sfc, op); if (ret) return ret; if (op->dummy.nbytes) { /* Dummy buswidth configuration is not supported */ if (aml_sfc_is_xio_op(op)) dummy_cycle = op->dummy.nbytes * 8 / op->data.buswidth; else dummy_cycle = op->dummy.nbytes * 8; cmd = CMD_DUMMY(sfc->cs_sel, dummy_cycle - 1); return regmap_write(sfc->regmap_base, SFC_CMD, cmd); } return 0; } static bool aml_sfc_is_snand_hwecc_page_op(struct aml_sfc *sfc, const struct spi_mem_op *op) { switch (op->cmd.opcode) { /* SPINAND read from cache cmd */ case SPIFLASH_RD_QUADIO: case SPIFLASH_RD_QUAD: case SPIFLASH_RD_DUALIO: case SPIFLASH_RD_DUAL: case SPIFLASH_RD_FAST: case SPIFLASH_RD: /* SPINAND write to cache cmd */ case SPIFLASH_WR_QUAD: case SPIFLASH_WR: case SPIFLASH_UP_QUAD: case SPIFLASH_UP: if (sfc->flags & SFC_HWECC) return true; else return false; default: break; } return false; } static int aml_sfc_dma_buffer_setup(struct aml_sfc *sfc, void *databuf, int datalen, void *infobuf, int infolen, enum dma_data_direction dir) { u32 cmd = 0; int ret; sfc->daddr = dma_map_single(sfc->dev, databuf, datalen, dir); ret = dma_mapping_error(sfc->dev, sfc->daddr); if (ret) { dev_err(sfc->dev, "DMA mapping error\n"); goto out_map_data; } cmd = CMD_DATA_ADDRL(sfc->daddr); ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd); if (ret) goto out_map_data; cmd = CMD_DATA_ADDRH(sfc->daddr); ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd); if (ret) goto out_map_data; if (infobuf) { sfc->iaddr = dma_map_single(sfc->dev, infobuf, infolen, dir); ret = dma_mapping_error(sfc->dev, sfc->iaddr); if (ret) { dev_err(sfc->dev, "DMA mapping error\n"); dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir); goto out_map_data; } sfc->info_bytes = infolen; cmd = CMD_INFO_ADDRL(sfc->iaddr); ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd); if (ret) goto out_map_info; cmd = CMD_INFO_ADDRH(sfc->iaddr); ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd); if (ret) goto out_map_info; } return 0; out_map_info: dma_unmap_single(sfc->dev, sfc->iaddr, datalen, dir); out_map_data: dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir); return ret; } static void aml_sfc_dma_buffer_release(struct aml_sfc *sfc, int datalen, int infolen, enum dma_data_direction dir) { dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir); if (infolen) { dma_unmap_single(sfc->dev, sfc->iaddr, infolen, dir); sfc->info_bytes = 0; } } static bool aml_sfc_dma_buffer_is_safe(const void *buffer) { if ((uintptr_t)buffer % DMA_ADDR_ALIGN) return false; if (virt_addr_valid(buffer)) return true; return false; } static void *aml_get_dma_safe_input_buf(const struct spi_mem_op *op) { if (aml_sfc_dma_buffer_is_safe(op->data.buf.in)) return op->data.buf.in; return kzalloc(op->data.nbytes, GFP_KERNEL); } static void aml_sfc_put_dma_safe_input_buf(const struct spi_mem_op *op, void *buf) { if (WARN_ON(op->data.dir != SPI_MEM_DATA_IN) || WARN_ON(!buf)) return; if (buf == op->data.buf.in) return; memcpy(op->data.buf.in, buf, op->data.nbytes); kfree(buf); } static void *aml_sfc_get_dma_safe_output_buf(const struct spi_mem_op *op) { if (aml_sfc_dma_buffer_is_safe(op->data.buf.out)) return (void *)op->data.buf.out; return kmemdup(op->data.buf.out, op->data.nbytes, GFP_KERNEL); } static void aml_sfc_put_dma_safe_output_buf(const struct spi_mem_op *op, const void *buf) { if (WARN_ON(op->data.dir != SPI_MEM_DATA_OUT) || WARN_ON(!buf)) return; if (buf != op->data.buf.out) kfree(buf); } static u64 aml_sfc_cal_timeout_cycle(struct aml_sfc *sfc, const struct spi_mem_op *op) { u64 ms; /* For each byte we wait for (8 cycles / buswidth) of the SPI clock. */ ms = 8 * MSEC_PER_SEC * op->data.nbytes / op->data.buswidth; do_div(ms, sfc->bus_rate / DEFAULT_BUS_CYCLE); /* * Double the value and add a 200 ms tolerance to compensate for * the impact of specific CS hold time, CS setup time sequences, * controller burst gaps, and other related timing variations. */ ms += ms + 200; if (ms > UINT_MAX) ms = UINT_MAX; return ms; } static void aml_sfc_check_ecc_pages_valid(struct aml_sfc *sfc, bool raw) { struct aml_sfc_ecc_cfg *ecc_cfg; __le64 *info; int ret; info = sfc->info_buf; ecc_cfg = aml_sfc_to_ecc_ctx(sfc); info += raw ? 0 : ecc_cfg->nsteps - 1; do { usleep_range(10, 15); /* info is updated by nfc dma engine*/ smp_rmb(); dma_sync_single_for_cpu(sfc->dev, sfc->iaddr, sfc->info_bytes, DMA_FROM_DEVICE); ret = le64_to_cpu(*info) & ECC_COMPLETE; } while (!ret); } static int aml_sfc_raw_io_op(struct aml_sfc *sfc, const struct spi_mem_op *op) { void *buf = NULL; int ret; bool is_datain = false; u32 cmd = 0, conf; u64 timeout_ms; if (!op->data.nbytes) goto end_xfer; conf = (op->data.nbytes >> RAW_SIZE_BW) << __bf_shf(RAW_EXT_SIZE); ret = regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG, RAW_EXT_SIZE, conf); if (ret) goto err_out; if (op->data.dir == SPI_MEM_DATA_IN) { is_datain = true; buf = aml_get_dma_safe_input_buf(op); if (!buf) { ret = -ENOMEM; goto err_out; } cmd |= CMD_NAND2MEM(0, (op->data.nbytes & RAW_SIZE)); } else if (op->data.dir == SPI_MEM_DATA_OUT) { is_datain = false; buf = aml_sfc_get_dma_safe_output_buf(op); if (!buf) { ret = -ENOMEM; goto err_out; } cmd |= CMD_MEM2NAND(0, (op->data.nbytes & RAW_SIZE)); } else { goto end_xfer; } ret = aml_sfc_dma_buffer_setup(sfc, buf, op->data.nbytes, is_datain ? sfc->info_buf : NULL, is_datain ? ECC_PER_INFO_BYTE : 0, is_datain ? DMA_FROM_DEVICE : DMA_TO_DEVICE); if (ret) goto err_out; ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd); if (ret) goto err_out; timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op); ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms); if (ret) goto err_out; if (is_datain) aml_sfc_check_ecc_pages_valid(sfc, 1); if (op->data.dir == SPI_MEM_DATA_IN) aml_sfc_put_dma_safe_input_buf(op, buf); else if (op->data.dir == SPI_MEM_DATA_OUT) aml_sfc_put_dma_safe_output_buf(op, buf); aml_sfc_dma_buffer_release(sfc, op->data.nbytes, is_datain ? ECC_PER_INFO_BYTE : 0, is_datain ? DMA_FROM_DEVICE : DMA_TO_DEVICE); end_xfer: return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE); err_out: return ret; } static void aml_sfc_set_user_byte(struct aml_sfc *sfc, __le64 *info_buf, u8 *oob_buf, bool auto_oob) { struct aml_sfc_ecc_cfg *ecc_cfg; __le64 *info; int i, count, step_size; ecc_cfg = aml_sfc_to_ecc_ctx(sfc); step_size = auto_oob ? ECC_BCH8_INFO_BYTES : ECC_BCH8_USER_BYTES; for (i = 0, count = 0; i < ecc_cfg->nsteps; i++, count += step_size) { info = &info_buf[i]; *info &= cpu_to_le64(~0xffff); *info |= cpu_to_le64((oob_buf[count + 1] << 8) + oob_buf[count]); } } static void aml_sfc_get_user_byte(struct aml_sfc *sfc, __le64 *info_buf, u8 *oob_buf) { struct aml_sfc_ecc_cfg *ecc_cfg; __le64 *info; int i, count; ecc_cfg = aml_sfc_to_ecc_ctx(sfc); for (i = 0, count = 0; i < ecc_cfg->nsteps; i++, count += ECC_BCH8_INFO_BYTES) { info = &info_buf[i]; oob_buf[count] = le64_to_cpu(*info); oob_buf[count + 1] = le64_to_cpu(*info) >> 8; } } static int aml_sfc_check_hwecc_status(struct aml_sfc *sfc, __le64 *info_buf) { struct aml_sfc_ecc_cfg *ecc_cfg; __le64 *info; u32 i, max_bitflips = 0, per_sector_bitflips = 0; ecc_cfg = aml_sfc_to_ecc_ctx(sfc); sfc->ecc_stats.failed = 0; sfc->ecc_stats.bitflips = 0; sfc->ecc_stats.corrected = 0; for (i = 0, info = info_buf; i < ecc_cfg->nsteps; i++, info++) { if (ECC_ERR_CNT(le64_to_cpu(*info)) != ECC_UNCORRECTABLE) { per_sector_bitflips = ECC_ERR_CNT(le64_to_cpu(*info)); max_bitflips = max_t(u32, max_bitflips, per_sector_bitflips); sfc->ecc_stats.corrected += per_sector_bitflips; continue; } return -EBADMSG; } return max_bitflips; } static int aml_sfc_read_page_hwecc(struct aml_sfc *sfc, const struct spi_mem_op *op) { struct aml_sfc_ecc_cfg *ecc_cfg; int ret, data_len, info_len; u32 page_size, cmd = 0; u64 timeout_ms; ecc_cfg = aml_sfc_to_ecc_ctx(sfc); page_size = ecc_cfg->stepsize * ecc_cfg->nsteps; data_len = page_size + ecc_cfg->oobsize; info_len = ecc_cfg->nsteps * ECC_PER_INFO_BYTE; ret = aml_sfc_dma_buffer_setup(sfc, sfc->data_buf, data_len, sfc->info_buf, info_len, DMA_FROM_DEVICE); if (ret) goto err_out; cmd |= CMD_NAND2MEM(ecc_cfg->bch, ecc_cfg->nsteps); ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd); if (ret) goto err_out; timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op); ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms); if (ret) goto err_out; aml_sfc_check_ecc_pages_valid(sfc, 0); aml_sfc_dma_buffer_release(sfc, data_len, info_len, DMA_FROM_DEVICE); /* check ecc status here */ ret = aml_sfc_check_hwecc_status(sfc, sfc->info_buf); if (ret < 0) sfc->ecc_stats.failed++; else sfc->ecc_stats.bitflips = ret; if (sfc->flags & SFC_DATA_ONLY) { memcpy(op->data.buf.in, sfc->data_buf, page_size); } else if (sfc->flags & SFC_OOB_ONLY) { aml_sfc_get_user_byte(sfc, sfc->info_buf, op->data.buf.in); } else if (sfc->flags & SFC_DATA_OOB) { memcpy(op->data.buf.in, sfc->data_buf, page_size); aml_sfc_get_user_byte(sfc, sfc->info_buf, op->data.buf.in + page_size); } return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE); err_out: return ret; } static int aml_sfc_write_page_hwecc(struct aml_sfc *sfc, const struct spi_mem_op *op) { struct aml_sfc_ecc_cfg *ecc_cfg; int ret, data_len, info_len; u32 page_size, cmd = 0; u64 timeout_ms; ecc_cfg = aml_sfc_to_ecc_ctx(sfc); page_size = ecc_cfg->stepsize * ecc_cfg->nsteps; data_len = page_size + ecc_cfg->oobsize; info_len = ecc_cfg->nsteps * ECC_PER_INFO_BYTE; memset(sfc->info_buf, ECC_PATTERN, ecc_cfg->oobsize); memcpy(sfc->data_buf, op->data.buf.out, page_size); if (!(sfc->flags & SFC_DATA_ONLY)) { if (sfc->flags & SFC_AUTO_OOB) aml_sfc_set_user_byte(sfc, sfc->info_buf, (u8 *)op->data.buf.out + page_size, 1); else aml_sfc_set_user_byte(sfc, sfc->info_buf, (u8 *)op->data.buf.out + page_size, 0); } ret = aml_sfc_dma_buffer_setup(sfc, sfc->data_buf, data_len, sfc->info_buf, info_len, DMA_TO_DEVICE); if (ret) goto err_out; cmd |= CMD_MEM2NAND(ecc_cfg->bch, ecc_cfg->nsteps); ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd); if (ret) goto err_out; timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op); ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms); if (ret) goto err_out; aml_sfc_dma_buffer_release(sfc, data_len, info_len, DMA_TO_DEVICE); return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE); err_out: return ret; } static int aml_sfc_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct aml_sfc *sfc; struct spi_device *spi; struct aml_sfc_ecc_cfg *ecc_cfg; int ret; sfc = spi_controller_get_devdata(mem->spi->controller); ecc_cfg = aml_sfc_to_ecc_ctx(sfc); spi = mem->spi; sfc->cs_sel = spi->chip_select[0] ? CS_1 : CS_0; dev_dbg(sfc->dev, "cmd:0x%02x - addr:%08llX@%d:%u - dummy:%d:%u - data:%d:%u", op->cmd.opcode, op->addr.val, op->addr.buswidth, op->addr.nbytes, op->dummy.buswidth, op->dummy.nbytes, op->data.buswidth, op->data.nbytes); ret = aml_sfc_pre_transfer(sfc, DEFAULT_PULLUP_CYCLE, CS_SETUP_CYCLE); if (ret) return ret; ret = aml_sfc_send_cmd_addr_dummy(sfc, op); if (ret) return ret; ret = aml_sfc_set_bus_width(sfc, op->data.buswidth, DATA_LANE); if (ret) return ret; if (aml_sfc_is_snand_hwecc_page_op(sfc, op) && ecc_cfg && !(sfc->flags & SFC_RAW_RW)) { if (op->data.dir == SPI_MEM_DATA_IN) return aml_sfc_read_page_hwecc(sfc, op); else return aml_sfc_write_page_hwecc(sfc, op); } return aml_sfc_raw_io_op(sfc, op); } static int aml_sfc_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct aml_sfc *sfc; struct aml_sfc_ecc_cfg *ecc_cfg; sfc = spi_controller_get_devdata(mem->spi->controller); ecc_cfg = aml_sfc_to_ecc_ctx(sfc); if (aml_sfc_is_snand_hwecc_page_op(sfc, op) && ecc_cfg) { if (op->data.nbytes > ecc_cfg->stepsize * ECC_BCH_MAX_SECT_SIZE) return -EOPNOTSUPP; } else if (op->data.nbytes & ~RAW_MAX_RW_SIZE_MASK) { return -EOPNOTSUPP; } return 0; } static const struct spi_controller_mem_ops aml_sfc_mem_ops = { .adjust_op_size = aml_sfc_adjust_op_size, .exec_op = aml_sfc_exec_op, }; static int aml_sfc_layout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); if (section >= nand->ecc.ctx.nsteps) return -ERANGE; oobregion->offset = ECC_BCH8_USER_BYTES + (section * ECC_BCH8_INFO_BYTES); oobregion->length = ECC_BCH8_PARITY_BYTES; return 0; } static int aml_sfc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); if (section >= nand->ecc.ctx.nsteps) return -ERANGE; oobregion->offset = section * ECC_BCH8_INFO_BYTES; oobregion->length = ECC_BCH8_USER_BYTES; return 0; } static const struct mtd_ooblayout_ops aml_sfc_ooblayout_ops = { .ecc = aml_sfc_layout_ecc, .free = aml_sfc_ooblayout_free, }; static int aml_spi_settings(struct aml_sfc *sfc, struct spi_device *spi) { u32 conf = 0; if (spi->mode & SPI_CPHA) conf |= CPHA; if (spi->mode & SPI_CPOL) conf |= CPOL; conf |= FIELD_PREP(RXADJ, sfc->rx_adj); conf |= EN_HOLD | EN_WP; return regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG, CPHA | CPOL | RXADJ | EN_HOLD | EN_WP, conf); } static int aml_set_spi_clk(struct aml_sfc *sfc, struct spi_device *spi) { u32 speed_hz; int ret; if (spi->max_speed_hz > SFC_MAX_FREQUENCY) speed_hz = SFC_MAX_FREQUENCY; else if (!spi->max_speed_hz) speed_hz = SFC_BUS_DEFAULT_CLK; else if (spi->max_speed_hz < SFC_MIN_FREQUENCY) speed_hz = SFC_MIN_FREQUENCY; else speed_hz = spi->max_speed_hz; /* The SPI clock is generated by dividing the bus clock by four by default. */ ret = regmap_write(sfc->regmap_base, SFC_CFG, (DEFAULT_BUS_CYCLE - 1)); if (ret) { dev_err(sfc->dev, "failed to set bus cycle\n"); return ret; } return clk_set_rate(sfc->core_clk, speed_hz * DEFAULT_BUS_CYCLE); } static int aml_sfc_setup(struct spi_device *spi) { struct aml_sfc *sfc; int ret; sfc = spi_controller_get_devdata(spi->controller); ret = aml_spi_settings(sfc, spi); if (ret) return ret; ret = aml_set_spi_clk(sfc, spi); if (ret) return ret; sfc->bus_rate = clk_get_rate(sfc->core_clk); return 0; } static int aml_sfc_ecc_init_ctx(struct nand_device *nand) { struct mtd_info *mtd = nanddev_to_mtd(nand); struct aml_sfc *sfc = nand_to_aml_sfc(nand); struct aml_sfc_ecc_cfg *ecc_cfg; const struct aml_sfc_caps *caps = sfc->caps; struct aml_sfc_ecc_cfg *ecc_caps = caps->ecc_caps; int i, ecc_strength, ecc_step_size; ecc_step_size = nand->ecc.user_conf.step_size; ecc_strength = nand->ecc.user_conf.strength; for (i = 0; i < caps->num_ecc_caps; i++) { if (ecc_caps[i].stepsize == ecc_step_size) { nand->ecc.ctx.conf.step_size = ecc_step_size; nand->ecc.ctx.conf.flags |= BIT(ecc_caps[i].bch); } if (ecc_caps[i].strength == ecc_strength) nand->ecc.ctx.conf.strength = ecc_strength; } if (!nand->ecc.ctx.conf.step_size) { nand->ecc.ctx.conf.step_size = ECC_BCH8_DEFAULT_STEP; nand->ecc.ctx.conf.flags |= BIT(ECC_DEFAULT_BCH_MODE); } if (!nand->ecc.ctx.conf.strength) nand->ecc.ctx.conf.strength = ECC_BCH8_STRENGTH; nand->ecc.ctx.nsteps = nand->memorg.pagesize / nand->ecc.ctx.conf.step_size; nand->ecc.ctx.total = nand->ecc.ctx.nsteps * ECC_BCH8_PARITY_BYTES; /* Verify the page size and OOB size against the SFC requirements. */ if ((nand->memorg.pagesize % nand->ecc.ctx.conf.step_size) || (nand->memorg.oobsize < (nand->ecc.ctx.total + nand->ecc.ctx.nsteps * ECC_BCH8_USER_BYTES))) return -EOPNOTSUPP; nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); if (!ecc_cfg) return -ENOMEM; ecc_cfg->stepsize = nand->ecc.ctx.conf.step_size; ecc_cfg->nsteps = nand->ecc.ctx.nsteps; ecc_cfg->strength = nand->ecc.ctx.conf.strength; ecc_cfg->oobsize = nand->memorg.oobsize; ecc_cfg->bch = nand->ecc.ctx.conf.flags & BIT(ECC_DEFAULT_BCH_MODE) ? 1 : 2; nand->ecc.ctx.priv = ecc_cfg; sfc->priv = (void *)ecc_cfg; mtd_set_ooblayout(mtd, &aml_sfc_ooblayout_ops); sfc->flags |= SFC_HWECC; return 0; } static void aml_sfc_ecc_cleanup_ctx(struct nand_device *nand) { struct aml_sfc *sfc = nand_to_aml_sfc(nand); sfc->flags &= ~(SFC_HWECC); kfree(nand->ecc.ctx.priv); sfc->priv = NULL; } static int aml_sfc_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct aml_sfc *sfc = nand_to_aml_sfc(nand); struct spinand_device *spinand = nand_to_spinand(nand); sfc->flags &= ~SFC_XFER_MDOE_MASK; if (req->datalen && !req->ooblen) sfc->flags |= SFC_DATA_ONLY; else if (!req->datalen && req->ooblen) sfc->flags |= SFC_OOB_ONLY; else if (req->datalen && req->ooblen) sfc->flags |= SFC_DATA_OOB; if (req->mode == MTD_OPS_RAW) sfc->flags |= SFC_RAW_RW; else if (req->mode == MTD_OPS_AUTO_OOB) sfc->flags |= SFC_AUTO_OOB; memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand)); return 0; } static int aml_sfc_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct aml_sfc *sfc = nand_to_aml_sfc(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); if (req->mode == MTD_OPS_RAW || req->type == NAND_PAGE_WRITE) return 0; if (sfc->ecc_stats.failed) mtd->ecc_stats.failed++; mtd->ecc_stats.corrected += sfc->ecc_stats.corrected; return sfc->ecc_stats.failed ? -EBADMSG : sfc->ecc_stats.bitflips; } static const struct spi_controller_mem_caps aml_sfc_mem_caps = { .ecc = true, }; static const struct nand_ecc_engine_ops aml_sfc_ecc_engine_ops = { .init_ctx = aml_sfc_ecc_init_ctx, .cleanup_ctx = aml_sfc_ecc_cleanup_ctx, .prepare_io_req = aml_sfc_ecc_prepare_io_req, .finish_io_req = aml_sfc_ecc_finish_io_req, }; static int aml_sfc_clk_init(struct aml_sfc *sfc) { sfc->gate_clk = devm_clk_get_enabled(sfc->dev, "gate"); if (IS_ERR(sfc->gate_clk)) { dev_err(sfc->dev, "unable to enable gate clk\n"); return PTR_ERR(sfc->gate_clk); } sfc->core_clk = devm_clk_get_enabled(sfc->dev, "core"); if (IS_ERR(sfc->core_clk)) { dev_err(sfc->dev, "unable to enable core clk\n"); return PTR_ERR(sfc->core_clk); } return clk_set_rate(sfc->core_clk, SFC_BUS_DEFAULT_CLK); } static int aml_sfc_disable_clk(struct aml_sfc *sfc) { clk_disable_unprepare(sfc->core_clk); clk_disable_unprepare(sfc->gate_clk); return 0; } static int aml_sfc_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct spi_controller *ctrl; struct aml_sfc *sfc; void __iomem *reg_base; int ret; u32 val = 0; const struct regmap_config core_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = SFC_SPI_CFG, }; ctrl = devm_spi_alloc_host(dev, sizeof(*sfc)); if (!ctrl) return -ENOMEM; platform_set_drvdata(pdev, ctrl); sfc = spi_controller_get_devdata(ctrl); sfc->dev = dev; sfc->ctrl = ctrl; sfc->caps = of_device_get_match_data(dev); if (!sfc->caps) return dev_err_probe(dev, -ENODEV, "failed to get device data\n"); reg_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(reg_base)) return PTR_ERR(reg_base); sfc->regmap_base = devm_regmap_init_mmio(dev, reg_base, &core_config); if (IS_ERR(sfc->regmap_base)) return dev_err_probe(dev, PTR_ERR(sfc->regmap_base), "failed to init sfc base regmap\n"); sfc->data_buf = devm_kzalloc(dev, SFC_BUF_SIZE, GFP_KERNEL); if (!sfc->data_buf) return -ENOMEM; sfc->info_buf = (__le64 *)(sfc->data_buf + SFC_DATABUF_SIZE); ret = aml_sfc_clk_init(sfc); if (ret) return dev_err_probe(dev, ret, "failed to initialize SFC clock\n"); /* Enable Amlogic flash controller spi mode */ ret = regmap_write(sfc->regmap_base, SFC_SPI_CFG, SPI_MODE_EN); if (ret) { dev_err(dev, "failed to enable SPI mode\n"); goto err_out; } ret = dma_set_mask(sfc->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(sfc->dev, "failed to set dma mask\n"); goto err_out; } sfc->ecc_eng.dev = &pdev->dev; sfc->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; sfc->ecc_eng.ops = &aml_sfc_ecc_engine_ops; sfc->ecc_eng.priv = sfc; ret = nand_ecc_register_on_host_hw_engine(&sfc->ecc_eng); if (ret) { dev_err(&pdev->dev, "failed to register Aml host ecc engine.\n"); goto err_out; } ret = of_property_read_u32(np, "amlogic,rx-adj", &val); if (!ret) sfc->rx_adj = val; ctrl->dev.of_node = np; ctrl->mem_ops = &aml_sfc_mem_ops; ctrl->mem_caps = &aml_sfc_mem_caps; ctrl->setup = aml_sfc_setup; ctrl->mode_bits = SPI_TX_QUAD | SPI_TX_DUAL | SPI_RX_QUAD | SPI_RX_DUAL | SPI_TX_OCTAL | SPI_RX_OCTAL; ctrl->max_speed_hz = SFC_MAX_FREQUENCY; ctrl->min_speed_hz = SFC_MIN_FREQUENCY; ctrl->num_chipselect = SFC_MAX_CS_NUM; ret = devm_spi_register_controller(dev, ctrl); if (ret) goto err_out; return 0; err_out: aml_sfc_disable_clk(sfc); return ret; } static void aml_sfc_remove(struct platform_device *pdev) { struct spi_controller *ctlr = platform_get_drvdata(pdev); struct aml_sfc *sfc = spi_controller_get_devdata(ctlr); aml_sfc_disable_clk(sfc); } static const struct of_device_id aml_sfc_of_match[] = { { .compatible = "amlogic,a4-spifc", .data = &aml_a113l2_sfc_caps }, {}, }; MODULE_DEVICE_TABLE(of, aml_sfc_of_match); static struct platform_driver aml_sfc_driver = { .driver = { .name = "aml_sfc", .of_match_table = aml_sfc_of_match, }, .probe = aml_sfc_probe, .remove = aml_sfc_remove, }; module_platform_driver(aml_sfc_driver); MODULE_DESCRIPTION("Amlogic SPI Flash Controller driver"); MODULE_AUTHOR("Feng Chen "); MODULE_LICENSE("Dual MIT/GPL");