// SPDX-License-Identifier: GPL-2.0-only /* * Resource Director Technology(RDT) * - Monitoring code * * Copyright (C) 2017 Intel Corporation * * Author: * Vikas Shivappa * * This replaces the cqm.c based on perf but we reuse a lot of * code and datastructures originally from Peter Zijlstra and Matt Fleming. * * More information about RDT be found in the Intel (R) x86 Architecture * Software Developer Manual June 2016, volume 3, section 17.17. */ #define pr_fmt(fmt) "resctrl: " fmt #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include "monitor_trace.h" /** * struct rmid_entry - dirty tracking for all RMID. * @closid: The CLOSID for this entry. * @rmid: The RMID for this entry. * @busy: The number of domains with cached data using this RMID. * @list: Member of the rmid_free_lru list when busy == 0. * * Depending on the architecture the correct monitor is accessed using * both @closid and @rmid, or @rmid only. * * Take the rdtgroup_mutex when accessing. */ struct rmid_entry { u32 closid; u32 rmid; int busy; struct list_head list; }; /* * @rmid_free_lru - A least recently used list of free RMIDs * These RMIDs are guaranteed to have an occupancy less than the * threshold occupancy */ static LIST_HEAD(rmid_free_lru); /* * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has. * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined. * Indexed by CLOSID. Protected by rdtgroup_mutex. */ static u32 *closid_num_dirty_rmid; /* * @rmid_limbo_count - count of currently unused but (potentially) * dirty RMIDs. * This counts RMIDs that no one is currently using but that * may have a occupancy value > resctrl_rmid_realloc_threshold. User can * change the threshold occupancy value. */ static unsigned int rmid_limbo_count; /* * @rmid_entry - The entry in the limbo and free lists. */ static struct rmid_entry *rmid_ptrs; /* * This is the threshold cache occupancy in bytes at which we will consider an * RMID available for re-allocation. */ unsigned int resctrl_rmid_realloc_threshold; /* * This is the maximum value for the reallocation threshold, in bytes. */ unsigned int resctrl_rmid_realloc_limit; /* * x86 and arm64 differ in their handling of monitoring. * x86's RMID are independent numbers, there is only one source of traffic * with an RMID value of '1'. * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID * value is no longer unique. * To account for this, resctrl uses an index. On x86 this is just the RMID, * on arm64 it encodes the CLOSID and RMID. This gives a unique number. * * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code * must accept an attempt to read every index. */ static inline struct rmid_entry *__rmid_entry(u32 idx) { struct rmid_entry *entry; u32 closid, rmid; entry = &rmid_ptrs[idx]; resctrl_arch_rmid_idx_decode(idx, &closid, &rmid); WARN_ON_ONCE(entry->closid != closid); WARN_ON_ONCE(entry->rmid != rmid); return entry; } static void limbo_release_entry(struct rmid_entry *entry) { lockdep_assert_held(&rdtgroup_mutex); rmid_limbo_count--; list_add_tail(&entry->list, &rmid_free_lru); if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) closid_num_dirty_rmid[entry->closid]--; } /* * Check the RMIDs that are marked as busy for this domain. If the * reported LLC occupancy is below the threshold clear the busy bit and * decrement the count. If the busy count gets to zero on an RMID, we * free the RMID */ void __check_limbo(struct rdt_mon_domain *d, bool force_free) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); u32 idx_limit = resctrl_arch_system_num_rmid_idx(); struct rmid_entry *entry; u32 idx, cur_idx = 1; void *arch_mon_ctx; bool rmid_dirty; u64 val = 0; arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID); if (IS_ERR(arch_mon_ctx)) { pr_warn_ratelimited("Failed to allocate monitor context: %ld", PTR_ERR(arch_mon_ctx)); return; } /* * Skip RMID 0 and start from RMID 1 and check all the RMIDs that * are marked as busy for occupancy < threshold. If the occupancy * is less than the threshold decrement the busy counter of the * RMID and move it to the free list when the counter reaches 0. */ for (;;) { idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx); if (idx >= idx_limit) break; entry = __rmid_entry(idx); if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid, QOS_L3_OCCUP_EVENT_ID, &val, arch_mon_ctx)) { rmid_dirty = true; } else { rmid_dirty = (val >= resctrl_rmid_realloc_threshold); /* * x86's CLOSID and RMID are independent numbers, so the entry's * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't * used to select the configuration. It is thus necessary to track both * CLOSID and RMID because there may be dependencies between them * on some architectures. */ trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val); } if (force_free || !rmid_dirty) { clear_bit(idx, d->rmid_busy_llc); if (!--entry->busy) limbo_release_entry(entry); } cur_idx = idx + 1; } resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx); } bool has_busy_rmid(struct rdt_mon_domain *d) { u32 idx_limit = resctrl_arch_system_num_rmid_idx(); return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit; } static struct rmid_entry *resctrl_find_free_rmid(u32 closid) { struct rmid_entry *itr; u32 itr_idx, cmp_idx; if (list_empty(&rmid_free_lru)) return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC); list_for_each_entry(itr, &rmid_free_lru, list) { /* * Get the index of this free RMID, and the index it would need * to be if it were used with this CLOSID. * If the CLOSID is irrelevant on this architecture, the two * index values are always the same on every entry and thus the * very first entry will be returned. */ itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid); cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid); if (itr_idx == cmp_idx) return itr; } return ERR_PTR(-ENOSPC); } /** * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated * RMID are clean, or the CLOSID that has * the most clean RMID. * * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID * may not be able to allocate clean RMID. To avoid this the allocator will * choose the CLOSID with the most clean RMID. * * When the CLOSID and RMID are independent numbers, the first free CLOSID will * be returned. */ int resctrl_find_cleanest_closid(void) { u32 cleanest_closid = ~0; int i = 0; lockdep_assert_held(&rdtgroup_mutex); if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) return -EIO; for (i = 0; i < closids_supported(); i++) { int num_dirty; if (closid_allocated(i)) continue; num_dirty = closid_num_dirty_rmid[i]; if (num_dirty == 0) return i; if (cleanest_closid == ~0) cleanest_closid = i; if (num_dirty < closid_num_dirty_rmid[cleanest_closid]) cleanest_closid = i; } if (cleanest_closid == ~0) return -ENOSPC; return cleanest_closid; } /* * For MPAM the RMID value is not unique, and has to be considered with * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which * allows all domains to be managed by a single free list. * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler. */ int alloc_rmid(u32 closid) { struct rmid_entry *entry; lockdep_assert_held(&rdtgroup_mutex); entry = resctrl_find_free_rmid(closid); if (IS_ERR(entry)) return PTR_ERR(entry); list_del(&entry->list); return entry->rmid; } static void add_rmid_to_limbo(struct rmid_entry *entry) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); struct rdt_mon_domain *d; u32 idx; lockdep_assert_held(&rdtgroup_mutex); /* Walking r->domains, ensure it can't race with cpuhp */ lockdep_assert_cpus_held(); idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid); entry->busy = 0; list_for_each_entry(d, &r->mon_domains, hdr.list) { /* * For the first limbo RMID in the domain, * setup up the limbo worker. */ if (!has_busy_rmid(d)) cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL, RESCTRL_PICK_ANY_CPU); set_bit(idx, d->rmid_busy_llc); entry->busy++; } rmid_limbo_count++; if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) closid_num_dirty_rmid[entry->closid]++; } void free_rmid(u32 closid, u32 rmid) { u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); struct rmid_entry *entry; lockdep_assert_held(&rdtgroup_mutex); /* * Do not allow the default rmid to be free'd. Comparing by index * allows architectures that ignore the closid parameter to avoid an * unnecessary check. */ if (!resctrl_arch_mon_capable() || idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, RESCTRL_RESERVED_RMID)) return; entry = __rmid_entry(idx); if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) add_rmid_to_limbo(entry); else list_add_tail(&entry->list, &rmid_free_lru); } static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid, u32 rmid, enum resctrl_event_id evtid) { u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); struct mbm_state *state; if (!resctrl_is_mbm_event(evtid)) return NULL; state = d->mbm_states[MBM_STATE_IDX(evtid)]; return state ? &state[idx] : NULL; } /* * mbm_cntr_get() - Return the counter ID for the matching @evtid and @rdtgrp. * * Return: * Valid counter ID on success, or -ENOENT on failure. */ static int mbm_cntr_get(struct rdt_resource *r, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, enum resctrl_event_id evtid) { int cntr_id; if (!r->mon.mbm_cntr_assignable) return -ENOENT; if (!resctrl_is_mbm_event(evtid)) return -ENOENT; for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) { if (d->cntr_cfg[cntr_id].rdtgrp == rdtgrp && d->cntr_cfg[cntr_id].evtid == evtid) return cntr_id; } return -ENOENT; } /* * mbm_cntr_alloc() - Initialize and return a new counter ID in the domain @d. * Caller must ensure that the specified event is not assigned already. * * Return: * Valid counter ID on success, or -ENOSPC on failure. */ static int mbm_cntr_alloc(struct rdt_resource *r, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, enum resctrl_event_id evtid) { int cntr_id; for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) { if (!d->cntr_cfg[cntr_id].rdtgrp) { d->cntr_cfg[cntr_id].rdtgrp = rdtgrp; d->cntr_cfg[cntr_id].evtid = evtid; return cntr_id; } } return -ENOSPC; } /* * mbm_cntr_free() - Clear the counter ID configuration details in the domain @d. */ static void mbm_cntr_free(struct rdt_mon_domain *d, int cntr_id) { memset(&d->cntr_cfg[cntr_id], 0, sizeof(*d->cntr_cfg)); } static int __mon_event_count(struct rdtgroup *rdtgrp, struct rmid_read *rr) { int cpu = smp_processor_id(); u32 closid = rdtgrp->closid; u32 rmid = rdtgrp->mon.rmid; struct rdt_mon_domain *d; int cntr_id = -ENOENT; struct mbm_state *m; int err, ret; u64 tval = 0; if (rr->is_mbm_cntr) { cntr_id = mbm_cntr_get(rr->r, rr->d, rdtgrp, rr->evtid); if (cntr_id < 0) { rr->err = -ENOENT; return -EINVAL; } } if (rr->first) { if (rr->is_mbm_cntr) resctrl_arch_reset_cntr(rr->r, rr->d, closid, rmid, cntr_id, rr->evtid); else resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid); m = get_mbm_state(rr->d, closid, rmid, rr->evtid); if (m) memset(m, 0, sizeof(struct mbm_state)); return 0; } if (rr->d) { /* Reading a single domain, must be on a CPU in that domain. */ if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask)) return -EINVAL; if (rr->is_mbm_cntr) rr->err = resctrl_arch_cntr_read(rr->r, rr->d, closid, rmid, cntr_id, rr->evtid, &tval); else rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid, rr->evtid, &tval, rr->arch_mon_ctx); if (rr->err) return rr->err; rr->val += tval; return 0; } /* Summing domains that share a cache, must be on a CPU for that cache. */ if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map)) return -EINVAL; /* * Legacy files must report the sum of an event across all * domains that share the same L3 cache instance. * Report success if a read from any domain succeeds, -EINVAL * (translated to "Unavailable" for user space) if reading from * all domains fail for any reason. */ ret = -EINVAL; list_for_each_entry(d, &rr->r->mon_domains, hdr.list) { if (d->ci_id != rr->ci->id) continue; if (rr->is_mbm_cntr) err = resctrl_arch_cntr_read(rr->r, d, closid, rmid, cntr_id, rr->evtid, &tval); else err = resctrl_arch_rmid_read(rr->r, d, closid, rmid, rr->evtid, &tval, rr->arch_mon_ctx); if (!err) { rr->val += tval; ret = 0; } } if (ret) rr->err = ret; return ret; } /* * mbm_bw_count() - Update bw count from values previously read by * __mon_event_count(). * @rdtgrp: resctrl group associated with the CLOSID and RMID to identify * the cached mbm_state. * @rr: The struct rmid_read populated by __mon_event_count(). * * Supporting function to calculate the memory bandwidth * and delta bandwidth in MBps. The chunks value previously read by * __mon_event_count() is compared with the chunks value from the previous * invocation. This must be called once per second to maintain values in MBps. */ static void mbm_bw_count(struct rdtgroup *rdtgrp, struct rmid_read *rr) { u64 cur_bw, bytes, cur_bytes; u32 closid = rdtgrp->closid; u32 rmid = rdtgrp->mon.rmid; struct mbm_state *m; m = get_mbm_state(rr->d, closid, rmid, rr->evtid); if (WARN_ON_ONCE(!m)) return; cur_bytes = rr->val; bytes = cur_bytes - m->prev_bw_bytes; m->prev_bw_bytes = cur_bytes; cur_bw = bytes / SZ_1M; m->prev_bw = cur_bw; } /* * This is scheduled by mon_event_read() to read the CQM/MBM counters * on a domain. */ void mon_event_count(void *info) { struct rdtgroup *rdtgrp, *entry; struct rmid_read *rr = info; struct list_head *head; int ret; rdtgrp = rr->rgrp; ret = __mon_event_count(rdtgrp, rr); /* * For Ctrl groups read data from child monitor groups and * add them together. Count events which are read successfully. * Discard the rmid_read's reporting errors. */ head = &rdtgrp->mon.crdtgrp_list; if (rdtgrp->type == RDTCTRL_GROUP) { list_for_each_entry(entry, head, mon.crdtgrp_list) { if (__mon_event_count(entry, rr) == 0) ret = 0; } } /* * __mon_event_count() calls for newly created monitor groups may * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. * Discard error if any of the monitor event reads succeeded. */ if (ret == 0) rr->err = 0; } static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu, struct rdt_resource *r) { struct rdt_ctrl_domain *d; lockdep_assert_cpus_held(); list_for_each_entry(d, &r->ctrl_domains, hdr.list) { /* Find the domain that contains this CPU */ if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) return d; } return NULL; } /* * Feedback loop for MBA software controller (mba_sc) * * mba_sc is a feedback loop where we periodically read MBM counters and * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so * that: * * current bandwidth(cur_bw) < user specified bandwidth(user_bw) * * This uses the MBM counters to measure the bandwidth and MBA throttle * MSRs to control the bandwidth for a particular rdtgrp. It builds on the * fact that resctrl rdtgroups have both monitoring and control. * * The frequency of the checks is 1s and we just tag along the MBM overflow * timer. Having 1s interval makes the calculation of bandwidth simpler. * * Although MBA's goal is to restrict the bandwidth to a maximum, there may * be a need to increase the bandwidth to avoid unnecessarily restricting * the L2 <-> L3 traffic. * * Since MBA controls the L2 external bandwidth where as MBM measures the * L3 external bandwidth the following sequence could lead to such a * situation. * * Consider an rdtgroup which had high L3 <-> memory traffic in initial * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but * after some time rdtgroup has mostly L2 <-> L3 traffic. * * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its * throttle MSRs already have low percentage values. To avoid * unnecessarily restricting such rdtgroups, we also increase the bandwidth. */ static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm) { u32 closid, rmid, cur_msr_val, new_msr_val; struct mbm_state *pmbm_data, *cmbm_data; struct rdt_ctrl_domain *dom_mba; enum resctrl_event_id evt_id; struct rdt_resource *r_mba; struct list_head *head; struct rdtgroup *entry; u32 cur_bw, user_bw; r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA); evt_id = rgrp->mba_mbps_event; closid = rgrp->closid; rmid = rgrp->mon.rmid; pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id); if (WARN_ON_ONCE(!pmbm_data)) return; dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba); if (!dom_mba) { pr_warn_once("Failure to get domain for MBA update\n"); return; } cur_bw = pmbm_data->prev_bw; user_bw = dom_mba->mbps_val[closid]; /* MBA resource doesn't support CDP */ cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); /* * For Ctrl groups read data from child monitor groups. */ head = &rgrp->mon.crdtgrp_list; list_for_each_entry(entry, head, mon.crdtgrp_list) { cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id); if (WARN_ON_ONCE(!cmbm_data)) return; cur_bw += cmbm_data->prev_bw; } /* * Scale up/down the bandwidth linearly for the ctrl group. The * bandwidth step is the bandwidth granularity specified by the * hardware. * Always increase throttling if current bandwidth is above the * target set by user. * But avoid thrashing up and down on every poll by checking * whether a decrease in throttling is likely to push the group * back over target. E.g. if currently throttling to 30% of bandwidth * on a system with 10% granularity steps, check whether moving to * 40% would go past the limit by multiplying current bandwidth by * "(30 + 10) / 30". */ if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { new_msr_val = cur_msr_val - r_mba->membw.bw_gran; } else if (cur_msr_val < MAX_MBA_BW && (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) { new_msr_val = cur_msr_val + r_mba->membw.bw_gran; } else { return; } resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); } static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, enum resctrl_event_id evtid) { struct rmid_read rr = {0}; rr.r = r; rr.d = d; rr.evtid = evtid; if (resctrl_arch_mbm_cntr_assign_enabled(r)) { rr.is_mbm_cntr = true; } else { rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid); if (IS_ERR(rr.arch_mon_ctx)) { pr_warn_ratelimited("Failed to allocate monitor context: %ld", PTR_ERR(rr.arch_mon_ctx)); return; } } __mon_event_count(rdtgrp, &rr); /* * If the software controller is enabled, compute the * bandwidth for this event id. */ if (is_mba_sc(NULL)) mbm_bw_count(rdtgrp, &rr); if (rr.arch_mon_ctx) resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx); } static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp) { /* * This is protected from concurrent reads from user as both * the user and overflow handler hold the global mutex. */ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_TOTAL_EVENT_ID); if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_LOCAL_EVENT_ID); } /* * Handler to scan the limbo list and move the RMIDs * to free list whose occupancy < threshold_occupancy. */ void cqm_handle_limbo(struct work_struct *work) { unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); struct rdt_mon_domain *d; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); d = container_of(work, struct rdt_mon_domain, cqm_limbo.work); __check_limbo(d, false); if (has_busy_rmid(d)) { d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, RESCTRL_PICK_ANY_CPU); schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo, delay); } mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); } /** * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this * domain. * @dom: The domain the limbo handler should run for. * @delay_ms: How far in the future the handler should run. * @exclude_cpu: Which CPU the handler should not run on, * RESCTRL_PICK_ANY_CPU to pick any CPU. */ void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, int exclude_cpu) { unsigned long delay = msecs_to_jiffies(delay_ms); int cpu; cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); dom->cqm_work_cpu = cpu; if (cpu < nr_cpu_ids) schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); } void mbm_handle_overflow(struct work_struct *work) { unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); struct rdtgroup *prgrp, *crgrp; struct rdt_mon_domain *d; struct list_head *head; struct rdt_resource *r; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); /* * If the filesystem has been unmounted this work no longer needs to * run. */ if (!resctrl_mounted || !resctrl_arch_mon_capable()) goto out_unlock; r = resctrl_arch_get_resource(RDT_RESOURCE_L3); d = container_of(work, struct rdt_mon_domain, mbm_over.work); list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { mbm_update(r, d, prgrp); head = &prgrp->mon.crdtgrp_list; list_for_each_entry(crgrp, head, mon.crdtgrp_list) mbm_update(r, d, crgrp); if (is_mba_sc(NULL)) update_mba_bw(prgrp, d); } /* * Re-check for housekeeping CPUs. This allows the overflow handler to * move off a nohz_full CPU quickly. */ d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, RESCTRL_PICK_ANY_CPU); schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay); out_unlock: mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); } /** * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this * domain. * @dom: The domain the overflow handler should run for. * @delay_ms: How far in the future the handler should run. * @exclude_cpu: Which CPU the handler should not run on, * RESCTRL_PICK_ANY_CPU to pick any CPU. */ void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, int exclude_cpu) { unsigned long delay = msecs_to_jiffies(delay_ms); int cpu; /* * When a domain comes online there is no guarantee the filesystem is * mounted. If not, there is no need to catch counter overflow. */ if (!resctrl_mounted || !resctrl_arch_mon_capable()) return; cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); dom->mbm_work_cpu = cpu; if (cpu < nr_cpu_ids) schedule_delayed_work_on(cpu, &dom->mbm_over, delay); } static int dom_data_init(struct rdt_resource *r) { u32 idx_limit = resctrl_arch_system_num_rmid_idx(); u32 num_closid = resctrl_arch_get_num_closid(r); struct rmid_entry *entry = NULL; int err = 0, i; u32 idx; mutex_lock(&rdtgroup_mutex); if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { u32 *tmp; /* * If the architecture hasn't provided a sanitised value here, * this may result in larger arrays than necessary. Resctrl will * use a smaller system wide value based on the resources in * use. */ tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL); if (!tmp) { err = -ENOMEM; goto out_unlock; } closid_num_dirty_rmid = tmp; } rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL); if (!rmid_ptrs) { if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { kfree(closid_num_dirty_rmid); closid_num_dirty_rmid = NULL; } err = -ENOMEM; goto out_unlock; } for (i = 0; i < idx_limit; i++) { entry = &rmid_ptrs[i]; INIT_LIST_HEAD(&entry->list); resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid); list_add_tail(&entry->list, &rmid_free_lru); } /* * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and * are always allocated. These are used for the rdtgroup_default * control group, which will be setup later in resctrl_init(). */ idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, RESCTRL_RESERVED_RMID); entry = __rmid_entry(idx); list_del(&entry->list); out_unlock: mutex_unlock(&rdtgroup_mutex); return err; } static void dom_data_exit(struct rdt_resource *r) { mutex_lock(&rdtgroup_mutex); if (!r->mon_capable) goto out_unlock; if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { kfree(closid_num_dirty_rmid); closid_num_dirty_rmid = NULL; } kfree(rmid_ptrs); rmid_ptrs = NULL; out_unlock: mutex_unlock(&rdtgroup_mutex); } /* * All available events. Architecture code marks the ones that * are supported by a system using resctrl_enable_mon_event() * to set .enabled. */ struct mon_evt mon_event_all[QOS_NUM_EVENTS] = { [QOS_L3_OCCUP_EVENT_ID] = { .name = "llc_occupancy", .evtid = QOS_L3_OCCUP_EVENT_ID, .rid = RDT_RESOURCE_L3, }, [QOS_L3_MBM_TOTAL_EVENT_ID] = { .name = "mbm_total_bytes", .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, .rid = RDT_RESOURCE_L3, }, [QOS_L3_MBM_LOCAL_EVENT_ID] = { .name = "mbm_local_bytes", .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, .rid = RDT_RESOURCE_L3, }, }; void resctrl_enable_mon_event(enum resctrl_event_id eventid) { if (WARN_ON_ONCE(eventid < QOS_FIRST_EVENT || eventid >= QOS_NUM_EVENTS)) return; if (mon_event_all[eventid].enabled) { pr_warn("Duplicate enable for event %d\n", eventid); return; } mon_event_all[eventid].enabled = true; } bool resctrl_is_mon_event_enabled(enum resctrl_event_id eventid) { return eventid >= QOS_FIRST_EVENT && eventid < QOS_NUM_EVENTS && mon_event_all[eventid].enabled; } u32 resctrl_get_mon_evt_cfg(enum resctrl_event_id evtid) { return mon_event_all[evtid].evt_cfg; } /** * struct mbm_transaction - Memory transaction an MBM event can be configured with. * @name: Name of memory transaction (read, write ...). * @val: The bit (eg. READS_TO_LOCAL_MEM or READS_TO_REMOTE_MEM) used to * represent the memory transaction within an event's configuration. */ struct mbm_transaction { char name[32]; u32 val; }; /* Decoded values for each type of memory transaction. */ static struct mbm_transaction mbm_transactions[NUM_MBM_TRANSACTIONS] = { {"local_reads", READS_TO_LOCAL_MEM}, {"remote_reads", READS_TO_REMOTE_MEM}, {"local_non_temporal_writes", NON_TEMP_WRITE_TO_LOCAL_MEM}, {"remote_non_temporal_writes", NON_TEMP_WRITE_TO_REMOTE_MEM}, {"local_reads_slow_memory", READS_TO_LOCAL_S_MEM}, {"remote_reads_slow_memory", READS_TO_REMOTE_S_MEM}, {"dirty_victim_writes_all", DIRTY_VICTIMS_TO_ALL_MEM}, }; int event_filter_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct mon_evt *mevt = rdt_kn_parent_priv(of->kn); struct rdt_resource *r; bool sep = false; int ret = 0, i; mutex_lock(&rdtgroup_mutex); rdt_last_cmd_clear(); r = resctrl_arch_get_resource(mevt->rid); if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); ret = -EINVAL; goto out_unlock; } for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) { if (mevt->evt_cfg & mbm_transactions[i].val) { if (sep) seq_putc(seq, ','); seq_printf(seq, "%s", mbm_transactions[i].name); sep = true; } } seq_putc(seq, '\n'); out_unlock: mutex_unlock(&rdtgroup_mutex); return ret; } int resctrl_mbm_assign_on_mkdir_show(struct kernfs_open_file *of, struct seq_file *s, void *v) { struct rdt_resource *r = rdt_kn_parent_priv(of->kn); int ret = 0; mutex_lock(&rdtgroup_mutex); rdt_last_cmd_clear(); if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); ret = -EINVAL; goto out_unlock; } seq_printf(s, "%u\n", r->mon.mbm_assign_on_mkdir); out_unlock: mutex_unlock(&rdtgroup_mutex); return ret; } ssize_t resctrl_mbm_assign_on_mkdir_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct rdt_resource *r = rdt_kn_parent_priv(of->kn); bool value; int ret; ret = kstrtobool(buf, &value); if (ret) return ret; mutex_lock(&rdtgroup_mutex); rdt_last_cmd_clear(); if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); ret = -EINVAL; goto out_unlock; } r->mon.mbm_assign_on_mkdir = value; out_unlock: mutex_unlock(&rdtgroup_mutex); return ret ?: nbytes; } /* * mbm_cntr_free_all() - Clear all the counter ID configuration details in the * domain @d. Called when mbm_assign_mode is changed. */ static void mbm_cntr_free_all(struct rdt_resource *r, struct rdt_mon_domain *d) { memset(d->cntr_cfg, 0, sizeof(*d->cntr_cfg) * r->mon.num_mbm_cntrs); } /* * resctrl_reset_rmid_all() - Reset all non-architecture states for all the * supported RMIDs. */ static void resctrl_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d) { u32 idx_limit = resctrl_arch_system_num_rmid_idx(); enum resctrl_event_id evt; int idx; for_each_mbm_event_id(evt) { if (!resctrl_is_mon_event_enabled(evt)) continue; idx = MBM_STATE_IDX(evt); memset(d->mbm_states[idx], 0, sizeof(*d->mbm_states[0]) * idx_limit); } } /* * rdtgroup_assign_cntr() - Assign/unassign the counter ID for the event, RMID * pair in the domain. * * Assign the counter if @assign is true else unassign the counter. Reset the * associated non-architectural state. */ static void rdtgroup_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d, enum resctrl_event_id evtid, u32 rmid, u32 closid, u32 cntr_id, bool assign) { struct mbm_state *m; resctrl_arch_config_cntr(r, d, evtid, rmid, closid, cntr_id, assign); m = get_mbm_state(d, closid, rmid, evtid); if (m) memset(m, 0, sizeof(*m)); } /* * rdtgroup_alloc_assign_cntr() - Allocate a counter ID and assign it to the event * pointed to by @mevt and the resctrl group @rdtgrp within the domain @d. * * Return: * 0 on success, < 0 on failure. */ static int rdtgroup_alloc_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, struct mon_evt *mevt) { int cntr_id; /* No action required if the counter is assigned already. */ cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid); if (cntr_id >= 0) return 0; cntr_id = mbm_cntr_alloc(r, d, rdtgrp, mevt->evtid); if (cntr_id < 0) { rdt_last_cmd_printf("Failed to allocate counter for %s in domain %d\n", mevt->name, d->hdr.id); return cntr_id; } rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, true); return 0; } /* * rdtgroup_assign_cntr_event() - Assign a hardware counter for the event in * @mevt to the resctrl group @rdtgrp. Assign counters to all domains if @d is * NULL; otherwise, assign the counter to the specified domain @d. * * If all counters in a domain are already in use, rdtgroup_alloc_assign_cntr() * will fail. The assignment process will abort at the first failure encountered * during domain traversal, which may result in the event being only partially * assigned. * * Return: * 0 on success, < 0 on failure. */ static int rdtgroup_assign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, struct mon_evt *mevt) { struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid); int ret = 0; if (!d) { list_for_each_entry(d, &r->mon_domains, hdr.list) { ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt); if (ret) return ret; } } else { ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt); } return ret; } /* * rdtgroup_assign_cntrs() - Assign counters to MBM events. Called when * a new group is created. * * Each group can accommodate two counters per domain: one for the total * event and one for the local event. Assignments may fail due to the limited * number of counters. However, it is not necessary to fail the group creation * and thus no failure is returned. Users have the option to modify the * counter assignments after the group has been created. */ void rdtgroup_assign_cntrs(struct rdtgroup *rdtgrp) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r) || !r->mon.mbm_assign_on_mkdir) return; if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) rdtgroup_assign_cntr_event(NULL, rdtgrp, &mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]); if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) rdtgroup_assign_cntr_event(NULL, rdtgrp, &mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]); } /* * rdtgroup_free_unassign_cntr() - Unassign and reset the counter ID configuration * for the event pointed to by @mevt within the domain @d and resctrl group @rdtgrp. */ static void rdtgroup_free_unassign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, struct mon_evt *mevt) { int cntr_id; cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid); /* If there is no cntr_id assigned, nothing to do */ if (cntr_id < 0) return; rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, false); mbm_cntr_free(d, cntr_id); } /* * rdtgroup_unassign_cntr_event() - Unassign a hardware counter associated with * the event structure @mevt from the domain @d and the group @rdtgrp. Unassign * the counters from all the domains if @d is NULL else unassign from @d. */ static void rdtgroup_unassign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, struct mon_evt *mevt) { struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid); if (!d) { list_for_each_entry(d, &r->mon_domains, hdr.list) rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt); } else { rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt); } } /* * rdtgroup_unassign_cntrs() - Unassign the counters associated with MBM events. * Called when a group is deleted. */ void rdtgroup_unassign_cntrs(struct rdtgroup *rdtgrp) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r)) return; if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) rdtgroup_unassign_cntr_event(NULL, rdtgrp, &mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]); if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) rdtgroup_unassign_cntr_event(NULL, rdtgrp, &mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]); } static int resctrl_parse_mem_transactions(char *tok, u32 *val) { u32 temp_val = 0; char *evt_str; bool found; int i; next_config: if (!tok || tok[0] == '\0') { *val = temp_val; return 0; } /* Start processing the strings for each memory transaction type */ evt_str = strim(strsep(&tok, ",")); found = false; for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) { if (!strcmp(mbm_transactions[i].name, evt_str)) { temp_val |= mbm_transactions[i].val; found = true; break; } } if (!found) { rdt_last_cmd_printf("Invalid memory transaction type %s\n", evt_str); return -EINVAL; } goto next_config; } /* * rdtgroup_update_cntr_event - Update the counter assignments for the event * in a group. * @r: Resource to which update needs to be done. * @rdtgrp: Resctrl group. * @evtid: MBM monitor event. */ static void rdtgroup_update_cntr_event(struct rdt_resource *r, struct rdtgroup *rdtgrp, enum resctrl_event_id evtid) { struct rdt_mon_domain *d; int cntr_id; list_for_each_entry(d, &r->mon_domains, hdr.list) { cntr_id = mbm_cntr_get(r, d, rdtgrp, evtid); if (cntr_id >= 0) rdtgroup_assign_cntr(r, d, evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, true); } } /* * resctrl_update_cntr_allrdtgrp - Update the counter assignments for the event * for all the groups. * @mevt MBM Monitor event. */ static void resctrl_update_cntr_allrdtgrp(struct mon_evt *mevt) { struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid); struct rdtgroup *prgrp, *crgrp; /* * Find all the groups where the event is assigned and update the * configuration of existing assignments. */ list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { rdtgroup_update_cntr_event(r, prgrp, mevt->evtid); list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) rdtgroup_update_cntr_event(r, crgrp, mevt->evtid); } } ssize_t event_filter_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mon_evt *mevt = rdt_kn_parent_priv(of->kn); struct rdt_resource *r; u32 evt_cfg = 0; int ret = 0; /* Valid input requires a trailing newline */ if (nbytes == 0 || buf[nbytes - 1] != '\n') return -EINVAL; buf[nbytes - 1] = '\0'; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); rdt_last_cmd_clear(); r = resctrl_arch_get_resource(mevt->rid); if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); ret = -EINVAL; goto out_unlock; } ret = resctrl_parse_mem_transactions(buf, &evt_cfg); if (!ret && mevt->evt_cfg != evt_cfg) { mevt->evt_cfg = evt_cfg; resctrl_update_cntr_allrdtgrp(mevt); } out_unlock: mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); return ret ?: nbytes; } int resctrl_mbm_assign_mode_show(struct kernfs_open_file *of, struct seq_file *s, void *v) { struct rdt_resource *r = rdt_kn_parent_priv(of->kn); bool enabled; mutex_lock(&rdtgroup_mutex); enabled = resctrl_arch_mbm_cntr_assign_enabled(r); if (r->mon.mbm_cntr_assignable) { if (enabled) seq_puts(s, "[mbm_event]\n"); else seq_puts(s, "[default]\n"); if (!IS_ENABLED(CONFIG_RESCTRL_ASSIGN_FIXED)) { if (enabled) seq_puts(s, "default\n"); else seq_puts(s, "mbm_event\n"); } } else { seq_puts(s, "[default]\n"); } mutex_unlock(&rdtgroup_mutex); return 0; } ssize_t resctrl_mbm_assign_mode_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct rdt_resource *r = rdt_kn_parent_priv(of->kn); struct rdt_mon_domain *d; int ret = 0; bool enable; /* Valid input requires a trailing newline */ if (nbytes == 0 || buf[nbytes - 1] != '\n') return -EINVAL; buf[nbytes - 1] = '\0'; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); rdt_last_cmd_clear(); if (!strcmp(buf, "default")) { enable = 0; } else if (!strcmp(buf, "mbm_event")) { if (r->mon.mbm_cntr_assignable) { enable = 1; } else { ret = -EINVAL; rdt_last_cmd_puts("mbm_event mode is not supported\n"); goto out_unlock; } } else { ret = -EINVAL; rdt_last_cmd_puts("Unsupported assign mode\n"); goto out_unlock; } if (enable != resctrl_arch_mbm_cntr_assign_enabled(r)) { ret = resctrl_arch_mbm_cntr_assign_set(r, enable); if (ret) goto out_unlock; /* Update the visibility of BMEC related files */ resctrl_bmec_files_show(r, NULL, !enable); /* * Initialize the default memory transaction values for * total and local events. */ if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask; if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask & (READS_TO_LOCAL_MEM | READS_TO_LOCAL_S_MEM | NON_TEMP_WRITE_TO_LOCAL_MEM); /* Enable auto assignment when switching to "mbm_event" mode */ if (enable) r->mon.mbm_assign_on_mkdir = true; /* * Reset all the non-achitectural RMID state and assignable counters. */ list_for_each_entry(d, &r->mon_domains, hdr.list) { mbm_cntr_free_all(r, d); resctrl_reset_rmid_all(r, d); } } out_unlock: mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); return ret ?: nbytes; } int resctrl_num_mbm_cntrs_show(struct kernfs_open_file *of, struct seq_file *s, void *v) { struct rdt_resource *r = rdt_kn_parent_priv(of->kn); struct rdt_mon_domain *dom; bool sep = false; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); list_for_each_entry(dom, &r->mon_domains, hdr.list) { if (sep) seq_putc(s, ';'); seq_printf(s, "%d=%d", dom->hdr.id, r->mon.num_mbm_cntrs); sep = true; } seq_putc(s, '\n'); mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); return 0; } int resctrl_available_mbm_cntrs_show(struct kernfs_open_file *of, struct seq_file *s, void *v) { struct rdt_resource *r = rdt_kn_parent_priv(of->kn); struct rdt_mon_domain *dom; bool sep = false; u32 cntrs, i; int ret = 0; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); rdt_last_cmd_clear(); if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); ret = -EINVAL; goto out_unlock; } list_for_each_entry(dom, &r->mon_domains, hdr.list) { if (sep) seq_putc(s, ';'); cntrs = 0; for (i = 0; i < r->mon.num_mbm_cntrs; i++) { if (!dom->cntr_cfg[i].rdtgrp) cntrs++; } seq_printf(s, "%d=%u", dom->hdr.id, cntrs); sep = true; } seq_putc(s, '\n'); out_unlock: mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); return ret; } int mbm_L3_assignments_show(struct kernfs_open_file *of, struct seq_file *s, void *v) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); struct rdt_mon_domain *d; struct rdtgroup *rdtgrp; struct mon_evt *mevt; int ret = 0; bool sep; rdtgrp = rdtgroup_kn_lock_live(of->kn); if (!rdtgrp) { ret = -ENOENT; goto out_unlock; } rdt_last_cmd_clear(); if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); ret = -EINVAL; goto out_unlock; } for_each_mon_event(mevt) { if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid)) continue; sep = false; seq_printf(s, "%s:", mevt->name); list_for_each_entry(d, &r->mon_domains, hdr.list) { if (sep) seq_putc(s, ';'); if (mbm_cntr_get(r, d, rdtgrp, mevt->evtid) < 0) seq_printf(s, "%d=_", d->hdr.id); else seq_printf(s, "%d=e", d->hdr.id); sep = true; } seq_putc(s, '\n'); } out_unlock: rdtgroup_kn_unlock(of->kn); return ret; } /* * mbm_get_mon_event_by_name() - Return the mon_evt entry for the matching * event name. */ static struct mon_evt *mbm_get_mon_event_by_name(struct rdt_resource *r, char *name) { struct mon_evt *mevt; for_each_mon_event(mevt) { if (mevt->rid == r->rid && mevt->enabled && resctrl_is_mbm_event(mevt->evtid) && !strcmp(mevt->name, name)) return mevt; } return NULL; } static int rdtgroup_modify_assign_state(char *assign, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, struct mon_evt *mevt) { int ret = 0; if (!assign || strlen(assign) != 1) return -EINVAL; switch (*assign) { case 'e': ret = rdtgroup_assign_cntr_event(d, rdtgrp, mevt); break; case '_': rdtgroup_unassign_cntr_event(d, rdtgrp, mevt); break; default: ret = -EINVAL; break; } return ret; } static int resctrl_parse_mbm_assignment(struct rdt_resource *r, struct rdtgroup *rdtgrp, char *event, char *tok) { struct rdt_mon_domain *d; unsigned long dom_id = 0; char *dom_str, *id_str; struct mon_evt *mevt; int ret; mevt = mbm_get_mon_event_by_name(r, event); if (!mevt) { rdt_last_cmd_printf("Invalid event %s\n", event); return -ENOENT; } next: if (!tok || tok[0] == '\0') return 0; /* Start processing the strings for each domain */ dom_str = strim(strsep(&tok, ";")); id_str = strsep(&dom_str, "="); /* Check for domain id '*' which means all domains */ if (id_str && *id_str == '*') { ret = rdtgroup_modify_assign_state(dom_str, NULL, rdtgrp, mevt); if (ret) rdt_last_cmd_printf("Assign operation '%s:*=%s' failed\n", event, dom_str); return ret; } else if (!id_str || kstrtoul(id_str, 10, &dom_id)) { rdt_last_cmd_puts("Missing domain id\n"); return -EINVAL; } /* Verify if the dom_id is valid */ list_for_each_entry(d, &r->mon_domains, hdr.list) { if (d->hdr.id == dom_id) { ret = rdtgroup_modify_assign_state(dom_str, d, rdtgrp, mevt); if (ret) { rdt_last_cmd_printf("Assign operation '%s:%ld=%s' failed\n", event, dom_id, dom_str); return ret; } goto next; } } rdt_last_cmd_printf("Invalid domain id %ld\n", dom_id); return -EINVAL; } ssize_t mbm_L3_assignments_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); struct rdtgroup *rdtgrp; char *token, *event; int ret = 0; /* Valid input requires a trailing newline */ if (nbytes == 0 || buf[nbytes - 1] != '\n') return -EINVAL; buf[nbytes - 1] = '\0'; rdtgrp = rdtgroup_kn_lock_live(of->kn); if (!rdtgrp) { rdtgroup_kn_unlock(of->kn); return -ENOENT; } rdt_last_cmd_clear(); if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { rdt_last_cmd_puts("mbm_event mode is not enabled\n"); rdtgroup_kn_unlock(of->kn); return -EINVAL; } while ((token = strsep(&buf, "\n")) != NULL) { /* * The write command follows the following format: * ":=" * Extract the event name first. */ event = strsep(&token, ":"); ret = resctrl_parse_mbm_assignment(r, rdtgrp, event, token); if (ret) break; } rdtgroup_kn_unlock(of->kn); return ret ?: nbytes; } /** * resctrl_mon_resource_init() - Initialise global monitoring structures. * * Allocate and initialise global monitor resources that do not belong to a * specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists. * Called once during boot after the struct rdt_resource's have been configured * but before the filesystem is mounted. * Resctrl's cpuhp callbacks may be called before this point to bring a domain * online. * * Returns 0 for success, or -ENOMEM. */ int resctrl_mon_resource_init(void) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); int ret; if (!r->mon_capable) return 0; ret = dom_data_init(r); if (ret) return ret; if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) { mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].configurable = true; resctrl_file_fflags_init("mbm_total_bytes_config", RFTYPE_MON_INFO | RFTYPE_RES_CACHE); } if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) { mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].configurable = true; resctrl_file_fflags_init("mbm_local_bytes_config", RFTYPE_MON_INFO | RFTYPE_RES_CACHE); } if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID; else if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID; if (r->mon.mbm_cntr_assignable) { if (!resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) resctrl_enable_mon_event(QOS_L3_MBM_TOTAL_EVENT_ID); if (!resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) resctrl_enable_mon_event(QOS_L3_MBM_LOCAL_EVENT_ID); mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask; mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask & (READS_TO_LOCAL_MEM | READS_TO_LOCAL_S_MEM | NON_TEMP_WRITE_TO_LOCAL_MEM); r->mon.mbm_assign_on_mkdir = true; resctrl_file_fflags_init("num_mbm_cntrs", RFTYPE_MON_INFO | RFTYPE_RES_CACHE); resctrl_file_fflags_init("available_mbm_cntrs", RFTYPE_MON_INFO | RFTYPE_RES_CACHE); resctrl_file_fflags_init("event_filter", RFTYPE_ASSIGN_CONFIG); resctrl_file_fflags_init("mbm_assign_on_mkdir", RFTYPE_MON_INFO | RFTYPE_RES_CACHE); resctrl_file_fflags_init("mbm_L3_assignments", RFTYPE_MON_BASE); } return 0; } void resctrl_mon_resource_exit(void) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); dom_data_exit(r); }