/* * Copyright (c) 2017-2018 Christoph Hellwig. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/backing-dev.h> #include <linux/moduleparam.h> #include <trace/events/block.h> #include "nvme.h" static bool multipath = true; module_param(multipath, bool, 0444); MODULE_PARM_DESC(multipath, "turn on native support for multiple controllers per subsystem"); void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) if (h->disk) blk_mq_unfreeze_queue(h->disk->queue); } void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) if (h->disk) blk_mq_freeze_queue_wait(h->disk->queue); } void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) if (h->disk) blk_freeze_queue_start(h->disk->queue); } /* * If multipathing is enabled we need to always use the subsystem instance * number for numbering our devices to avoid conflicts between subsystems that * have multiple controllers and thus use the multipath-aware subsystem node * and those that have a single controller and use the controller node * directly. */ void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, struct nvme_ctrl *ctrl, int *flags) { if (!multipath) { sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); } else if (ns->head->disk) { sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, ctrl->cntlid, ns->head->instance); *flags = GENHD_FL_HIDDEN; } else { sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, ns->head->instance); } } bool nvme_failover_req(struct request *req) { struct nvme_ns *ns = req->q->queuedata; u16 status = nvme_req(req)->status; unsigned long flags; switch (status & 0x7ff) { case NVME_SC_ANA_TRANSITION: case NVME_SC_ANA_INACCESSIBLE: case NVME_SC_ANA_PERSISTENT_LOSS: /* * If we got back an ANA error we know the controller is alive, * but not ready to serve this namespaces. The spec suggests * we should update our general state here, but due to the fact * that the admin and I/O queues are not serialized that is * fundamentally racy. So instead just clear the current path, * mark the the path as pending and kick of a re-read of the ANA * log page ASAP. */ nvme_mpath_clear_current_path(ns); if (ns->ctrl->ana_log_buf) { set_bit(NVME_NS_ANA_PENDING, &ns->flags); queue_work(nvme_wq, &ns->ctrl->ana_work); } break; case NVME_SC_HOST_PATH_ERROR: /* * Temporary transport disruption in talking to the controller. * Try to send on a new path. */ nvme_mpath_clear_current_path(ns); break; default: /* This was a non-ANA error so follow the normal error path. */ return false; } spin_lock_irqsave(&ns->head->requeue_lock, flags); blk_steal_bios(&ns->head->requeue_list, req); spin_unlock_irqrestore(&ns->head->requeue_lock, flags); blk_mq_end_request(req, 0); kblockd_schedule_work(&ns->head->requeue_work); return true; } void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) { if (ns->head->disk) kblockd_schedule_work(&ns->head->requeue_work); } up_read(&ctrl->namespaces_rwsem); } static const char *nvme_ana_state_names[] = { [0] = "invalid state", [NVME_ANA_OPTIMIZED] = "optimized", [NVME_ANA_NONOPTIMIZED] = "non-optimized", [NVME_ANA_INACCESSIBLE] = "inaccessible", [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", [NVME_ANA_CHANGE] = "change", }; static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head) { struct nvme_ns *ns, *fallback = NULL; list_for_each_entry_rcu(ns, &head->list, siblings) { if (ns->ctrl->state != NVME_CTRL_LIVE || test_bit(NVME_NS_ANA_PENDING, &ns->flags)) continue; switch (ns->ana_state) { case NVME_ANA_OPTIMIZED: rcu_assign_pointer(head->current_path, ns); return ns; case NVME_ANA_NONOPTIMIZED: fallback = ns; break; default: break; } } if (fallback) rcu_assign_pointer(head->current_path, fallback); return fallback; } static inline bool nvme_path_is_optimized(struct nvme_ns *ns) { return ns->ctrl->state == NVME_CTRL_LIVE && ns->ana_state == NVME_ANA_OPTIMIZED; } inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) { struct nvme_ns *ns = srcu_dereference(head->current_path, &head->srcu); if (unlikely(!ns || !nvme_path_is_optimized(ns))) ns = __nvme_find_path(head); return ns; } static blk_qc_t nvme_ns_head_make_request(struct request_queue *q, struct bio *bio) { struct nvme_ns_head *head = q->queuedata; struct device *dev = disk_to_dev(head->disk); struct nvme_ns *ns; blk_qc_t ret = BLK_QC_T_NONE; int srcu_idx; srcu_idx = srcu_read_lock(&head->srcu); ns = nvme_find_path(head); if (likely(ns)) { bio->bi_disk = ns->disk; bio->bi_opf |= REQ_NVME_MPATH; trace_block_bio_remap(bio->bi_disk->queue, bio, disk_devt(ns->head->disk), bio->bi_iter.bi_sector); ret = direct_make_request(bio); } else if (!list_empty_careful(&head->list)) { dev_warn_ratelimited(dev, "no path available - requeuing I/O\n"); spin_lock_irq(&head->requeue_lock); bio_list_add(&head->requeue_list, bio); spin_unlock_irq(&head->requeue_lock); } else { dev_warn_ratelimited(dev, "no path - failing I/O\n"); bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } srcu_read_unlock(&head->srcu, srcu_idx); return ret; } static bool nvme_ns_head_poll(struct request_queue *q, blk_qc_t qc) { struct nvme_ns_head *head = q->queuedata; struct nvme_ns *ns; bool found = false; int srcu_idx; srcu_idx = srcu_read_lock(&head->srcu); ns = srcu_dereference(head->current_path, &head->srcu); if (likely(ns && nvme_path_is_optimized(ns))) found = ns->queue->poll_fn(q, qc); srcu_read_unlock(&head->srcu, srcu_idx); return found; } static void nvme_requeue_work(struct work_struct *work) { struct nvme_ns_head *head = container_of(work, struct nvme_ns_head, requeue_work); struct bio *bio, *next; spin_lock_irq(&head->requeue_lock); next = bio_list_get(&head->requeue_list); spin_unlock_irq(&head->requeue_lock); while ((bio = next) != NULL) { next = bio->bi_next; bio->bi_next = NULL; /* * Reset disk to the mpath node and resubmit to select a new * path. */ bio->bi_disk = head->disk; generic_make_request(bio); } } int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) { struct request_queue *q; bool vwc = false; mutex_init(&head->lock); bio_list_init(&head->requeue_list); spin_lock_init(&head->requeue_lock); INIT_WORK(&head->requeue_work, nvme_requeue_work); /* * Add a multipath node if the subsystems supports multiple controllers. * We also do this for private namespaces as the namespace sharing data could * change after a rescan. */ if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath) return 0; q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); if (!q) goto out; q->queuedata = head; blk_queue_make_request(q, nvme_ns_head_make_request); q->poll_fn = nvme_ns_head_poll; blk_queue_flag_set(QUEUE_FLAG_NONROT, q); /* set to a default value for 512 until disk is validated */ blk_queue_logical_block_size(q, 512); blk_set_stacking_limits(&q->limits); /* we need to propagate up the VMC settings */ if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) vwc = true; blk_queue_write_cache(q, vwc, vwc); head->disk = alloc_disk(0); if (!head->disk) goto out_cleanup_queue; head->disk->fops = &nvme_ns_head_ops; head->disk->private_data = head; head->disk->queue = q; head->disk->flags = GENHD_FL_EXT_DEVT; sprintf(head->disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, head->instance); return 0; out_cleanup_queue: blk_cleanup_queue(q); out: return -ENOMEM; } static void nvme_mpath_set_live(struct nvme_ns *ns) { struct nvme_ns_head *head = ns->head; lockdep_assert_held(&ns->head->lock); if (!head->disk) return; if (!(head->disk->flags & GENHD_FL_UP)) device_add_disk(&head->subsys->dev, head->disk, nvme_ns_id_attr_groups); synchronize_srcu(&ns->head->srcu); kblockd_schedule_work(&ns->head->requeue_work); } static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, void *)) { void *base = ctrl->ana_log_buf; size_t offset = sizeof(struct nvme_ana_rsp_hdr); int error, i; lockdep_assert_held(&ctrl->ana_lock); for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { struct nvme_ana_group_desc *desc = base + offset; u32 nr_nsids = le32_to_cpu(desc->nnsids); size_t nsid_buf_size = nr_nsids * sizeof(__le32); if (WARN_ON_ONCE(desc->grpid == 0)) return -EINVAL; if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) return -EINVAL; if (WARN_ON_ONCE(desc->state == 0)) return -EINVAL; if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) return -EINVAL; offset += sizeof(*desc); if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) return -EINVAL; error = cb(ctrl, desc, data); if (error) return error; offset += nsid_buf_size; if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) return -EINVAL; } return 0; } static inline bool nvme_state_is_live(enum nvme_ana_state state) { return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; } static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, struct nvme_ns *ns) { mutex_lock(&ns->head->lock); ns->ana_grpid = le32_to_cpu(desc->grpid); ns->ana_state = desc->state; clear_bit(NVME_NS_ANA_PENDING, &ns->flags); if (nvme_state_is_live(ns->ana_state)) nvme_mpath_set_live(ns); mutex_unlock(&ns->head->lock); } static int nvme_update_ana_state(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *desc, void *data) { u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; unsigned *nr_change_groups = data; struct nvme_ns *ns; dev_info(ctrl->device, "ANA group %d: %s.\n", le32_to_cpu(desc->grpid), nvme_ana_state_names[desc->state]); if (desc->state == NVME_ANA_CHANGE) (*nr_change_groups)++; if (!nr_nsids) return 0; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) { unsigned nsid; again: nsid = le32_to_cpu(desc->nsids[n]); if (ns->head->ns_id < nsid) continue; if (ns->head->ns_id == nsid) nvme_update_ns_ana_state(desc, ns); if (++n == nr_nsids) break; if (ns->head->ns_id > nsid) goto again; } up_read(&ctrl->namespaces_rwsem); return 0; } static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only) { u32 nr_change_groups = 0; int error; mutex_lock(&ctrl->ana_lock); error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, groups_only ? NVME_ANA_LOG_RGO : 0, ctrl->ana_log_buf, ctrl->ana_log_size, 0); if (error) { dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); goto out_unlock; } error = nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state); if (error) goto out_unlock; /* * In theory we should have an ANATT timer per group as they might enter * the change state at different times. But that is a lot of overhead * just to protect against a target that keeps entering new changes * states while never finishing previous ones. But we'll still * eventually time out once all groups are in change state, so this * isn't a big deal. * * We also double the ANATT value to provide some slack for transports * or AEN processing overhead. */ if (nr_change_groups) mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); else del_timer_sync(&ctrl->anatt_timer); out_unlock: mutex_unlock(&ctrl->ana_lock); return error; } static void nvme_ana_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); nvme_read_ana_log(ctrl, false); } static void nvme_anatt_timeout(struct timer_list *t) { struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); nvme_reset_ctrl(ctrl); } void nvme_mpath_stop(struct nvme_ctrl *ctrl) { if (!nvme_ctrl_use_ana(ctrl)) return; del_timer_sync(&ctrl->anatt_timer); cancel_work_sync(&ctrl->ana_work); } static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); } DEVICE_ATTR_RO(ana_grpid); static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); } DEVICE_ATTR_RO(ana_state); static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *desc, void *data) { struct nvme_ana_group_desc *dst = data; if (desc->grpid != dst->grpid) return 0; *dst = *desc; return -ENXIO; /* just break out of the loop */ } void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) { if (nvme_ctrl_use_ana(ns->ctrl)) { struct nvme_ana_group_desc desc = { .grpid = id->anagrpid, .state = 0, }; mutex_lock(&ns->ctrl->ana_lock); ns->ana_grpid = le32_to_cpu(id->anagrpid); nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); mutex_unlock(&ns->ctrl->ana_lock); if (desc.state) { /* found the group desc: update */ nvme_update_ns_ana_state(&desc, ns); } else { /* group desc not found: trigger a re-read */ set_bit(NVME_NS_ANA_PENDING, &ns->flags); queue_work(nvme_wq, &ns->ctrl->ana_work); } } else { mutex_lock(&ns->head->lock); ns->ana_state = NVME_ANA_OPTIMIZED; nvme_mpath_set_live(ns); mutex_unlock(&ns->head->lock); } if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) { struct gendisk *disk = ns->head->disk; if (disk) disk->queue->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; } } void nvme_mpath_remove_disk(struct nvme_ns_head *head) { if (!head->disk) return; if (head->disk->flags & GENHD_FL_UP) del_gendisk(head->disk); blk_set_queue_dying(head->disk->queue); /* make sure all pending bios are cleaned up */ kblockd_schedule_work(&head->requeue_work); flush_work(&head->requeue_work); blk_cleanup_queue(head->disk->queue); put_disk(head->disk); } int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { int error; /* check if multipath is enabled and we have the capability */ if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3))) return 0; ctrl->anacap = id->anacap; ctrl->anatt = id->anatt; ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); mutex_init(&ctrl->ana_lock); timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { dev_err(ctrl->device, "ANA log page size (%zd) larger than MDTS (%d).\n", ctrl->ana_log_size, ctrl->max_hw_sectors << SECTOR_SHIFT); dev_err(ctrl->device, "disabling ANA support.\n"); return 0; } INIT_WORK(&ctrl->ana_work, nvme_ana_work); kfree(ctrl->ana_log_buf); ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); if (!ctrl->ana_log_buf) { error = -ENOMEM; goto out; } error = nvme_read_ana_log(ctrl, false); if (error) goto out_free_ana_log_buf; return 0; out_free_ana_log_buf: kfree(ctrl->ana_log_buf); ctrl->ana_log_buf = NULL; out: return error; } void nvme_mpath_uninit(struct nvme_ctrl *ctrl) { kfree(ctrl->ana_log_buf); ctrl->ana_log_buf = NULL; }