/* Conexant 22702 DVB OFDM demodulator driver based on: Alps TDMB7 DVB OFDM demodulator driver Copyright (C) 2001-2002 Convergence Integrated Media GmbH Holger Waechtler Copyright (C) 2004 Steven Toth This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include "cx22702.h" struct cx22702_state { struct i2c_adapter *i2c; /* configuration settings */ const struct cx22702_config *config; struct dvb_frontend frontend; /* previous uncorrected block counter */ u8 prevUCBlocks; }; static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Enable verbose debug messages"); #define dprintk if (debug) printk /* Register values to initialise the demod */ static const u8 init_tab[] = { 0x00, 0x00, /* Stop acquisition */ 0x0B, 0x06, 0x09, 0x01, 0x0D, 0x41, 0x16, 0x32, 0x20, 0x0A, 0x21, 0x17, 0x24, 0x3e, 0x26, 0xff, 0x27, 0x10, 0x28, 0x00, 0x29, 0x00, 0x2a, 0x10, 0x2b, 0x00, 0x2c, 0x10, 0x2d, 0x00, 0x48, 0xd4, 0x49, 0x56, 0x6b, 0x1e, 0xc8, 0x02, 0xf9, 0x00, 0xfa, 0x00, 0xfb, 0x00, 0xfc, 0x00, 0xfd, 0x00, }; static int cx22702_writereg(struct cx22702_state *state, u8 reg, u8 data) { int ret; u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; ret = i2c_transfer(state->i2c, &msg, 1); if (unlikely(ret != 1)) { printk(KERN_ERR "%s: error (reg == 0x%02x, val == 0x%02x, ret == %i)\n", __func__, reg, data, ret); return -1; } return 0; } static u8 cx22702_readreg(struct cx22702_state *state, u8 reg) { int ret; u8 data; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = ®, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = &data, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (unlikely(ret != 2)) { printk(KERN_ERR "%s: error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret); return 0; } return data; } static int cx22702_set_inversion(struct cx22702_state *state, int inversion) { u8 val; val = cx22702_readreg(state, 0x0C); switch (inversion) { case INVERSION_AUTO: return -EOPNOTSUPP; case INVERSION_ON: val |= 0x01; break; case INVERSION_OFF: val &= 0xfe; break; default: return -EINVAL; } return cx22702_writereg(state, 0x0C, val); } /* Retrieve the demod settings */ static int cx22702_get_tps(struct cx22702_state *state, struct dtv_frontend_properties *p) { u8 val; /* Make sure the TPS regs are valid */ if (!(cx22702_readreg(state, 0x0A) & 0x20)) return -EAGAIN; val = cx22702_readreg(state, 0x01); switch ((val & 0x18) >> 3) { case 0: p->modulation = QPSK; break; case 1: p->modulation = QAM_16; break; case 2: p->modulation = QAM_64; break; } switch (val & 0x07) { case 0: p->hierarchy = HIERARCHY_NONE; break; case 1: p->hierarchy = HIERARCHY_1; break; case 2: p->hierarchy = HIERARCHY_2; break; case 3: p->hierarchy = HIERARCHY_4; break; } val = cx22702_readreg(state, 0x02); switch ((val & 0x38) >> 3) { case 0: p->code_rate_HP = FEC_1_2; break; case 1: p->code_rate_HP = FEC_2_3; break; case 2: p->code_rate_HP = FEC_3_4; break; case 3: p->code_rate_HP = FEC_5_6; break; case 4: p->code_rate_HP = FEC_7_8; break; } switch (val & 0x07) { case 0: p->code_rate_LP = FEC_1_2; break; case 1: p->code_rate_LP = FEC_2_3; break; case 2: p->code_rate_LP = FEC_3_4; break; case 3: p->code_rate_LP = FEC_5_6; break; case 4: p->code_rate_LP = FEC_7_8; break; } val = cx22702_readreg(state, 0x03); switch ((val & 0x0c) >> 2) { case 0: p->guard_interval = GUARD_INTERVAL_1_32; break; case 1: p->guard_interval = GUARD_INTERVAL_1_16; break; case 2: p->guard_interval = GUARD_INTERVAL_1_8; break; case 3: p->guard_interval = GUARD_INTERVAL_1_4; break; } switch (val & 0x03) { case 0: p->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: p->transmission_mode = TRANSMISSION_MODE_8K; break; } return 0; } static int cx22702_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct cx22702_state *state = fe->demodulator_priv; u8 val; dprintk("%s(%d)\n", __func__, enable); val = cx22702_readreg(state, 0x0D); if (enable) val &= 0xfe; else val |= 0x01; return cx22702_writereg(state, 0x0D, val); } /* Talk to the demod, set the FEC, GUARD, QAM settings etc */ static int cx22702_set_tps(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; u8 val; struct cx22702_state *state = fe->demodulator_priv; if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } /* set inversion */ cx22702_set_inversion(state, p->inversion); /* set bandwidth */ val = cx22702_readreg(state, 0x0C) & 0xcf; switch (p->bandwidth_hz) { case 6000000: val |= 0x20; break; case 7000000: val |= 0x10; break; case 8000000: break; default: dprintk("%s: invalid bandwidth\n", __func__); return -EINVAL; } cx22702_writereg(state, 0x0C, val); p->code_rate_LP = FEC_AUTO; /* temp hack as manual not working */ /* use auto configuration? */ if ((p->hierarchy == HIERARCHY_AUTO) || (p->modulation == QAM_AUTO) || (p->code_rate_HP == FEC_AUTO) || (p->code_rate_LP == FEC_AUTO) || (p->guard_interval == GUARD_INTERVAL_AUTO) || (p->transmission_mode == TRANSMISSION_MODE_AUTO)) { /* TPS Source - use hardware driven values */ cx22702_writereg(state, 0x06, 0x10); cx22702_writereg(state, 0x07, 0x9); cx22702_writereg(state, 0x08, 0xC1); cx22702_writereg(state, 0x0B, cx22702_readreg(state, 0x0B) & 0xfc); cx22702_writereg(state, 0x0C, (cx22702_readreg(state, 0x0C) & 0xBF) | 0x40); cx22702_writereg(state, 0x00, 0x01); /* Begin acquisition */ dprintk("%s: Autodetecting\n", __func__); return 0; } /* manually programmed values */ switch (p->modulation) { /* mask 0x18 */ case QPSK: val = 0x00; break; case QAM_16: val = 0x08; break; case QAM_64: val = 0x10; break; default: dprintk("%s: invalid modulation\n", __func__); return -EINVAL; } switch (p->hierarchy) { /* mask 0x07 */ case HIERARCHY_NONE: break; case HIERARCHY_1: val |= 0x01; break; case HIERARCHY_2: val |= 0x02; break; case HIERARCHY_4: val |= 0x03; break; default: dprintk("%s: invalid hierarchy\n", __func__); return -EINVAL; } cx22702_writereg(state, 0x06, val); switch (p->code_rate_HP) { /* mask 0x38 */ case FEC_NONE: case FEC_1_2: val = 0x00; break; case FEC_2_3: val = 0x08; break; case FEC_3_4: val = 0x10; break; case FEC_5_6: val = 0x18; break; case FEC_7_8: val = 0x20; break; default: dprintk("%s: invalid code_rate_HP\n", __func__); return -EINVAL; } switch (p->code_rate_LP) { /* mask 0x07 */ case FEC_NONE: case FEC_1_2: break; case FEC_2_3: val |= 0x01; break; case FEC_3_4: val |= 0x02; break; case FEC_5_6: val |= 0x03; break; case FEC_7_8: val |= 0x04; break; default: dprintk("%s: invalid code_rate_LP\n", __func__); return -EINVAL; } cx22702_writereg(state, 0x07, val); switch (p->guard_interval) { /* mask 0x0c */ case GUARD_INTERVAL_1_32: val = 0x00; break; case GUARD_INTERVAL_1_16: val = 0x04; break; case GUARD_INTERVAL_1_8: val = 0x08; break; case GUARD_INTERVAL_1_4: val = 0x0c; break; default: dprintk("%s: invalid guard_interval\n", __func__); return -EINVAL; } switch (p->transmission_mode) { /* mask 0x03 */ case TRANSMISSION_MODE_2K: break; case TRANSMISSION_MODE_8K: val |= 0x1; break; default: dprintk("%s: invalid transmission_mode\n", __func__); return -EINVAL; } cx22702_writereg(state, 0x08, val); cx22702_writereg(state, 0x0B, (cx22702_readreg(state, 0x0B) & 0xfc) | 0x02); cx22702_writereg(state, 0x0C, (cx22702_readreg(state, 0x0C) & 0xBF) | 0x40); /* Begin channel acquisition */ cx22702_writereg(state, 0x00, 0x01); return 0; } /* Reset the demod hardware and reset all of the configuration registers to a default state. */ static int cx22702_init(struct dvb_frontend *fe) { int i; struct cx22702_state *state = fe->demodulator_priv; cx22702_writereg(state, 0x00, 0x02); msleep(10); for (i = 0; i < ARRAY_SIZE(init_tab); i += 2) cx22702_writereg(state, init_tab[i], init_tab[i + 1]); cx22702_writereg(state, 0xf8, (state->config->output_mode << 1) & 0x02); cx22702_i2c_gate_ctrl(fe, 0); return 0; } static int cx22702_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct cx22702_state *state = fe->demodulator_priv; u8 reg0A; u8 reg23; *status = 0; reg0A = cx22702_readreg(state, 0x0A); reg23 = cx22702_readreg(state, 0x23); dprintk("%s: status demod=0x%02x agc=0x%02x\n" , __func__, reg0A, reg23); if (reg0A & 0x10) { *status |= FE_HAS_LOCK; *status |= FE_HAS_VITERBI; *status |= FE_HAS_SYNC; } if (reg0A & 0x20) *status |= FE_HAS_CARRIER; if (reg23 < 0xf0) *status |= FE_HAS_SIGNAL; return 0; } static int cx22702_read_ber(struct dvb_frontend *fe, u32 *ber) { struct cx22702_state *state = fe->demodulator_priv; if (cx22702_readreg(state, 0xE4) & 0x02) { /* Realtime statistics */ *ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 7 | (cx22702_readreg(state, 0xDF) & 0x7F); } else { /* Averagtine statistics */ *ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 7 | cx22702_readreg(state, 0xDF); } return 0; } static int cx22702_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { struct cx22702_state *state = fe->demodulator_priv; u8 reg23; /* * Experience suggests that the strength signal register works as * follows: * - In the absence of signal, value is 0xff. * - In the presence of a weak signal, bit 7 is set, not sure what * the lower 7 bits mean. * - In the presence of a strong signal, the register holds a 7-bit * value (bit 7 is cleared), with greater values standing for * weaker signals. */ reg23 = cx22702_readreg(state, 0x23); if (reg23 & 0x80) { *signal_strength = 0; } else { reg23 = ~reg23 & 0x7f; /* Scale to 16 bit */ *signal_strength = (reg23 << 9) | (reg23 << 2) | (reg23 >> 5); } return 0; } static int cx22702_read_snr(struct dvb_frontend *fe, u16 *snr) { struct cx22702_state *state = fe->demodulator_priv; u16 rs_ber; if (cx22702_readreg(state, 0xE4) & 0x02) { /* Realtime statistics */ rs_ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 7 | (cx22702_readreg(state, 0xDF) & 0x7F); } else { /* Averagine statistics */ rs_ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 8 | cx22702_readreg(state, 0xDF); } *snr = ~rs_ber; return 0; } static int cx22702_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct cx22702_state *state = fe->demodulator_priv; u8 _ucblocks; /* RS Uncorrectable Packet Count then reset */ _ucblocks = cx22702_readreg(state, 0xE3); if (state->prevUCBlocks < _ucblocks) *ucblocks = (_ucblocks - state->prevUCBlocks); else *ucblocks = state->prevUCBlocks - _ucblocks; state->prevUCBlocks = _ucblocks; return 0; } static int cx22702_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct cx22702_state *state = fe->demodulator_priv; u8 reg0C = cx22702_readreg(state, 0x0C); c->inversion = reg0C & 0x1 ? INVERSION_ON : INVERSION_OFF; return cx22702_get_tps(state, c); } static int cx22702_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void cx22702_release(struct dvb_frontend *fe) { struct cx22702_state *state = fe->demodulator_priv; kfree(state); } static const struct dvb_frontend_ops cx22702_ops; struct dvb_frontend *cx22702_attach(const struct cx22702_config *config, struct i2c_adapter *i2c) { struct cx22702_state *state = NULL; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct cx22702_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; /* check if the demod is there */ if (cx22702_readreg(state, 0x1f) != 0x3) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &cx22702_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL_GPL(cx22702_attach); static const struct dvb_frontend_ops cx22702_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Conexant CX22702 DVB-T", .frequency_min_hz = 177 * MHz, .frequency_max_hz = 858 * MHz, .frequency_stepsize_hz = 166666, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER }, .release = cx22702_release, .init = cx22702_init, .i2c_gate_ctrl = cx22702_i2c_gate_ctrl, .set_frontend = cx22702_set_tps, .get_frontend = cx22702_get_frontend, .get_tune_settings = cx22702_get_tune_settings, .read_status = cx22702_read_status, .read_ber = cx22702_read_ber, .read_signal_strength = cx22702_read_signal_strength, .read_snr = cx22702_read_snr, .read_ucblocks = cx22702_read_ucblocks, }; MODULE_DESCRIPTION("Conexant CX22702 DVB-T Demodulator driver"); MODULE_AUTHOR("Steven Toth"); MODULE_LICENSE("GPL");