// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * Copyright 2008 Openmoko, Inc. * Copyright 2008 Simtec Electronics * Ben Dooks * http://armlinux.simtec.co.uk/ * * S3C USB2.0 High-speed / OtG driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "hw.h" /* conversion functions */ static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) { return container_of(req, struct dwc2_hsotg_req, req); } static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) { return container_of(ep, struct dwc2_hsotg_ep, ep); } static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) { return container_of(gadget, struct dwc2_hsotg, gadget); } static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) { dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); } static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) { dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); } static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, u32 ep_index, u32 dir_in) { if (dir_in) return hsotg->eps_in[ep_index]; else return hsotg->eps_out[ep_index]; } /* forward declaration of functions */ static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); /** * using_dma - return the DMA status of the driver. * @hsotg: The driver state. * * Return true if we're using DMA. * * Currently, we have the DMA support code worked into everywhere * that needs it, but the AMBA DMA implementation in the hardware can * only DMA from 32bit aligned addresses. This means that gadgets such * as the CDC Ethernet cannot work as they often pass packets which are * not 32bit aligned. * * Unfortunately the choice to use DMA or not is global to the controller * and seems to be only settable when the controller is being put through * a core reset. This means we either need to fix the gadgets to take * account of DMA alignment, or add bounce buffers (yuerk). * * g_using_dma is set depending on dts flag. */ static inline bool using_dma(struct dwc2_hsotg *hsotg) { return hsotg->params.g_dma; } /* * using_desc_dma - return the descriptor DMA status of the driver. * @hsotg: The driver state. * * Return true if we're using descriptor DMA. */ static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) { return hsotg->params.g_dma_desc; } /** * dwc2_gadget_incr_frame_num - Increments the targeted frame number. * @hs_ep: The endpoint * * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. * If an overrun occurs it will wrap the value and set the frame_overrun flag. */ static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) { hs_ep->target_frame += hs_ep->interval; if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { hs_ep->frame_overrun = true; hs_ep->target_frame &= DSTS_SOFFN_LIMIT; } else { hs_ep->frame_overrun = false; } } /** * dwc2_hsotg_en_gsint - enable one or more of the general interrupt * @hsotg: The device state * @ints: A bitmask of the interrupts to enable */ static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) { u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); u32 new_gsintmsk; new_gsintmsk = gsintmsk | ints; if (new_gsintmsk != gsintmsk) { dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); dwc2_writel(hsotg, new_gsintmsk, GINTMSK); } } /** * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt * @hsotg: The device state * @ints: A bitmask of the interrupts to enable */ static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) { u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); u32 new_gsintmsk; new_gsintmsk = gsintmsk & ~ints; if (new_gsintmsk != gsintmsk) dwc2_writel(hsotg, new_gsintmsk, GINTMSK); } /** * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq * @hsotg: The device state * @ep: The endpoint index * @dir_in: True if direction is in. * @en: The enable value, true to enable * * Set or clear the mask for an individual endpoint's interrupt * request. */ static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, unsigned int ep, unsigned int dir_in, unsigned int en) { unsigned long flags; u32 bit = 1 << ep; u32 daint; if (!dir_in) bit <<= 16; local_irq_save(flags); daint = dwc2_readl(hsotg, DAINTMSK); if (en) daint |= bit; else daint &= ~bit; dwc2_writel(hsotg, daint, DAINTMSK); local_irq_restore(flags); } /** * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode * * @hsotg: Programming view of the DWC_otg controller */ int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) { if (hsotg->hw_params.en_multiple_tx_fifo) /* In dedicated FIFO mode we need count of IN EPs */ return hsotg->hw_params.num_dev_in_eps; else /* In shared FIFO mode we need count of Periodic IN EPs */ return hsotg->hw_params.num_dev_perio_in_ep; } /** * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for * device mode TX FIFOs * * @hsotg: Programming view of the DWC_otg controller */ int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) { int addr; int tx_addr_max; u32 np_tx_fifo_size; np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, hsotg->params.g_np_tx_fifo_size); /* Get Endpoint Info Control block size in DWORDs. */ tx_addr_max = hsotg->hw_params.total_fifo_size; addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; if (tx_addr_max <= addr) return 0; return tx_addr_max - addr; } /** * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode * TX FIFOs * * @hsotg: Programming view of the DWC_otg controller */ int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) { int tx_fifo_count; int tx_fifo_depth; tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); if (!tx_fifo_count) return tx_fifo_depth; else return tx_fifo_depth / tx_fifo_count; } /** * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs * @hsotg: The device instance. */ static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) { unsigned int ep; unsigned int addr; int timeout; u32 val; u32 *txfsz = hsotg->params.g_tx_fifo_size; /* Reset fifo map if not correctly cleared during previous session */ WARN_ON(hsotg->fifo_map); hsotg->fifo_map = 0; /* set RX/NPTX FIFO sizes */ dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) | (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), GNPTXFSIZ); /* * arange all the rest of the TX FIFOs, as some versions of this * block have overlapping default addresses. This also ensures * that if the settings have been changed, then they are set to * known values. */ /* start at the end of the GNPTXFSIZ, rounded up */ addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; /* * Configure fifos sizes from provided configuration and assign * them to endpoints dynamically according to maxpacket size value of * given endpoint. */ for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { if (!txfsz[ep]) continue; val = addr; val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, "insufficient fifo memory"); addr += txfsz[ep]; dwc2_writel(hsotg, val, DPTXFSIZN(ep)); val = dwc2_readl(hsotg, DPTXFSIZN(ep)); } dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | addr << GDFIFOCFG_EPINFOBASE_SHIFT, GDFIFOCFG); /* * according to p428 of the design guide, we need to ensure that * all fifos are flushed before continuing */ dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH, GRSTCTL); /* wait until the fifos are both flushed */ timeout = 100; while (1) { val = dwc2_readl(hsotg, GRSTCTL); if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) break; if (--timeout == 0) { dev_err(hsotg->dev, "%s: timeout flushing fifos (GRSTCTL=%08x)\n", __func__, val); break; } udelay(1); } dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); } /** * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure * @ep: USB endpoint to allocate request for. * @flags: Allocation flags * * Allocate a new USB request structure appropriate for the specified endpoint */ static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, gfp_t flags) { struct dwc2_hsotg_req *req; req = kzalloc(sizeof(*req), flags); if (!req) return NULL; INIT_LIST_HEAD(&req->queue); return &req->req; } /** * is_ep_periodic - return true if the endpoint is in periodic mode. * @hs_ep: The endpoint to query. * * Returns true if the endpoint is in periodic mode, meaning it is being * used for an Interrupt or ISO transfer. */ static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) { return hs_ep->periodic; } /** * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request * @hsotg: The device state. * @hs_ep: The endpoint for the request * @hs_req: The request being processed. * * This is the reverse of dwc2_hsotg_map_dma(), called for the completion * of a request to ensure the buffer is ready for access by the caller. */ static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req) { struct usb_request *req = &hs_req->req; usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); } /* * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains * for Control endpoint * @hsotg: The device state. * * This function will allocate 4 descriptor chains for EP 0: 2 for * Setup stage, per one for IN and OUT data/status transactions. */ static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) { hsotg->setup_desc[0] = dmam_alloc_coherent(hsotg->dev, sizeof(struct dwc2_dma_desc), &hsotg->setup_desc_dma[0], GFP_KERNEL); if (!hsotg->setup_desc[0]) goto fail; hsotg->setup_desc[1] = dmam_alloc_coherent(hsotg->dev, sizeof(struct dwc2_dma_desc), &hsotg->setup_desc_dma[1], GFP_KERNEL); if (!hsotg->setup_desc[1]) goto fail; hsotg->ctrl_in_desc = dmam_alloc_coherent(hsotg->dev, sizeof(struct dwc2_dma_desc), &hsotg->ctrl_in_desc_dma, GFP_KERNEL); if (!hsotg->ctrl_in_desc) goto fail; hsotg->ctrl_out_desc = dmam_alloc_coherent(hsotg->dev, sizeof(struct dwc2_dma_desc), &hsotg->ctrl_out_desc_dma, GFP_KERNEL); if (!hsotg->ctrl_out_desc) goto fail; return 0; fail: return -ENOMEM; } /** * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO * @hsotg: The controller state. * @hs_ep: The endpoint we're going to write for. * @hs_req: The request to write data for. * * This is called when the TxFIFO has some space in it to hold a new * transmission and we have something to give it. The actual setup of * the data size is done elsewhere, so all we have to do is to actually * write the data. * * The return value is zero if there is more space (or nothing was done) * otherwise -ENOSPC is returned if the FIFO space was used up. * * This routine is only needed for PIO */ static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req) { bool periodic = is_ep_periodic(hs_ep); u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); int buf_pos = hs_req->req.actual; int to_write = hs_ep->size_loaded; void *data; int can_write; int pkt_round; int max_transfer; to_write -= (buf_pos - hs_ep->last_load); /* if there's nothing to write, get out early */ if (to_write == 0) return 0; if (periodic && !hsotg->dedicated_fifos) { u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); int size_left; int size_done; /* * work out how much data was loaded so we can calculate * how much data is left in the fifo. */ size_left = DXEPTSIZ_XFERSIZE_GET(epsize); /* * if shared fifo, we cannot write anything until the * previous data has been completely sent. */ if (hs_ep->fifo_load != 0) { dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); return -ENOSPC; } dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", __func__, size_left, hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); /* how much of the data has moved */ size_done = hs_ep->size_loaded - size_left; /* how much data is left in the fifo */ can_write = hs_ep->fifo_load - size_done; dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", __func__, can_write); can_write = hs_ep->fifo_size - can_write; dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", __func__, can_write); if (can_write <= 0) { dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); return -ENOSPC; } } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { can_write = dwc2_readl(hsotg, DTXFSTS(hs_ep->fifo_index)); can_write &= 0xffff; can_write *= 4; } else { if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { dev_dbg(hsotg->dev, "%s: no queue slots available (0x%08x)\n", __func__, gnptxsts); dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); return -ENOSPC; } can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); can_write *= 4; /* fifo size is in 32bit quantities. */ } max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", __func__, gnptxsts, can_write, to_write, max_transfer); /* * limit to 512 bytes of data, it seems at least on the non-periodic * FIFO, requests of >512 cause the endpoint to get stuck with a * fragment of the end of the transfer in it. */ if (can_write > 512 && !periodic) can_write = 512; /* * limit the write to one max-packet size worth of data, but allow * the transfer to return that it did not run out of fifo space * doing it. */ if (to_write > max_transfer) { to_write = max_transfer; /* it's needed only when we do not use dedicated fifos */ if (!hsotg->dedicated_fifos) dwc2_hsotg_en_gsint(hsotg, periodic ? GINTSTS_PTXFEMP : GINTSTS_NPTXFEMP); } /* see if we can write data */ if (to_write > can_write) { to_write = can_write; pkt_round = to_write % max_transfer; /* * Round the write down to an * exact number of packets. * * Note, we do not currently check to see if we can ever * write a full packet or not to the FIFO. */ if (pkt_round) to_write -= pkt_round; /* * enable correct FIFO interrupt to alert us when there * is more room left. */ /* it's needed only when we do not use dedicated fifos */ if (!hsotg->dedicated_fifos) dwc2_hsotg_en_gsint(hsotg, periodic ? GINTSTS_PTXFEMP : GINTSTS_NPTXFEMP); } dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", to_write, hs_req->req.length, can_write, buf_pos); if (to_write <= 0) return -ENOSPC; hs_req->req.actual = buf_pos + to_write; hs_ep->total_data += to_write; if (periodic) hs_ep->fifo_load += to_write; to_write = DIV_ROUND_UP(to_write, 4); data = hs_req->req.buf + buf_pos; dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); return (to_write >= can_write) ? -ENOSPC : 0; } /** * get_ep_limit - get the maximum data legnth for this endpoint * @hs_ep: The endpoint * * Return the maximum data that can be queued in one go on a given endpoint * so that transfers that are too long can be split. */ static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) { int index = hs_ep->index; unsigned int maxsize; unsigned int maxpkt; if (index != 0) { maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; } else { maxsize = 64 + 64; if (hs_ep->dir_in) maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; else maxpkt = 2; } /* we made the constant loading easier above by using +1 */ maxpkt--; maxsize--; /* * constrain by packet count if maxpkts*pktsize is greater * than the length register size. */ if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) maxsize = maxpkt * hs_ep->ep.maxpacket; return maxsize; } /** * dwc2_hsotg_read_frameno - read current frame number * @hsotg: The device instance * * Return the current frame number */ static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) { u32 dsts; dsts = dwc2_readl(hsotg, DSTS); dsts &= DSTS_SOFFN_MASK; dsts >>= DSTS_SOFFN_SHIFT; return dsts; } /** * dwc2_gadget_get_chain_limit - get the maximum data payload value of the * DMA descriptor chain prepared for specific endpoint * @hs_ep: The endpoint * * Return the maximum data that can be queued in one go on a given endpoint * depending on its descriptor chain capacity so that transfers that * are too long can be split. */ static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) { const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; int is_isoc = hs_ep->isochronous; unsigned int maxsize; u32 mps = hs_ep->ep.maxpacket; int dir_in = hs_ep->dir_in; if (is_isoc) maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : DEV_DMA_ISOC_RX_NBYTES_LIMIT) * MAX_DMA_DESC_NUM_HS_ISOC; else maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; /* Interrupt OUT EP with mps not multiple of 4 */ if (hs_ep->index) if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; return maxsize; } /* * dwc2_gadget_get_desc_params - get DMA descriptor parameters. * @hs_ep: The endpoint * @mask: RX/TX bytes mask to be defined * * Returns maximum data payload for one descriptor after analyzing endpoint * characteristics. * DMA descriptor transfer bytes limit depends on EP type: * Control out - MPS, * Isochronous - descriptor rx/tx bytes bitfield limit, * Control In/Bulk/Interrupt - multiple of mps. This will allow to not * have concatenations from various descriptors within one packet. * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds * to a single descriptor. * * Selects corresponding mask for RX/TX bytes as well. */ static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) { const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; u32 mps = hs_ep->ep.maxpacket; int dir_in = hs_ep->dir_in; u32 desc_size = 0; if (!hs_ep->index && !dir_in) { desc_size = mps; *mask = DEV_DMA_NBYTES_MASK; } else if (hs_ep->isochronous) { if (dir_in) { desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; } else { desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; } } else { desc_size = DEV_DMA_NBYTES_LIMIT; *mask = DEV_DMA_NBYTES_MASK; /* Round down desc_size to be mps multiple */ desc_size -= desc_size % mps; } /* Interrupt OUT EP with mps not multiple of 4 */ if (hs_ep->index) if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { desc_size = mps; *mask = DEV_DMA_NBYTES_MASK; } return desc_size; } /* * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. * @hs_ep: The endpoint * @dma_buff: DMA address to use * @len: Length of the transfer * * This function will iterate over descriptor chain and fill its entries * with corresponding information based on transfer data. */ static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, dma_addr_t dma_buff, unsigned int len) { struct dwc2_hsotg *hsotg = hs_ep->parent; int dir_in = hs_ep->dir_in; struct dwc2_dma_desc *desc = hs_ep->desc_list; u32 mps = hs_ep->ep.maxpacket; u32 maxsize = 0; u32 offset = 0; u32 mask = 0; int i; maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); hs_ep->desc_count = (len / maxsize) + ((len % maxsize) ? 1 : 0); if (len == 0) hs_ep->desc_count = 1; for (i = 0; i < hs_ep->desc_count; ++i) { desc->status = 0; desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); if (len > maxsize) { if (!hs_ep->index && !dir_in) desc->status |= (DEV_DMA_L | DEV_DMA_IOC); desc->status |= (maxsize << DEV_DMA_NBYTES_SHIFT & mask); desc->buf = dma_buff + offset; len -= maxsize; offset += maxsize; } else { desc->status |= (DEV_DMA_L | DEV_DMA_IOC); if (dir_in) desc->status |= (len % mps) ? DEV_DMA_SHORT : ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); if (len > maxsize) dev_err(hsotg->dev, "wrong len %d\n", len); desc->status |= len << DEV_DMA_NBYTES_SHIFT & mask; desc->buf = dma_buff + offset; } desc->status &= ~DEV_DMA_BUFF_STS_MASK; desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); desc++; } } /* * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. * @hs_ep: The isochronous endpoint. * @dma_buff: usb requests dma buffer. * @len: usb request transfer length. * * Fills next free descriptor with the data of the arrived usb request, * frame info, sets Last and IOC bits increments next_desc. If filled * descriptor is not the first one, removes L bit from the previous descriptor * status. */ static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, dma_addr_t dma_buff, unsigned int len) { struct dwc2_dma_desc *desc; struct dwc2_hsotg *hsotg = hs_ep->parent; u32 index; u32 maxsize = 0; u32 mask = 0; u8 pid = 0; maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); index = hs_ep->next_desc; desc = &hs_ep->desc_list[index]; /* Check if descriptor chain full */ if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == DEV_DMA_BUFF_STS_HREADY) { dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); return 1; } /* Clear L bit of previous desc if more than one entries in the chain */ if (hs_ep->next_desc) hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); desc->status = 0; desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); desc->buf = dma_buff; desc->status |= (DEV_DMA_L | DEV_DMA_IOC | ((len << DEV_DMA_NBYTES_SHIFT) & mask)); if (hs_ep->dir_in) { if (len) pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); else pid = 1; desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & DEV_DMA_ISOC_PID_MASK) | ((len % hs_ep->ep.maxpacket) ? DEV_DMA_SHORT : 0) | ((hs_ep->target_frame << DEV_DMA_ISOC_FRNUM_SHIFT) & DEV_DMA_ISOC_FRNUM_MASK); } desc->status &= ~DEV_DMA_BUFF_STS_MASK; desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); /* Increment frame number by interval for IN */ if (hs_ep->dir_in) dwc2_gadget_incr_frame_num(hs_ep); /* Update index of last configured entry in the chain */ hs_ep->next_desc++; if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) hs_ep->next_desc = 0; return 0; } /* * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA * @hs_ep: The isochronous endpoint. * * Prepare descriptor chain for isochronous endpoints. Afterwards * write DMA address to HW and enable the endpoint. */ static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg *hsotg = hs_ep->parent; struct dwc2_hsotg_req *hs_req, *treq; int index = hs_ep->index; int ret; int i; u32 dma_reg; u32 depctl; u32 ctrl; struct dwc2_dma_desc *desc; if (list_empty(&hs_ep->queue)) { hs_ep->target_frame = TARGET_FRAME_INITIAL; dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); return; } /* Initialize descriptor chain by Host Busy status */ for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { desc = &hs_ep->desc_list[i]; desc->status = 0; desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); } hs_ep->next_desc = 0; list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, hs_req->req.length); if (ret) break; } hs_ep->compl_desc = 0; depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); /* write descriptor chain address to control register */ dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); ctrl = dwc2_readl(hsotg, depctl); ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; dwc2_writel(hsotg, ctrl, depctl); } /** * dwc2_hsotg_start_req - start a USB request from an endpoint's queue * @hsotg: The controller state. * @hs_ep: The endpoint to process a request for * @hs_req: The request to start. * @continuing: True if we are doing more for the current request. * * Start the given request running by setting the endpoint registers * appropriately, and writing any data to the FIFOs. */ static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req, bool continuing) { struct usb_request *ureq = &hs_req->req; int index = hs_ep->index; int dir_in = hs_ep->dir_in; u32 epctrl_reg; u32 epsize_reg; u32 epsize; u32 ctrl; unsigned int length; unsigned int packets; unsigned int maxreq; unsigned int dma_reg; if (index != 0) { if (hs_ep->req && !continuing) { dev_err(hsotg->dev, "%s: active request\n", __func__); WARN_ON(1); return; } else if (hs_ep->req != hs_req && continuing) { dev_err(hsotg->dev, "%s: continue different req\n", __func__); WARN_ON(1); return; } } dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", __func__, dwc2_readl(hsotg, epctrl_reg), index, hs_ep->dir_in ? "in" : "out"); /* If endpoint is stalled, we will restart request later */ ctrl = dwc2_readl(hsotg, epctrl_reg); if (index && ctrl & DXEPCTL_STALL) { dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); return; } length = ureq->length - ureq->actual; dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", ureq->length, ureq->actual); if (!using_desc_dma(hsotg)) maxreq = get_ep_limit(hs_ep); else maxreq = dwc2_gadget_get_chain_limit(hs_ep); if (length > maxreq) { int round = maxreq % hs_ep->ep.maxpacket; dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", __func__, length, maxreq, round); /* round down to multiple of packets */ if (round) maxreq -= round; length = maxreq; } if (length) packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); else packets = 1; /* send one packet if length is zero. */ if (dir_in && index != 0) if (hs_ep->isochronous) epsize = DXEPTSIZ_MC(packets); else epsize = DXEPTSIZ_MC(1); else epsize = 0; /* * zero length packet should be programmed on its own and should not * be counted in DIEPTSIZ.PktCnt with other packets. */ if (dir_in && ureq->zero && !continuing) { /* Test if zlp is actually required. */ if ((ureq->length >= hs_ep->ep.maxpacket) && !(ureq->length % hs_ep->ep.maxpacket)) hs_ep->send_zlp = 1; } epsize |= DXEPTSIZ_PKTCNT(packets); epsize |= DXEPTSIZ_XFERSIZE(length); dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", __func__, packets, length, ureq->length, epsize, epsize_reg); /* store the request as the current one we're doing */ hs_ep->req = hs_req; if (using_desc_dma(hsotg)) { u32 offset = 0; u32 mps = hs_ep->ep.maxpacket; /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ if (!dir_in) { if (!index) length = mps; else if (length % mps) length += (mps - (length % mps)); } if (continuing) offset = ureq->actual; /* Fill DDMA chain entries */ dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, length); /* write descriptor chain address to control register */ dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", __func__, (u32)hs_ep->desc_list_dma, dma_reg); } else { /* write size / packets */ dwc2_writel(hsotg, epsize, epsize_reg); if (using_dma(hsotg) && !continuing && (length != 0)) { /* * write DMA address to control register, buffer * already synced by dwc2_hsotg_ep_queue(). */ dwc2_writel(hsotg, ureq->dma, dma_reg); dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", __func__, &ureq->dma, dma_reg); } } if (hs_ep->isochronous && hs_ep->interval == 1) { hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); dwc2_gadget_incr_frame_num(hs_ep); if (hs_ep->target_frame & 0x1) ctrl |= DXEPCTL_SETODDFR; else ctrl |= DXEPCTL_SETEVENFR; } ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); /* For Setup request do not clear NAK */ if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); dwc2_writel(hsotg, ctrl, epctrl_reg); /* * set these, it seems that DMA support increments past the end * of the packet buffer so we need to calculate the length from * this information. */ hs_ep->size_loaded = length; hs_ep->last_load = ureq->actual; if (dir_in && !using_dma(hsotg)) { /* set these anyway, we may need them for non-periodic in */ hs_ep->fifo_load = 0; dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); } /* * Note, trying to clear the NAK here causes problems with transmit * on the S3C6400 ending up with the TXFIFO becoming full. */ /* check ep is enabled */ if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) dev_dbg(hsotg->dev, "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", index, dwc2_readl(hsotg, epctrl_reg)); dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", __func__, dwc2_readl(hsotg, epctrl_reg)); /* enable ep interrupts */ dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); } /** * dwc2_hsotg_map_dma - map the DMA memory being used for the request * @hsotg: The device state. * @hs_ep: The endpoint the request is on. * @req: The request being processed. * * We've been asked to queue a request, so ensure that the memory buffer * is correctly setup for DMA. If we've been passed an extant DMA address * then ensure the buffer has been synced to memory. If our buffer has no * DMA memory, then we map the memory and mark our request to allow us to * cleanup on completion. */ static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, struct usb_request *req) { int ret; hs_ep->map_dir = hs_ep->dir_in; ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); if (ret) goto dma_error; return 0; dma_error: dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", __func__, req->buf, req->length); return -EIO; } static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req) { void *req_buf = hs_req->req.buf; /* If dma is not being used or buffer is aligned */ if (!using_dma(hsotg) || !((long)req_buf & 3)) return 0; WARN_ON(hs_req->saved_req_buf); dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, hs_ep->ep.name, req_buf, hs_req->req.length); hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); if (!hs_req->req.buf) { hs_req->req.buf = req_buf; dev_err(hsotg->dev, "%s: unable to allocate memory for bounce buffer\n", __func__); return -ENOMEM; } /* Save actual buffer */ hs_req->saved_req_buf = req_buf; if (hs_ep->dir_in) memcpy(hs_req->req.buf, req_buf, hs_req->req.length); return 0; } static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req) { /* If dma is not being used or buffer was aligned */ if (!using_dma(hsotg) || !hs_req->saved_req_buf) return; dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); /* Copy data from bounce buffer on successful out transfer */ if (!hs_ep->dir_in && !hs_req->req.status) memcpy(hs_req->saved_req_buf, hs_req->req.buf, hs_req->req.actual); /* Free bounce buffer */ kfree(hs_req->req.buf); hs_req->req.buf = hs_req->saved_req_buf; hs_req->saved_req_buf = NULL; } /** * dwc2_gadget_target_frame_elapsed - Checks target frame * @hs_ep: The driver endpoint to check * * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop * corresponding transfer. */ static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg *hsotg = hs_ep->parent; u32 target_frame = hs_ep->target_frame; u32 current_frame = hsotg->frame_number; bool frame_overrun = hs_ep->frame_overrun; if (!frame_overrun && current_frame >= target_frame) return true; if (frame_overrun && current_frame >= target_frame && ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) return true; return false; } /* * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers * @hsotg: The driver state * @hs_ep: the ep descriptor chain is for * * Called to update EP0 structure's pointers depend on stage of * control transfer. */ static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep) { switch (hsotg->ep0_state) { case DWC2_EP0_SETUP: case DWC2_EP0_STATUS_OUT: hs_ep->desc_list = hsotg->setup_desc[0]; hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; break; case DWC2_EP0_DATA_IN: case DWC2_EP0_STATUS_IN: hs_ep->desc_list = hsotg->ctrl_in_desc; hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; break; case DWC2_EP0_DATA_OUT: hs_ep->desc_list = hsotg->ctrl_out_desc; hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; break; default: dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", hsotg->ep0_state); return -EINVAL; } return 0; } static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags) { struct dwc2_hsotg_req *hs_req = our_req(req); struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hs = hs_ep->parent; bool first; int ret; u32 maxsize = 0; u32 mask = 0; dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", ep->name, req, req->length, req->buf, req->no_interrupt, req->zero, req->short_not_ok); if (hs->lx_state == DWC2_L1) { dwc2_wakeup_from_lpm_l1(hs, true); } /* Prevent new request submission when controller is suspended */ if (hs->lx_state != DWC2_L0) { dev_dbg(hs->dev, "%s: submit request only in active state\n", __func__); return -EAGAIN; } /* initialise status of the request */ INIT_LIST_HEAD(&hs_req->queue); req->actual = 0; req->status = -EINPROGRESS; /* Don't queue ISOC request if length greater than mps*mc */ if (hs_ep->isochronous && req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { dev_err(hs->dev, "req length > maxpacket*mc\n"); return -EINVAL; } /* In DDMA mode for ISOC's don't queue request if length greater * than descriptor limits. */ if (using_desc_dma(hs) && hs_ep->isochronous) { maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); if (hs_ep->dir_in && req->length > maxsize) { dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", req->length, maxsize); return -EINVAL; } if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", req->length, hs_ep->ep.maxpacket); return -EINVAL; } } ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); if (ret) return ret; /* if we're using DMA, sync the buffers as necessary */ if (using_dma(hs)) { ret = dwc2_hsotg_map_dma(hs, hs_ep, req); if (ret) return ret; } /* If using descriptor DMA configure EP0 descriptor chain pointers */ if (using_desc_dma(hs) && !hs_ep->index) { ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); if (ret) return ret; } first = list_empty(&hs_ep->queue); list_add_tail(&hs_req->queue, &hs_ep->queue); /* * Handle DDMA isochronous transfers separately - just add new entry * to the descriptor chain. * Transfer will be started once SW gets either one of NAK or * OutTknEpDis interrupts. */ if (using_desc_dma(hs) && hs_ep->isochronous) { if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, hs_req->req.length); } return 0; } if (first) { if (!hs_ep->isochronous) { dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); return 0; } /* Update current frame number value. */ hs->frame_number = dwc2_hsotg_read_frameno(hs); while (dwc2_gadget_target_frame_elapsed(hs_ep)) { dwc2_gadget_incr_frame_num(hs_ep); /* Update current frame number value once more as it * changes here. */ hs->frame_number = dwc2_hsotg_read_frameno(hs); } if (hs_ep->target_frame != TARGET_FRAME_INITIAL) dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); } return 0; } static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hs = hs_ep->parent; unsigned long flags = 0; int ret = 0; spin_lock_irqsave(&hs->lock, flags); ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); spin_unlock_irqrestore(&hs->lock, flags); return ret; } static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, struct usb_request *req) { struct dwc2_hsotg_req *hs_req = our_req(req); kfree(hs_req); } /** * dwc2_hsotg_complete_oursetup - setup completion callback * @ep: The endpoint the request was on. * @req: The request completed. * * Called on completion of any requests the driver itself * submitted that need cleaning up. */ static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, struct usb_request *req) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hsotg = hs_ep->parent; dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); dwc2_hsotg_ep_free_request(ep, req); } /** * ep_from_windex - convert control wIndex value to endpoint * @hsotg: The driver state. * @windex: The control request wIndex field (in host order). * * Convert the given wIndex into a pointer to an driver endpoint * structure, or return NULL if it is not a valid endpoint. */ static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, u32 windex) { int dir = (windex & USB_DIR_IN) ? 1 : 0; int idx = windex & 0x7F; if (windex >= 0x100) return NULL; if (idx > hsotg->num_of_eps) return NULL; return index_to_ep(hsotg, idx, dir); } /** * dwc2_hsotg_set_test_mode - Enable usb Test Modes * @hsotg: The driver state. * @testmode: requested usb test mode * Enable usb Test Mode requested by the Host. */ int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) { int dctl = dwc2_readl(hsotg, DCTL); dctl &= ~DCTL_TSTCTL_MASK; switch (testmode) { case TEST_J: case TEST_K: case TEST_SE0_NAK: case TEST_PACKET: case TEST_FORCE_EN: dctl |= testmode << DCTL_TSTCTL_SHIFT; break; default: return -EINVAL; } dwc2_writel(hsotg, dctl, DCTL); return 0; } /** * dwc2_hsotg_send_reply - send reply to control request * @hsotg: The device state * @ep: Endpoint 0 * @buff: Buffer for request * @length: Length of reply. * * Create a request and queue it on the given endpoint. This is useful as * an internal method of sending replies to certain control requests, etc. */ static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *ep, void *buff, int length) { struct usb_request *req; int ret; dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); hsotg->ep0_reply = req; if (!req) { dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); return -ENOMEM; } req->buf = hsotg->ep0_buff; req->length = length; /* * zero flag is for sending zlp in DATA IN stage. It has no impact on * STATUS stage. */ req->zero = 0; req->complete = dwc2_hsotg_complete_oursetup; if (length) memcpy(req->buf, buff, length); ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); if (ret) { dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); return ret; } return 0; } /** * dwc2_hsotg_process_req_status - process request GET_STATUS * @hsotg: The device state * @ctrl: USB control request */ static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, struct usb_ctrlrequest *ctrl) { struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; struct dwc2_hsotg_ep *ep; __le16 reply; u16 status; int ret; dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); if (!ep0->dir_in) { dev_warn(hsotg->dev, "%s: direction out?\n", __func__); return -EINVAL; } switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: status = 1 << USB_DEVICE_SELF_POWERED; status |= hsotg->remote_wakeup_allowed << USB_DEVICE_REMOTE_WAKEUP; reply = cpu_to_le16(status); break; case USB_RECIP_INTERFACE: /* currently, the data result should be zero */ reply = cpu_to_le16(0); break; case USB_RECIP_ENDPOINT: ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); if (!ep) return -ENOENT; reply = cpu_to_le16(ep->halted ? 1 : 0); break; default: return 0; } if (le16_to_cpu(ctrl->wLength) != 2) return -EINVAL; ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); if (ret) { dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); return ret; } return 1; } static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); /** * get_ep_head - return the first request on the endpoint * @hs_ep: The controller endpoint to get * * Get the first request on the endpoint. */ static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) { return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, queue); } /** * dwc2_gadget_start_next_request - Starts next request from ep queue * @hs_ep: Endpoint structure * * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked * in its handler. Hence we need to unmask it here to be able to do * resynchronization. */ static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) { u32 mask; struct dwc2_hsotg *hsotg = hs_ep->parent; int dir_in = hs_ep->dir_in; struct dwc2_hsotg_req *hs_req; u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; if (!list_empty(&hs_ep->queue)) { hs_req = get_ep_head(hs_ep); dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); return; } if (!hs_ep->isochronous) return; if (dir_in) { dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", __func__); } else { dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", __func__); mask = dwc2_readl(hsotg, epmsk_reg); mask |= DOEPMSK_OUTTKNEPDISMSK; dwc2_writel(hsotg, mask, epmsk_reg); } } /** * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE * @hsotg: The device state * @ctrl: USB control request */ static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, struct usb_ctrlrequest *ctrl) { struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; struct dwc2_hsotg_req *hs_req; bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); struct dwc2_hsotg_ep *ep; int ret; bool halted; u32 recip; u32 wValue; u32 wIndex; dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", __func__, set ? "SET" : "CLEAR"); wValue = le16_to_cpu(ctrl->wValue); wIndex = le16_to_cpu(ctrl->wIndex); recip = ctrl->bRequestType & USB_RECIP_MASK; switch (recip) { case USB_RECIP_DEVICE: switch (wValue) { case USB_DEVICE_REMOTE_WAKEUP: if (set) hsotg->remote_wakeup_allowed = 1; else hsotg->remote_wakeup_allowed = 0; break; case USB_DEVICE_TEST_MODE: if ((wIndex & 0xff) != 0) return -EINVAL; if (!set) return -EINVAL; hsotg->test_mode = wIndex >> 8; break; default: return -ENOENT; } ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); if (ret) { dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); return ret; } break; case USB_RECIP_ENDPOINT: ep = ep_from_windex(hsotg, wIndex); if (!ep) { dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", __func__, wIndex); return -ENOENT; } switch (wValue) { case USB_ENDPOINT_HALT: halted = ep->halted; dwc2_hsotg_ep_sethalt(&ep->ep, set, true); ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); if (ret) { dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); return ret; } /* * we have to complete all requests for ep if it was * halted, and the halt was cleared by CLEAR_FEATURE */ if (!set && halted) { /* * If we have request in progress, * then complete it */ if (ep->req) { hs_req = ep->req; ep->req = NULL; list_del_init(&hs_req->queue); if (hs_req->req.complete) { spin_unlock(&hsotg->lock); usb_gadget_giveback_request( &ep->ep, &hs_req->req); spin_lock(&hsotg->lock); } } /* If we have pending request, then start it */ if (!ep->req) dwc2_gadget_start_next_request(ep); } break; default: return -ENOENT; } break; default: return -ENOENT; } return 1; } static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); /** * dwc2_hsotg_stall_ep0 - stall ep0 * @hsotg: The device state * * Set stall for ep0 as response for setup request. */ static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) { struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; u32 reg; u32 ctrl; dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; /* * DxEPCTL_Stall will be cleared by EP once it has * taken effect, so no need to clear later. */ ctrl = dwc2_readl(hsotg, reg); ctrl |= DXEPCTL_STALL; ctrl |= DXEPCTL_CNAK; dwc2_writel(hsotg, ctrl, reg); dev_dbg(hsotg->dev, "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", ctrl, reg, dwc2_readl(hsotg, reg)); /* * complete won't be called, so we enqueue * setup request here */ dwc2_hsotg_enqueue_setup(hsotg); } /** * dwc2_hsotg_process_control - process a control request * @hsotg: The device state * @ctrl: The control request received * * The controller has received the SETUP phase of a control request, and * needs to work out what to do next (and whether to pass it on to the * gadget driver). */ static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, struct usb_ctrlrequest *ctrl) { struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; int ret = 0; u32 dcfg; dev_dbg(hsotg->dev, "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, ctrl->wIndex, ctrl->wLength); if (ctrl->wLength == 0) { ep0->dir_in = 1; hsotg->ep0_state = DWC2_EP0_STATUS_IN; } else if (ctrl->bRequestType & USB_DIR_IN) { ep0->dir_in = 1; hsotg->ep0_state = DWC2_EP0_DATA_IN; } else { ep0->dir_in = 0; hsotg->ep0_state = DWC2_EP0_DATA_OUT; } if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { switch (ctrl->bRequest) { case USB_REQ_SET_ADDRESS: hsotg->connected = 1; dcfg = dwc2_readl(hsotg, DCFG); dcfg &= ~DCFG_DEVADDR_MASK; dcfg |= (le16_to_cpu(ctrl->wValue) << DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; dwc2_writel(hsotg, dcfg, DCFG); dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); return; case USB_REQ_GET_STATUS: ret = dwc2_hsotg_process_req_status(hsotg, ctrl); break; case USB_REQ_CLEAR_FEATURE: case USB_REQ_SET_FEATURE: ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); break; } } /* as a fallback, try delivering it to the driver to deal with */ if (ret == 0 && hsotg->driver) { spin_unlock(&hsotg->lock); ret = hsotg->driver->setup(&hsotg->gadget, ctrl); spin_lock(&hsotg->lock); if (ret < 0) dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); } /* * the request is either unhandlable, or is not formatted correctly * so respond with a STALL for the status stage to indicate failure. */ if (ret < 0) dwc2_hsotg_stall_ep0(hsotg); } /** * dwc2_hsotg_complete_setup - completion of a setup transfer * @ep: The endpoint the request was on. * @req: The request completed. * * Called on completion of any requests the driver itself submitted for * EP0 setup packets */ static void dwc2_hsotg_complete_setup(struct usb_ep *ep, struct usb_request *req) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hsotg = hs_ep->parent; if (req->status < 0) { dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); return; } spin_lock(&hsotg->lock); if (req->actual == 0) dwc2_hsotg_enqueue_setup(hsotg); else dwc2_hsotg_process_control(hsotg, req->buf); spin_unlock(&hsotg->lock); } /** * dwc2_hsotg_enqueue_setup - start a request for EP0 packets * @hsotg: The device state. * * Enqueue a request on EP0 if necessary to received any SETUP packets * received from the host. */ static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) { struct usb_request *req = hsotg->ctrl_req; struct dwc2_hsotg_req *hs_req = our_req(req); int ret; dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); req->zero = 0; req->length = 8; req->buf = hsotg->ctrl_buff; req->complete = dwc2_hsotg_complete_setup; if (!list_empty(&hs_req->queue)) { dev_dbg(hsotg->dev, "%s already queued???\n", __func__); return; } hsotg->eps_out[0]->dir_in = 0; hsotg->eps_out[0]->send_zlp = 0; hsotg->ep0_state = DWC2_EP0_SETUP; ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); if (ret < 0) { dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); /* * Don't think there's much we can do other than watch the * driver fail. */ } } static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep) { u32 ctrl; u8 index = hs_ep->index; u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); if (hs_ep->dir_in) dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", index); else dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", index); if (using_desc_dma(hsotg)) { /* Not specific buffer needed for ep0 ZLP */ dma_addr_t dma = hs_ep->desc_list_dma; if (!index) dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); } else { dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | DXEPTSIZ_XFERSIZE(0), epsiz_reg); } ctrl = dwc2_readl(hsotg, epctl_reg); ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ ctrl |= DXEPCTL_USBACTEP; dwc2_writel(hsotg, ctrl, epctl_reg); } /** * dwc2_hsotg_complete_request - complete a request given to us * @hsotg: The device state. * @hs_ep: The endpoint the request was on. * @hs_req: The request to complete. * @result: The result code (0 => Ok, otherwise errno) * * The given request has finished, so call the necessary completion * if it has one and then look to see if we can start a new request * on the endpoint. * * Note, expects the ep to already be locked as appropriate. */ static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req, int result) { if (!hs_req) { dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); return; } dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); /* * only replace the status if we've not already set an error * from a previous transaction */ if (hs_req->req.status == -EINPROGRESS) hs_req->req.status = result; if (using_dma(hsotg)) dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); hs_ep->req = NULL; list_del_init(&hs_req->queue); /* * call the complete request with the locks off, just in case the * request tries to queue more work for this endpoint. */ if (hs_req->req.complete) { spin_unlock(&hsotg->lock); usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); spin_lock(&hsotg->lock); } /* In DDMA don't need to proceed to starting of next ISOC request */ if (using_desc_dma(hsotg) && hs_ep->isochronous) return; /* * Look to see if there is anything else to do. Note, the completion * of the previous request may have caused a new request to be started * so be careful when doing this. */ if (!hs_ep->req && result >= 0) dwc2_gadget_start_next_request(hs_ep); } /* * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA * @hs_ep: The endpoint the request was on. * * Get first request from the ep queue, determine descriptor on which complete * happened. SW discovers which descriptor currently in use by HW, adjusts * dma_address and calculates index of completed descriptor based on the value * of DEPDMA register. Update actual length of request, giveback to gadget. */ static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg *hsotg = hs_ep->parent; struct dwc2_hsotg_req *hs_req; struct usb_request *ureq; u32 desc_sts; u32 mask; desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; /* Process only descriptors with buffer status set to DMA done */ while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { hs_req = get_ep_head(hs_ep); if (!hs_req) { dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); return; } ureq = &hs_req->req; /* Check completion status */ if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == DEV_DMA_STS_SUCC) { mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : DEV_DMA_ISOC_RX_NBYTES_MASK; ureq->actual = ureq->length - ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT); /* Adjust actual len for ISOC Out if len is * not align of 4 */ if (!hs_ep->dir_in && ureq->length & 0x3) ureq->actual += 4 - (ureq->length & 0x3); } dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); hs_ep->compl_desc++; if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) hs_ep->compl_desc = 0; desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; } } /* * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. * @hs_ep: The isochronous endpoint. * * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA * interrupt. Reset target frame and next_desc to allow to start * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS * interrupt for OUT direction. */ static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg *hsotg = hs_ep->parent; if (!hs_ep->dir_in) dwc2_flush_rx_fifo(hsotg); dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); hs_ep->target_frame = TARGET_FRAME_INITIAL; hs_ep->next_desc = 0; hs_ep->compl_desc = 0; } /** * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint * @hsotg: The device state. * @ep_idx: The endpoint index for the data * @size: The size of data in the fifo, in bytes * * The FIFO status shows there is data to read from the FIFO for a given * endpoint, so sort out whether we need to read the data into a request * that has been made for that endpoint. */ static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) { struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; struct dwc2_hsotg_req *hs_req = hs_ep->req; int to_read; int max_req; int read_ptr; if (!hs_req) { u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); int ptr; dev_dbg(hsotg->dev, "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", __func__, size, ep_idx, epctl); /* dump the data from the FIFO, we've nothing we can do */ for (ptr = 0; ptr < size; ptr += 4) (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); return; } to_read = size; read_ptr = hs_req->req.actual; max_req = hs_req->req.length - read_ptr; dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", __func__, to_read, max_req, read_ptr, hs_req->req.length); if (to_read > max_req) { /* * more data appeared than we where willing * to deal with in this request. */ /* currently we don't deal this */ WARN_ON_ONCE(1); } hs_ep->total_data += to_read; hs_req->req.actual += to_read; to_read = DIV_ROUND_UP(to_read, 4); /* * note, we might over-write the buffer end by 3 bytes depending on * alignment of the data. */ dwc2_readl_rep(hsotg, EPFIFO(ep_idx), hs_req->req.buf + read_ptr, to_read); } /** * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint * @hsotg: The device instance * @dir_in: If IN zlp * * Generate a zero-length IN packet request for terminating a SETUP * transaction. * * Note, since we don't write any data to the TxFIFO, then it is * currently believed that we do not need to wait for any space in * the TxFIFO. */ static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) { /* eps_out[0] is used in both directions */ hsotg->eps_out[0]->dir_in = dir_in; hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); } static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, u32 epctl_reg) { u32 ctrl; ctrl = dwc2_readl(hsotg, epctl_reg); if (ctrl & DXEPCTL_EOFRNUM) ctrl |= DXEPCTL_SETEVENFR; else ctrl |= DXEPCTL_SETODDFR; dwc2_writel(hsotg, ctrl, epctl_reg); } /* * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc * @hs_ep - The endpoint on which transfer went * * Iterate over endpoints descriptor chain and get info on bytes remained * in DMA descriptors after transfer has completed. Used for non isoc EPs. */ static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) { const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; struct dwc2_hsotg *hsotg = hs_ep->parent; unsigned int bytes_rem = 0; unsigned int bytes_rem_correction = 0; struct dwc2_dma_desc *desc = hs_ep->desc_list; int i; u32 status; u32 mps = hs_ep->ep.maxpacket; int dir_in = hs_ep->dir_in; if (!desc) return -EINVAL; /* Interrupt OUT EP with mps not multiple of 4 */ if (hs_ep->index) if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) bytes_rem_correction = 4 - (mps % 4); for (i = 0; i < hs_ep->desc_count; ++i) { status = desc->status; bytes_rem += status & DEV_DMA_NBYTES_MASK; bytes_rem -= bytes_rem_correction; if (status & DEV_DMA_STS_MASK) dev_err(hsotg->dev, "descriptor %d closed with %x\n", i, status & DEV_DMA_STS_MASK); if (status & DEV_DMA_L) break; desc++; } return bytes_rem; } /** * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO * @hsotg: The device instance * @epnum: The endpoint received from * * The RXFIFO has delivered an OutDone event, which means that the data * transfer for an OUT endpoint has been completed, either by a short * packet or by the finish of a transfer. */ static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) { u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; struct dwc2_hsotg_req *hs_req = hs_ep->req; struct usb_request *req = &hs_req->req; unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); int result = 0; if (!hs_req) { dev_dbg(hsotg->dev, "%s: no request active\n", __func__); return; } if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { dev_dbg(hsotg->dev, "zlp packet received\n"); dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); dwc2_hsotg_enqueue_setup(hsotg); return; } if (using_desc_dma(hsotg)) size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); if (using_dma(hsotg)) { unsigned int size_done; /* * Calculate the size of the transfer by checking how much * is left in the endpoint size register and then working it * out from the amount we loaded for the transfer. * * We need to do this as DMA pointers are always 32bit aligned * so may overshoot/undershoot the transfer. */ size_done = hs_ep->size_loaded - size_left; size_done += hs_ep->last_load; req->actual = size_done; } /* if there is more request to do, schedule new transfer */ if (req->actual < req->length && size_left == 0) { dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); return; } if (req->actual < req->length && req->short_not_ok) { dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", __func__, req->actual, req->length); /* * todo - what should we return here? there's no one else * even bothering to check the status. */ } /* DDMA IN status phase will start from StsPhseRcvd interrupt */ if (!using_desc_dma(hsotg) && epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) { /* Move to STATUS IN */ dwc2_hsotg_ep0_zlp(hsotg, true); return; } /* * Slave mode OUT transfers do not go through XferComplete so * adjust the ISOC parity here. */ if (!using_dma(hsotg)) { if (hs_ep->isochronous && hs_ep->interval == 1) dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); else if (hs_ep->isochronous && hs_ep->interval > 1) dwc2_gadget_incr_frame_num(hs_ep); } dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); } /** * dwc2_hsotg_handle_rx - RX FIFO has data * @hsotg: The device instance * * The IRQ handler has detected that the RX FIFO has some data in it * that requires processing, so find out what is in there and do the * appropriate read. * * The RXFIFO is a true FIFO, the packets coming out are still in packet * chunks, so if you have x packets received on an endpoint you'll get x * FIFO events delivered, each with a packet's worth of data in it. * * When using DMA, we should not be processing events from the RXFIFO * as the actual data should be sent to the memory directly and we turn * on the completion interrupts to get notifications of transfer completion. */ static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) { u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); u32 epnum, status, size; WARN_ON(using_dma(hsotg)); epnum = grxstsr & GRXSTS_EPNUM_MASK; status = grxstsr & GRXSTS_PKTSTS_MASK; size = grxstsr & GRXSTS_BYTECNT_MASK; size >>= GRXSTS_BYTECNT_SHIFT; dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", __func__, grxstsr, size, epnum); switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { case GRXSTS_PKTSTS_GLOBALOUTNAK: dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); break; case GRXSTS_PKTSTS_OUTDONE: dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", dwc2_hsotg_read_frameno(hsotg)); if (!using_dma(hsotg)) dwc2_hsotg_handle_outdone(hsotg, epnum); break; case GRXSTS_PKTSTS_SETUPDONE: dev_dbg(hsotg->dev, "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", dwc2_hsotg_read_frameno(hsotg), dwc2_readl(hsotg, DOEPCTL(0))); /* * Call dwc2_hsotg_handle_outdone here if it was not called from * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't * generate GRXSTS_PKTSTS_OUTDONE for setup packet. */ if (hsotg->ep0_state == DWC2_EP0_SETUP) dwc2_hsotg_handle_outdone(hsotg, epnum); break; case GRXSTS_PKTSTS_OUTRX: dwc2_hsotg_rx_data(hsotg, epnum, size); break; case GRXSTS_PKTSTS_SETUPRX: dev_dbg(hsotg->dev, "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", dwc2_hsotg_read_frameno(hsotg), dwc2_readl(hsotg, DOEPCTL(0))); WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); dwc2_hsotg_rx_data(hsotg, epnum, size); break; default: dev_warn(hsotg->dev, "%s: unknown status %08x\n", __func__, grxstsr); dwc2_hsotg_dump(hsotg); break; } } /** * dwc2_hsotg_ep0_mps - turn max packet size into register setting * @mps: The maximum packet size in bytes. */ static u32 dwc2_hsotg_ep0_mps(unsigned int mps) { switch (mps) { case 64: return D0EPCTL_MPS_64; case 32: return D0EPCTL_MPS_32; case 16: return D0EPCTL_MPS_16; case 8: return D0EPCTL_MPS_8; } /* bad max packet size, warn and return invalid result */ WARN_ON(1); return (u32)-1; } /** * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field * @hsotg: The driver state. * @ep: The index number of the endpoint * @mps: The maximum packet size in bytes * @mc: The multicount value * @dir_in: True if direction is in. * * Configure the maximum packet size for the given endpoint, updating * the hardware control registers to reflect this. */ static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, unsigned int ep, unsigned int mps, unsigned int mc, unsigned int dir_in) { struct dwc2_hsotg_ep *hs_ep; u32 reg; hs_ep = index_to_ep(hsotg, ep, dir_in); if (!hs_ep) return; if (ep == 0) { u32 mps_bytes = mps; /* EP0 is a special case */ mps = dwc2_hsotg_ep0_mps(mps_bytes); if (mps > 3) goto bad_mps; hs_ep->ep.maxpacket = mps_bytes; hs_ep->mc = 1; } else { if (mps > 1024) goto bad_mps; hs_ep->mc = mc; if (mc > 3) goto bad_mps; hs_ep->ep.maxpacket = mps; } if (dir_in) { reg = dwc2_readl(hsotg, DIEPCTL(ep)); reg &= ~DXEPCTL_MPS_MASK; reg |= mps; dwc2_writel(hsotg, reg, DIEPCTL(ep)); } else { reg = dwc2_readl(hsotg, DOEPCTL(ep)); reg &= ~DXEPCTL_MPS_MASK; reg |= mps; dwc2_writel(hsotg, reg, DOEPCTL(ep)); } return; bad_mps: dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); } /** * dwc2_hsotg_txfifo_flush - flush Tx FIFO * @hsotg: The driver state * @idx: The index for the endpoint (0..15) */ static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) { dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, GRSTCTL); /* wait until the fifo is flushed */ if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", __func__); } /** * dwc2_hsotg_trytx - check to see if anything needs transmitting * @hsotg: The driver state * @hs_ep: The driver endpoint to check. * * Check to see if there is a request that has data to send, and if so * make an attempt to write data into the FIFO. */ static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg_req *hs_req = hs_ep->req; if (!hs_ep->dir_in || !hs_req) { /** * if request is not enqueued, we disable interrupts * for endpoints, excepting ep0 */ if (hs_ep->index != 0) dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); return 0; } if (hs_req->req.actual < hs_req->req.length) { dev_dbg(hsotg->dev, "trying to write more for ep%d\n", hs_ep->index); return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); } return 0; } /** * dwc2_hsotg_complete_in - complete IN transfer * @hsotg: The device state. * @hs_ep: The endpoint that has just completed. * * An IN transfer has been completed, update the transfer's state and then * call the relevant completion routines. */ static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg_req *hs_req = hs_ep->req; u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); int size_left, size_done; if (!hs_req) { dev_dbg(hsotg->dev, "XferCompl but no req\n"); return; } /* Finish ZLP handling for IN EP0 transactions */ if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { dev_dbg(hsotg->dev, "zlp packet sent\n"); /* * While send zlp for DWC2_EP0_STATUS_IN EP direction was * changed to IN. Change back to complete OUT transfer request */ hs_ep->dir_in = 0; dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); if (hsotg->test_mode) { int ret; ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); if (ret < 0) { dev_dbg(hsotg->dev, "Invalid Test #%d\n", hsotg->test_mode); dwc2_hsotg_stall_ep0(hsotg); return; } } dwc2_hsotg_enqueue_setup(hsotg); return; } /* * Calculate the size of the transfer by checking how much is left * in the endpoint size register and then working it out from * the amount we loaded for the transfer. * * We do this even for DMA, as the transfer may have incremented * past the end of the buffer (DMA transfers are always 32bit * aligned). */ if (using_desc_dma(hsotg)) { size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); if (size_left < 0) dev_err(hsotg->dev, "error parsing DDMA results %d\n", size_left); } else { size_left = DXEPTSIZ_XFERSIZE_GET(epsize); } size_done = hs_ep->size_loaded - size_left; size_done += hs_ep->last_load; if (hs_req->req.actual != size_done) dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", __func__, hs_req->req.actual, size_done); hs_req->req.actual = size_done; dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", hs_req->req.length, hs_req->req.actual, hs_req->req.zero); if (!size_left && hs_req->req.actual < hs_req->req.length) { dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); return; } /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ if (hs_ep->send_zlp) { hs_ep->send_zlp = 0; if (!using_desc_dma(hsotg)) { dwc2_hsotg_program_zlp(hsotg, hs_ep); /* transfer will be completed on next complete interrupt */ return; } } if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { /* Move to STATUS OUT */ dwc2_hsotg_ep0_zlp(hsotg, false); return; } dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); } /** * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep * @hsotg: The device state. * @idx: Index of ep. * @dir_in: Endpoint direction 1-in 0-out. * * Reads for endpoint with given index and direction, by masking * epint_reg with coresponding mask. */ static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, unsigned int idx, int dir_in) { u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); u32 ints; u32 mask; u32 diepempmsk; mask = dwc2_readl(hsotg, epmsk_reg); diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; mask |= DXEPINT_SETUP_RCVD; ints = dwc2_readl(hsotg, epint_reg); ints &= mask; return ints; } /** * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD * @hs_ep: The endpoint on which interrupt is asserted. * * This interrupt indicates that the endpoint has been disabled per the * application's request. * * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, * in case of ISOC completes current request. * * For ISOC-OUT endpoints completes expired requests. If there is remaining * request starts it. */ static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg *hsotg = hs_ep->parent; struct dwc2_hsotg_req *hs_req; unsigned char idx = hs_ep->index; int dir_in = hs_ep->dir_in; u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); int dctl = dwc2_readl(hsotg, DCTL); dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); if (dir_in) { int epctl = dwc2_readl(hsotg, epctl_reg); dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); if (hs_ep->isochronous) { dwc2_hsotg_complete_in(hsotg, hs_ep); return; } if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { int dctl = dwc2_readl(hsotg, DCTL); dctl |= DCTL_CGNPINNAK; dwc2_writel(hsotg, dctl, DCTL); } return; } if (dctl & DCTL_GOUTNAKSTS) { dctl |= DCTL_CGOUTNAK; dwc2_writel(hsotg, dctl, DCTL); } if (!hs_ep->isochronous) return; if (list_empty(&hs_ep->queue)) { dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", __func__, hs_ep); return; } do { hs_req = get_ep_head(hs_ep); if (hs_req) dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); dwc2_gadget_incr_frame_num(hs_ep); /* Update current frame number value. */ hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); } while (dwc2_gadget_target_frame_elapsed(hs_ep)); dwc2_gadget_start_next_request(hs_ep); } /** * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS * @ep: The endpoint on which interrupt is asserted. * * This is starting point for ISOC-OUT transfer, synchronization done with * first out token received from host while corresponding EP is disabled. * * Device does not know initial frame in which out token will come. For this * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon * getting this interrupt SW starts calculation for next transfer frame. */ static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) { struct dwc2_hsotg *hsotg = ep->parent; int dir_in = ep->dir_in; u32 doepmsk; if (dir_in || !ep->isochronous) return; if (using_desc_dma(hsotg)) { if (ep->target_frame == TARGET_FRAME_INITIAL) { /* Start first ISO Out */ ep->target_frame = hsotg->frame_number; dwc2_gadget_start_isoc_ddma(ep); } return; } if (ep->interval > 1 && ep->target_frame == TARGET_FRAME_INITIAL) { u32 ctrl; ep->target_frame = hsotg->frame_number; dwc2_gadget_incr_frame_num(ep); ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); if (ep->target_frame & 0x1) ctrl |= DXEPCTL_SETODDFR; else ctrl |= DXEPCTL_SETEVENFR; dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); } dwc2_gadget_start_next_request(ep); doepmsk = dwc2_readl(hsotg, DOEPMSK); doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; dwc2_writel(hsotg, doepmsk, DOEPMSK); } /** * dwc2_gadget_handle_nak - handle NAK interrupt * @hs_ep: The endpoint on which interrupt is asserted. * * This is starting point for ISOC-IN transfer, synchronization done with * first IN token received from host while corresponding EP is disabled. * * Device does not know when first one token will arrive from host. On first * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was * sent in response to that as there was no data in FIFO. SW is basing on this * interrupt to obtain frame in which token has come and then based on the * interval calculates next frame for transfer. */ static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) { struct dwc2_hsotg *hsotg = hs_ep->parent; int dir_in = hs_ep->dir_in; if (!dir_in || !hs_ep->isochronous) return; if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { if (using_desc_dma(hsotg)) { hs_ep->target_frame = hsotg->frame_number; dwc2_gadget_incr_frame_num(hs_ep); dwc2_gadget_start_isoc_ddma(hs_ep); return; } hs_ep->target_frame = hsotg->frame_number; if (hs_ep->interval > 1) { u32 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index)); if (hs_ep->target_frame & 0x1) ctrl |= DXEPCTL_SETODDFR; else ctrl |= DXEPCTL_SETEVENFR; dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); } dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); } if (!using_desc_dma(hsotg)) dwc2_gadget_incr_frame_num(hs_ep); } /** * dwc2_hsotg_epint - handle an in/out endpoint interrupt * @hsotg: The driver state * @idx: The index for the endpoint (0..15) * @dir_in: Set if this is an IN endpoint * * Process and clear any interrupt pending for an individual endpoint */ static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, int dir_in) { struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); u32 ints; u32 ctrl; ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); ctrl = dwc2_readl(hsotg, epctl_reg); /* Clear endpoint interrupts */ dwc2_writel(hsotg, ints, epint_reg); if (!hs_ep) { dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", __func__, idx, dir_in ? "in" : "out"); return; } dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", __func__, idx, dir_in ? "in" : "out", ints); /* Don't process XferCompl interrupt if it is a setup packet */ if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) ints &= ~DXEPINT_XFERCOMPL; /* * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP * stage and xfercomplete was generated without SETUP phase done * interrupt. SW should parse received setup packet only after host's * exit from setup phase of control transfer. */ if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) ints &= ~DXEPINT_XFERCOMPL; if (ints & DXEPINT_XFERCOMPL) { dev_dbg(hsotg->dev, "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", __func__, dwc2_readl(hsotg, epctl_reg), dwc2_readl(hsotg, epsiz_reg)); /* In DDMA handle isochronous requests separately */ if (using_desc_dma(hsotg) && hs_ep->isochronous) { dwc2_gadget_complete_isoc_request_ddma(hs_ep); } else if (dir_in) { /* * We get OutDone from the FIFO, so we only * need to look at completing IN requests here * if operating slave mode */ if (hs_ep->isochronous && hs_ep->interval > 1) dwc2_gadget_incr_frame_num(hs_ep); dwc2_hsotg_complete_in(hsotg, hs_ep); if (ints & DXEPINT_NAKINTRPT) ints &= ~DXEPINT_NAKINTRPT; if (idx == 0 && !hs_ep->req) dwc2_hsotg_enqueue_setup(hsotg); } else if (using_dma(hsotg)) { /* * We're using DMA, we need to fire an OutDone here * as we ignore the RXFIFO. */ if (hs_ep->isochronous && hs_ep->interval > 1) dwc2_gadget_incr_frame_num(hs_ep); dwc2_hsotg_handle_outdone(hsotg, idx); } } if (ints & DXEPINT_EPDISBLD) dwc2_gadget_handle_ep_disabled(hs_ep); if (ints & DXEPINT_OUTTKNEPDIS) dwc2_gadget_handle_out_token_ep_disabled(hs_ep); if (ints & DXEPINT_NAKINTRPT) dwc2_gadget_handle_nak(hs_ep); if (ints & DXEPINT_AHBERR) dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); if (using_dma(hsotg) && idx == 0) { /* * this is the notification we've received a * setup packet. In non-DMA mode we'd get this * from the RXFIFO, instead we need to process * the setup here. */ if (dir_in) WARN_ON_ONCE(1); else dwc2_hsotg_handle_outdone(hsotg, 0); } } if (ints & DXEPINT_STSPHSERCVD) { dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); /* Safety check EP0 state when STSPHSERCVD asserted */ if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { /* Move to STATUS IN for DDMA */ if (using_desc_dma(hsotg)) dwc2_hsotg_ep0_zlp(hsotg, true); } } if (ints & DXEPINT_BACK2BACKSETUP) dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); if (ints & DXEPINT_BNAINTR) { dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); if (hs_ep->isochronous) dwc2_gadget_handle_isoc_bna(hs_ep); } if (dir_in && !hs_ep->isochronous) { /* not sure if this is important, but we'll clear it anyway */ if (ints & DXEPINT_INTKNTXFEMP) { dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", __func__, idx); } /* this probably means something bad is happening */ if (ints & DXEPINT_INTKNEPMIS) { dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", __func__, idx); } /* FIFO has space or is empty (see GAHBCFG) */ if (hsotg->dedicated_fifos && ints & DXEPINT_TXFEMP) { dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", __func__, idx); if (!using_dma(hsotg)) dwc2_hsotg_trytx(hsotg, hs_ep); } } } /** * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) * @hsotg: The device state. * * Handle updating the device settings after the enumeration phase has * been completed. */ static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) { u32 dsts = dwc2_readl(hsotg, DSTS); int ep0_mps = 0, ep_mps = 8; /* * This should signal the finish of the enumeration phase * of the USB handshaking, so we should now know what rate * we connected at. */ dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); /* * note, since we're limited by the size of transfer on EP0, and * it seems IN transfers must be a even number of packets we do * not advertise a 64byte MPS on EP0. */ /* catch both EnumSpd_FS and EnumSpd_FS48 */ switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { case DSTS_ENUMSPD_FS: case DSTS_ENUMSPD_FS48: hsotg->gadget.speed = USB_SPEED_FULL; ep0_mps = EP0_MPS_LIMIT; ep_mps = 1023; break; case DSTS_ENUMSPD_HS: hsotg->gadget.speed = USB_SPEED_HIGH; ep0_mps = EP0_MPS_LIMIT; ep_mps = 1024; break; case DSTS_ENUMSPD_LS: hsotg->gadget.speed = USB_SPEED_LOW; ep0_mps = 8; ep_mps = 8; /* * note, we don't actually support LS in this driver at the * moment, and the documentation seems to imply that it isn't * supported by the PHYs on some of the devices. */ break; } dev_info(hsotg->dev, "new device is %s\n", usb_speed_string(hsotg->gadget.speed)); /* * we should now know the maximum packet size for an * endpoint, so set the endpoints to a default value. */ if (ep0_mps) { int i; /* Initialize ep0 for both in and out directions */ dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); for (i = 1; i < hsotg->num_of_eps; i++) { if (hsotg->eps_in[i]) dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0, 1); if (hsotg->eps_out[i]) dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0, 0); } } /* ensure after enumeration our EP0 is active */ dwc2_hsotg_enqueue_setup(hsotg); dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", dwc2_readl(hsotg, DIEPCTL0), dwc2_readl(hsotg, DOEPCTL0)); } /** * kill_all_requests - remove all requests from the endpoint's queue * @hsotg: The device state. * @ep: The endpoint the requests may be on. * @result: The result code to use. * * Go through the requests on the given endpoint and mark them * completed with the given result code. */ static void kill_all_requests(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *ep, int result) { struct dwc2_hsotg_req *req, *treq; unsigned int size; ep->req = NULL; list_for_each_entry_safe(req, treq, &ep->queue, queue) dwc2_hsotg_complete_request(hsotg, ep, req, result); if (!hsotg->dedicated_fifos) return; size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; if (size < ep->fifo_size) dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); } /** * dwc2_hsotg_disconnect - disconnect service * @hsotg: The device state. * * The device has been disconnected. Remove all current * transactions and signal the gadget driver that this * has happened. */ void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) { unsigned int ep; if (!hsotg->connected) return; hsotg->connected = 0; hsotg->test_mode = 0; /* all endpoints should be shutdown */ for (ep = 0; ep < hsotg->num_of_eps; ep++) { if (hsotg->eps_in[ep]) kill_all_requests(hsotg, hsotg->eps_in[ep], -ESHUTDOWN); if (hsotg->eps_out[ep]) kill_all_requests(hsotg, hsotg->eps_out[ep], -ESHUTDOWN); } call_gadget(hsotg, disconnect); hsotg->lx_state = DWC2_L3; usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); } /** * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler * @hsotg: The device state: * @periodic: True if this is a periodic FIFO interrupt */ static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) { struct dwc2_hsotg_ep *ep; int epno, ret; /* look through for any more data to transmit */ for (epno = 0; epno < hsotg->num_of_eps; epno++) { ep = index_to_ep(hsotg, epno, 1); if (!ep) continue; if (!ep->dir_in) continue; if ((periodic && !ep->periodic) || (!periodic && ep->periodic)) continue; ret = dwc2_hsotg_trytx(hsotg, ep); if (ret < 0) break; } } /* IRQ flags which will trigger a retry around the IRQ loop */ #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ GINTSTS_PTXFEMP | \ GINTSTS_RXFLVL) static int dwc2_hsotg_ep_disable(struct usb_ep *ep); /** * dwc2_hsotg_core_init - issue softreset to the core * @hsotg: The device state * @is_usb_reset: Usb resetting flag * * Issue a soft reset to the core, and await the core finishing it. */ void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, bool is_usb_reset) { u32 intmsk; u32 val; u32 usbcfg; u32 dcfg = 0; int ep; /* Kill any ep0 requests as controller will be reinitialized */ kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); if (!is_usb_reset) { if (dwc2_core_reset(hsotg, true)) return; } else { /* all endpoints should be shutdown */ for (ep = 1; ep < hsotg->num_of_eps; ep++) { if (hsotg->eps_in[ep]) dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); if (hsotg->eps_out[ep]) dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); } } /* * we must now enable ep0 ready for host detection and then * set configuration. */ /* keep other bits untouched (so e.g. forced modes are not lost) */ usbcfg = dwc2_readl(hsotg, GUSBCFG); usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { /* FS/LS Dedicated Transceiver Interface */ usbcfg |= GUSBCFG_PHYSEL; } else { /* set the PLL on, remove the HNP/SRP and set the PHY */ val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | (val << GUSBCFG_USBTRDTIM_SHIFT); } dwc2_writel(hsotg, usbcfg, GUSBCFG); dwc2_hsotg_init_fifo(hsotg); if (!is_usb_reset) dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); dcfg |= DCFG_EPMISCNT(1); switch (hsotg->params.speed) { case DWC2_SPEED_PARAM_LOW: dcfg |= DCFG_DEVSPD_LS; break; case DWC2_SPEED_PARAM_FULL: if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) dcfg |= DCFG_DEVSPD_FS48; else dcfg |= DCFG_DEVSPD_FS; break; default: dcfg |= DCFG_DEVSPD_HS; } if (hsotg->params.ipg_isoc_en) dcfg |= DCFG_IPG_ISOC_SUPPORDED; dwc2_writel(hsotg, dcfg, DCFG); /* Clear any pending OTG interrupts */ dwc2_writel(hsotg, 0xffffffff, GOTGINT); /* Clear any pending interrupts */ dwc2_writel(hsotg, 0xffffffff, GINTSTS); intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | GINTSTS_USBRST | GINTSTS_RESETDET | GINTSTS_ENUMDONE | GINTSTS_OTGINT | GINTSTS_USBSUSP | GINTSTS_WKUPINT | GINTSTS_LPMTRANRCVD; if (!using_desc_dma(hsotg)) intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; if (!hsotg->params.external_id_pin_ctl) intmsk |= GINTSTS_CONIDSTSCHNG; dwc2_writel(hsotg, intmsk, GINTMSK); if (using_dma(hsotg)) { dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | hsotg->params.ahbcfg, GAHBCFG); /* Set DDMA mode support in the core if needed */ if (using_desc_dma(hsotg)) dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); } else { dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL | GAHBCFG_P_TXF_EMP_LVL) : 0) | GAHBCFG_GLBL_INTR_EN, GAHBCFG); } /* * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts * when we have no data to transfer. Otherwise we get being flooded by * interrupts. */ dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, DIEPMSK); /* * don't need XferCompl, we get that from RXFIFO in slave mode. In * DMA mode we may need this and StsPhseRcvd. */ dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | DOEPMSK_STSPHSERCVDMSK) : 0) | DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | DOEPMSK_SETUPMSK, DOEPMSK); /* Enable BNA interrupt for DDMA */ if (using_desc_dma(hsotg)) { dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); } dwc2_writel(hsotg, 0, DAINTMSK); dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", dwc2_readl(hsotg, DIEPCTL0), dwc2_readl(hsotg, DOEPCTL0)); /* enable in and out endpoint interrupts */ dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); /* * Enable the RXFIFO when in slave mode, as this is how we collect * the data. In DMA mode, we get events from the FIFO but also * things we cannot process, so do not use it. */ if (!using_dma(hsotg)) dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); /* Enable interrupts for EP0 in and out */ dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); if (!is_usb_reset) { dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); udelay(10); /* see openiboot */ dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); } dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); /* * DxEPCTL_USBActEp says RO in manual, but seems to be set by * writing to the EPCTL register.. */ /* set to read 1 8byte packet */ dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | DXEPCTL_CNAK | DXEPCTL_EPENA | DXEPCTL_USBACTEP, DOEPCTL0); /* enable, but don't activate EP0in */ dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | DXEPCTL_USBACTEP, DIEPCTL0); /* clear global NAKs */ val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; if (!is_usb_reset) val |= DCTL_SFTDISCON; dwc2_set_bit(hsotg, DCTL, val); /* configure the core to support LPM */ dwc2_gadget_init_lpm(hsotg); /* must be at-least 3ms to allow bus to see disconnect */ mdelay(3); hsotg->lx_state = DWC2_L0; dwc2_hsotg_enqueue_setup(hsotg); dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", dwc2_readl(hsotg, DIEPCTL0), dwc2_readl(hsotg, DOEPCTL0)); } static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) { /* set the soft-disconnect bit */ dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); } void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) { /* remove the soft-disconnect and let's go */ dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); } /** * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. * @hsotg: The device state: * * This interrupt indicates one of the following conditions occurred while * transmitting an ISOC transaction. * - Corrupted IN Token for ISOC EP. * - Packet not complete in FIFO. * * The following actions will be taken: * - Determine the EP * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO */ static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) { struct dwc2_hsotg_ep *hs_ep; u32 epctrl; u32 daintmsk; u32 idx; dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); daintmsk = dwc2_readl(hsotg, DAINTMSK); for (idx = 1; idx < hsotg->num_of_eps; idx++) { hs_ep = hsotg->eps_in[idx]; /* Proceed only unmasked ISOC EPs */ if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) continue; epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); if ((epctrl & DXEPCTL_EPENA) && dwc2_gadget_target_frame_elapsed(hs_ep)) { epctrl |= DXEPCTL_SNAK; epctrl |= DXEPCTL_EPDIS; dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); } } /* Clear interrupt */ dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); } /** * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt * @hsotg: The device state: * * This interrupt indicates one of the following conditions occurred while * transmitting an ISOC transaction. * - Corrupted OUT Token for ISOC EP. * - Packet not complete in FIFO. * * The following actions will be taken: * - Determine the EP * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. */ static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) { u32 gintsts; u32 gintmsk; u32 daintmsk; u32 epctrl; struct dwc2_hsotg_ep *hs_ep; int idx; dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); daintmsk = dwc2_readl(hsotg, DAINTMSK); daintmsk >>= DAINT_OUTEP_SHIFT; for (idx = 1; idx < hsotg->num_of_eps; idx++) { hs_ep = hsotg->eps_out[idx]; /* Proceed only unmasked ISOC EPs */ if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) continue; epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); if ((epctrl & DXEPCTL_EPENA) && dwc2_gadget_target_frame_elapsed(hs_ep)) { /* Unmask GOUTNAKEFF interrupt */ gintmsk = dwc2_readl(hsotg, GINTMSK); gintmsk |= GINTSTS_GOUTNAKEFF; dwc2_writel(hsotg, gintmsk, GINTMSK); gintsts = dwc2_readl(hsotg, GINTSTS); if (!(gintsts & GINTSTS_GOUTNAKEFF)) { dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); break; } } } /* Clear interrupt */ dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); } /** * dwc2_hsotg_irq - handle device interrupt * @irq: The IRQ number triggered * @pw: The pw value when registered the handler. */ static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) { struct dwc2_hsotg *hsotg = pw; int retry_count = 8; u32 gintsts; u32 gintmsk; if (!dwc2_is_device_mode(hsotg)) return IRQ_NONE; spin_lock(&hsotg->lock); irq_retry: gintsts = dwc2_readl(hsotg, GINTSTS); gintmsk = dwc2_readl(hsotg, GINTMSK); dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); gintsts &= gintmsk; if (gintsts & GINTSTS_RESETDET) { dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); /* This event must be used only if controller is suspended */ if (hsotg->lx_state == DWC2_L2) { dwc2_exit_partial_power_down(hsotg, true); hsotg->lx_state = DWC2_L0; } } if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { u32 usb_status = dwc2_readl(hsotg, GOTGCTL); u32 connected = hsotg->connected; dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", dwc2_readl(hsotg, GNPTXSTS)); dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); /* Report disconnection if it is not already done. */ dwc2_hsotg_disconnect(hsotg); /* Reset device address to zero */ dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); if (usb_status & GOTGCTL_BSESVLD && connected) dwc2_hsotg_core_init_disconnected(hsotg, true); } if (gintsts & GINTSTS_ENUMDONE) { dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); dwc2_hsotg_irq_enumdone(hsotg); } if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { u32 daint = dwc2_readl(hsotg, DAINT); u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); u32 daint_out, daint_in; int ep; daint &= daintmsk; daint_out = daint >> DAINT_OUTEP_SHIFT; daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); for (ep = 0; ep < hsotg->num_of_eps && daint_out; ep++, daint_out >>= 1) { if (daint_out & 1) dwc2_hsotg_epint(hsotg, ep, 0); } for (ep = 0; ep < hsotg->num_of_eps && daint_in; ep++, daint_in >>= 1) { if (daint_in & 1) dwc2_hsotg_epint(hsotg, ep, 1); } } /* check both FIFOs */ if (gintsts & GINTSTS_NPTXFEMP) { dev_dbg(hsotg->dev, "NPTxFEmp\n"); /* * Disable the interrupt to stop it happening again * unless one of these endpoint routines decides that * it needs re-enabling */ dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); dwc2_hsotg_irq_fifoempty(hsotg, false); } if (gintsts & GINTSTS_PTXFEMP) { dev_dbg(hsotg->dev, "PTxFEmp\n"); /* See note in GINTSTS_NPTxFEmp */ dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); dwc2_hsotg_irq_fifoempty(hsotg, true); } if (gintsts & GINTSTS_RXFLVL) { /* * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, * we need to retry dwc2_hsotg_handle_rx if this is still * set. */ dwc2_hsotg_handle_rx(hsotg); } if (gintsts & GINTSTS_ERLYSUSP) { dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); } /* * these next two seem to crop-up occasionally causing the core * to shutdown the USB transfer, so try clearing them and logging * the occurrence. */ if (gintsts & GINTSTS_GOUTNAKEFF) { u8 idx; u32 epctrl; u32 gintmsk; u32 daintmsk; struct dwc2_hsotg_ep *hs_ep; daintmsk = dwc2_readl(hsotg, DAINTMSK); daintmsk >>= DAINT_OUTEP_SHIFT; /* Mask this interrupt */ gintmsk = dwc2_readl(hsotg, GINTMSK); gintmsk &= ~GINTSTS_GOUTNAKEFF; dwc2_writel(hsotg, gintmsk, GINTMSK); dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); for (idx = 1; idx < hsotg->num_of_eps; idx++) { hs_ep = hsotg->eps_out[idx]; /* Proceed only unmasked ISOC EPs */ if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) continue; epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); if (epctrl & DXEPCTL_EPENA) { epctrl |= DXEPCTL_SNAK; epctrl |= DXEPCTL_EPDIS; dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); } } /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ } if (gintsts & GINTSTS_GINNAKEFF) { dev_info(hsotg->dev, "GINNakEff triggered\n"); dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); dwc2_hsotg_dump(hsotg); } if (gintsts & GINTSTS_INCOMPL_SOIN) dwc2_gadget_handle_incomplete_isoc_in(hsotg); if (gintsts & GINTSTS_INCOMPL_SOOUT) dwc2_gadget_handle_incomplete_isoc_out(hsotg); /* * if we've had fifo events, we should try and go around the * loop again to see if there's any point in returning yet. */ if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) goto irq_retry; spin_unlock(&hsotg->lock); return IRQ_HANDLED; } static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep) { u32 epctrl_reg; u32 epint_reg; epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : DOEPCTL(hs_ep->index); epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : DOEPINT(hs_ep->index); dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, hs_ep->name); if (hs_ep->dir_in) { if (hsotg->dedicated_fifos || hs_ep->periodic) { dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); /* Wait for Nak effect */ if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_INEPNAKEFF, 100)) dev_warn(hsotg->dev, "%s: timeout DIEPINT.NAKEFF\n", __func__); } else { dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); /* Wait for Nak effect */ if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, GINTSTS_GINNAKEFF, 100)) dev_warn(hsotg->dev, "%s: timeout GINTSTS.GINNAKEFF\n", __func__); } } else { if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); /* Wait for global nak to take effect */ if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, GINTSTS_GOUTNAKEFF, 100)) dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", __func__); } /* Disable ep */ dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); /* Wait for ep to be disabled */ if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) dev_warn(hsotg->dev, "%s: timeout DOEPCTL.EPDisable\n", __func__); /* Clear EPDISBLD interrupt */ dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); if (hs_ep->dir_in) { unsigned short fifo_index; if (hsotg->dedicated_fifos || hs_ep->periodic) fifo_index = hs_ep->fifo_index; else fifo_index = 0; /* Flush TX FIFO */ dwc2_flush_tx_fifo(hsotg, fifo_index); /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ if (!hsotg->dedicated_fifos && !hs_ep->periodic) dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); } else { /* Remove global NAKs */ dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); } } /** * dwc2_hsotg_ep_enable - enable the given endpoint * @ep: The USB endpint to configure * @desc: The USB endpoint descriptor to configure with. * * This is called from the USB gadget code's usb_ep_enable(). */ static int dwc2_hsotg_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hsotg = hs_ep->parent; unsigned long flags; unsigned int index = hs_ep->index; u32 epctrl_reg; u32 epctrl; u32 mps; u32 mc; u32 mask; unsigned int dir_in; unsigned int i, val, size; int ret = 0; unsigned char ep_type; int desc_num; dev_dbg(hsotg->dev, "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, desc->wMaxPacketSize, desc->bInterval); /* not to be called for EP0 */ if (index == 0) { dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); return -EINVAL; } dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; if (dir_in != hs_ep->dir_in) { dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); return -EINVAL; } ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; mps = usb_endpoint_maxp(desc); mc = usb_endpoint_maxp_mult(desc); /* ISOC IN in DDMA supported bInterval up to 10 */ if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && dir_in && desc->bInterval > 10) { dev_err(hsotg->dev, "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); return -EINVAL; } /* High bandwidth ISOC OUT in DDMA not supported */ if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && !dir_in && mc > 1) { dev_err(hsotg->dev, "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); return -EINVAL; } /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); epctrl = dwc2_readl(hsotg, epctrl_reg); dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", __func__, epctrl, epctrl_reg); if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) desc_num = MAX_DMA_DESC_NUM_HS_ISOC; else desc_num = MAX_DMA_DESC_NUM_GENERIC; /* Allocate DMA descriptor chain for non-ctrl endpoints */ if (using_desc_dma(hsotg) && !hs_ep->desc_list) { hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, desc_num * sizeof(struct dwc2_dma_desc), &hs_ep->desc_list_dma, GFP_ATOMIC); if (!hs_ep->desc_list) { ret = -ENOMEM; goto error2; } } spin_lock_irqsave(&hsotg->lock, flags); epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); epctrl |= DXEPCTL_MPS(mps); /* * mark the endpoint as active, otherwise the core may ignore * transactions entirely for this endpoint */ epctrl |= DXEPCTL_USBACTEP; /* update the endpoint state */ dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); /* default, set to non-periodic */ hs_ep->isochronous = 0; hs_ep->periodic = 0; hs_ep->halted = 0; hs_ep->interval = desc->bInterval; switch (ep_type) { case USB_ENDPOINT_XFER_ISOC: epctrl |= DXEPCTL_EPTYPE_ISO; epctrl |= DXEPCTL_SETEVENFR; hs_ep->isochronous = 1; hs_ep->interval = 1 << (desc->bInterval - 1); hs_ep->target_frame = TARGET_FRAME_INITIAL; hs_ep->next_desc = 0; hs_ep->compl_desc = 0; if (dir_in) { hs_ep->periodic = 1; mask = dwc2_readl(hsotg, DIEPMSK); mask |= DIEPMSK_NAKMSK; dwc2_writel(hsotg, mask, DIEPMSK); } else { mask = dwc2_readl(hsotg, DOEPMSK); mask |= DOEPMSK_OUTTKNEPDISMSK; dwc2_writel(hsotg, mask, DOEPMSK); } break; case USB_ENDPOINT_XFER_BULK: epctrl |= DXEPCTL_EPTYPE_BULK; break; case USB_ENDPOINT_XFER_INT: if (dir_in) hs_ep->periodic = 1; if (hsotg->gadget.speed == USB_SPEED_HIGH) hs_ep->interval = 1 << (desc->bInterval - 1); epctrl |= DXEPCTL_EPTYPE_INTERRUPT; break; case USB_ENDPOINT_XFER_CONTROL: epctrl |= DXEPCTL_EPTYPE_CONTROL; break; } /* * if the hardware has dedicated fifos, we must give each IN EP * a unique tx-fifo even if it is non-periodic. */ if (dir_in && hsotg->dedicated_fifos) { unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); u32 fifo_index = 0; u32 fifo_size = UINT_MAX; size = hs_ep->ep.maxpacket * hs_ep->mc; for (i = 1; i <= fifo_count; ++i) { if (hsotg->fifo_map & (1 << i)) continue; val = dwc2_readl(hsotg, DPTXFSIZN(i)); val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; if (val < size) continue; /* Search for smallest acceptable fifo */ if (val < fifo_size) { fifo_size = val; fifo_index = i; } } if (!fifo_index) { dev_err(hsotg->dev, "%s: No suitable fifo found\n", __func__); ret = -ENOMEM; goto error1; } hsotg->fifo_map |= 1 << fifo_index; epctrl |= DXEPCTL_TXFNUM(fifo_index); hs_ep->fifo_index = fifo_index; hs_ep->fifo_size = fifo_size; } /* for non control endpoints, set PID to D0 */ if (index && !hs_ep->isochronous) epctrl |= DXEPCTL_SETD0PID; /* WA for Full speed ISOC IN in DDMA mode. * By Clear NAK status of EP, core will send ZLP * to IN token and assert NAK interrupt relying * on TxFIFO status only */ if (hsotg->gadget.speed == USB_SPEED_FULL && hs_ep->isochronous && dir_in) { /* The WA applies only to core versions from 2.72a * to 4.00a (including both). Also for FS_IOT_1.00a * and HS_IOT_1.00a. */ u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); if ((gsnpsid >= DWC2_CORE_REV_2_72a && gsnpsid <= DWC2_CORE_REV_4_00a) || gsnpsid == DWC2_FS_IOT_REV_1_00a || gsnpsid == DWC2_HS_IOT_REV_1_00a) epctrl |= DXEPCTL_CNAK; } dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", __func__, epctrl); dwc2_writel(hsotg, epctrl, epctrl_reg); dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", __func__, dwc2_readl(hsotg, epctrl_reg)); /* enable the endpoint interrupt */ dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); error1: spin_unlock_irqrestore(&hsotg->lock, flags); error2: if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { dmam_free_coherent(hsotg->dev, desc_num * sizeof(struct dwc2_dma_desc), hs_ep->desc_list, hs_ep->desc_list_dma); hs_ep->desc_list = NULL; } return ret; } /** * dwc2_hsotg_ep_disable - disable given endpoint * @ep: The endpoint to disable. */ static int dwc2_hsotg_ep_disable(struct usb_ep *ep) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hsotg = hs_ep->parent; int dir_in = hs_ep->dir_in; int index = hs_ep->index; u32 epctrl_reg; u32 ctrl; dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); if (ep == &hsotg->eps_out[0]->ep) { dev_err(hsotg->dev, "%s: called for ep0\n", __func__); return -EINVAL; } if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); return -EINVAL; } epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); ctrl = dwc2_readl(hsotg, epctrl_reg); if (ctrl & DXEPCTL_EPENA) dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); ctrl &= ~DXEPCTL_EPENA; ctrl &= ~DXEPCTL_USBACTEP; ctrl |= DXEPCTL_SNAK; dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); dwc2_writel(hsotg, ctrl, epctrl_reg); /* disable endpoint interrupts */ dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); /* terminate all requests with shutdown */ kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); hs_ep->fifo_index = 0; hs_ep->fifo_size = 0; return 0; } static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hsotg = hs_ep->parent; unsigned long flags; int ret; spin_lock_irqsave(&hsotg->lock, flags); ret = dwc2_hsotg_ep_disable(ep); spin_unlock_irqrestore(&hsotg->lock, flags); return ret; } /** * on_list - check request is on the given endpoint * @ep: The endpoint to check. * @test: The request to test if it is on the endpoint. */ static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) { struct dwc2_hsotg_req *req, *treq; list_for_each_entry_safe(req, treq, &ep->queue, queue) { if (req == test) return true; } return false; } /** * dwc2_hsotg_ep_dequeue - dequeue given endpoint * @ep: The endpoint to dequeue. * @req: The request to be removed from a queue. */ static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) { struct dwc2_hsotg_req *hs_req = our_req(req); struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hs = hs_ep->parent; unsigned long flags; dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); spin_lock_irqsave(&hs->lock, flags); if (!on_list(hs_ep, hs_req)) { spin_unlock_irqrestore(&hs->lock, flags); return -EINVAL; } /* Dequeue already started request */ if (req == &hs_ep->req->req) dwc2_hsotg_ep_stop_xfr(hs, hs_ep); dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); spin_unlock_irqrestore(&hs->lock, flags); return 0; } /** * dwc2_hsotg_ep_sethalt - set halt on a given endpoint * @ep: The endpoint to set halt. * @value: Set or unset the halt. * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if * the endpoint is busy processing requests. * * We need to stall the endpoint immediately if request comes from set_feature * protocol command handler. */ static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hs = hs_ep->parent; int index = hs_ep->index; u32 epreg; u32 epctl; u32 xfertype; dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); if (index == 0) { if (value) dwc2_hsotg_stall_ep0(hs); else dev_warn(hs->dev, "%s: can't clear halt on ep0\n", __func__); return 0; } if (hs_ep->isochronous) { dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); return -EINVAL; } if (!now && value && !list_empty(&hs_ep->queue)) { dev_dbg(hs->dev, "%s request is pending, cannot halt\n", ep->name); return -EAGAIN; } if (hs_ep->dir_in) { epreg = DIEPCTL(index); epctl = dwc2_readl(hs, epreg); if (value) { epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; if (epctl & DXEPCTL_EPENA) epctl |= DXEPCTL_EPDIS; } else { epctl &= ~DXEPCTL_STALL; xfertype = epctl & DXEPCTL_EPTYPE_MASK; if (xfertype == DXEPCTL_EPTYPE_BULK || xfertype == DXEPCTL_EPTYPE_INTERRUPT) epctl |= DXEPCTL_SETD0PID; } dwc2_writel(hs, epctl, epreg); } else { epreg = DOEPCTL(index); epctl = dwc2_readl(hs, epreg); if (value) { epctl |= DXEPCTL_STALL; } else { epctl &= ~DXEPCTL_STALL; xfertype = epctl & DXEPCTL_EPTYPE_MASK; if (xfertype == DXEPCTL_EPTYPE_BULK || xfertype == DXEPCTL_EPTYPE_INTERRUPT) epctl |= DXEPCTL_SETD0PID; } dwc2_writel(hs, epctl, epreg); } hs_ep->halted = value; return 0; } /** * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held * @ep: The endpoint to set halt. * @value: Set or unset the halt. */ static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) { struct dwc2_hsotg_ep *hs_ep = our_ep(ep); struct dwc2_hsotg *hs = hs_ep->parent; unsigned long flags = 0; int ret = 0; spin_lock_irqsave(&hs->lock, flags); ret = dwc2_hsotg_ep_sethalt(ep, value, false); spin_unlock_irqrestore(&hs->lock, flags); return ret; } static const struct usb_ep_ops dwc2_hsotg_ep_ops = { .enable = dwc2_hsotg_ep_enable, .disable = dwc2_hsotg_ep_disable_lock, .alloc_request = dwc2_hsotg_ep_alloc_request, .free_request = dwc2_hsotg_ep_free_request, .queue = dwc2_hsotg_ep_queue_lock, .dequeue = dwc2_hsotg_ep_dequeue, .set_halt = dwc2_hsotg_ep_sethalt_lock, /* note, don't believe we have any call for the fifo routines */ }; /** * dwc2_hsotg_init - initialize the usb core * @hsotg: The driver state */ static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) { u32 trdtim; u32 usbcfg; /* unmask subset of endpoint interrupts */ dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, DIEPMSK); dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, DOEPMSK); dwc2_writel(hsotg, 0, DAINTMSK); /* Be in disconnected state until gadget is registered */ dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); /* setup fifos */ dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); dwc2_hsotg_init_fifo(hsotg); /* keep other bits untouched (so e.g. forced modes are not lost) */ usbcfg = dwc2_readl(hsotg, GUSBCFG); usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); /* set the PLL on, remove the HNP/SRP and set the PHY */ trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | (trdtim << GUSBCFG_USBTRDTIM_SHIFT); dwc2_writel(hsotg, usbcfg, GUSBCFG); if (using_dma(hsotg)) dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); } /** * dwc2_hsotg_udc_start - prepare the udc for work * @gadget: The usb gadget state * @driver: The usb gadget driver * * Perform initialization to prepare udc device and driver * to work. */ static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct dwc2_hsotg *hsotg = to_hsotg(gadget); unsigned long flags; int ret; if (!hsotg) { pr_err("%s: called with no device\n", __func__); return -ENODEV; } if (!driver) { dev_err(hsotg->dev, "%s: no driver\n", __func__); return -EINVAL; } if (driver->max_speed < USB_SPEED_FULL) dev_err(hsotg->dev, "%s: bad speed\n", __func__); if (!driver->setup) { dev_err(hsotg->dev, "%s: missing entry points\n", __func__); return -EINVAL; } WARN_ON(hsotg->driver); hsotg->driver = driver; hsotg->gadget.dev.of_node = hsotg->dev->of_node; hsotg->gadget.speed = USB_SPEED_UNKNOWN; if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { ret = dwc2_lowlevel_hw_enable(hsotg); if (ret) goto err; } if (!IS_ERR_OR_NULL(hsotg->uphy)) otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); spin_lock_irqsave(&hsotg->lock, flags); if (dwc2_hw_is_device(hsotg)) { dwc2_hsotg_init(hsotg); dwc2_hsotg_core_init_disconnected(hsotg, false); } hsotg->enabled = 0; spin_unlock_irqrestore(&hsotg->lock, flags); dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); return 0; err: hsotg->driver = NULL; return ret; } /** * dwc2_hsotg_udc_stop - stop the udc * @gadget: The usb gadget state * * Stop udc hw block and stay tunned for future transmissions */ static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) { struct dwc2_hsotg *hsotg = to_hsotg(gadget); unsigned long flags = 0; int ep; if (!hsotg) return -ENODEV; /* all endpoints should be shutdown */ for (ep = 1; ep < hsotg->num_of_eps; ep++) { if (hsotg->eps_in[ep]) dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); if (hsotg->eps_out[ep]) dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); } spin_lock_irqsave(&hsotg->lock, flags); hsotg->driver = NULL; hsotg->gadget.speed = USB_SPEED_UNKNOWN; hsotg->enabled = 0; spin_unlock_irqrestore(&hsotg->lock, flags); if (!IS_ERR_OR_NULL(hsotg->uphy)) otg_set_peripheral(hsotg->uphy->otg, NULL); if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) dwc2_lowlevel_hw_disable(hsotg); return 0; } /** * dwc2_hsotg_gadget_getframe - read the frame number * @gadget: The usb gadget state * * Read the {micro} frame number */ static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) { return dwc2_hsotg_read_frameno(to_hsotg(gadget)); } /** * dwc2_hsotg_pullup - connect/disconnect the USB PHY * @gadget: The usb gadget state * @is_on: Current state of the USB PHY * * Connect/Disconnect the USB PHY pullup */ static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) { struct dwc2_hsotg *hsotg = to_hsotg(gadget); unsigned long flags = 0; dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, hsotg->op_state); /* Don't modify pullup state while in host mode */ if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { hsotg->enabled = is_on; return 0; } spin_lock_irqsave(&hsotg->lock, flags); if (is_on) { hsotg->enabled = 1; dwc2_hsotg_core_init_disconnected(hsotg, false); /* Enable ACG feature in device mode,if supported */ dwc2_enable_acg(hsotg); dwc2_hsotg_core_connect(hsotg); } else { dwc2_hsotg_core_disconnect(hsotg); dwc2_hsotg_disconnect(hsotg); hsotg->enabled = 0; } hsotg->gadget.speed = USB_SPEED_UNKNOWN; spin_unlock_irqrestore(&hsotg->lock, flags); return 0; } static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) { struct dwc2_hsotg *hsotg = to_hsotg(gadget); unsigned long flags; dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); spin_lock_irqsave(&hsotg->lock, flags); /* * If controller is hibernated, it must exit from power_down * before being initialized / de-initialized */ if (hsotg->lx_state == DWC2_L2) dwc2_exit_partial_power_down(hsotg, false); if (is_active) { hsotg->op_state = OTG_STATE_B_PERIPHERAL; dwc2_hsotg_core_init_disconnected(hsotg, false); if (hsotg->enabled) { /* Enable ACG feature in device mode,if supported */ dwc2_enable_acg(hsotg); dwc2_hsotg_core_connect(hsotg); } } else { dwc2_hsotg_core_disconnect(hsotg); dwc2_hsotg_disconnect(hsotg); } spin_unlock_irqrestore(&hsotg->lock, flags); return 0; } /** * dwc2_hsotg_vbus_draw - report bMaxPower field * @gadget: The usb gadget state * @mA: Amount of current * * Report how much power the device may consume to the phy. */ static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) { struct dwc2_hsotg *hsotg = to_hsotg(gadget); if (IS_ERR_OR_NULL(hsotg->uphy)) return -ENOTSUPP; return usb_phy_set_power(hsotg->uphy, mA); } static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { .get_frame = dwc2_hsotg_gadget_getframe, .udc_start = dwc2_hsotg_udc_start, .udc_stop = dwc2_hsotg_udc_stop, .pullup = dwc2_hsotg_pullup, .vbus_session = dwc2_hsotg_vbus_session, .vbus_draw = dwc2_hsotg_vbus_draw, }; /** * dwc2_hsotg_initep - initialise a single endpoint * @hsotg: The device state. * @hs_ep: The endpoint to be initialised. * @epnum: The endpoint number * @dir_in: True if direction is in. * * Initialise the given endpoint (as part of the probe and device state * creation) to give to the gadget driver. Setup the endpoint name, any * direction information and other state that may be required. */ static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, struct dwc2_hsotg_ep *hs_ep, int epnum, bool dir_in) { char *dir; if (epnum == 0) dir = ""; else if (dir_in) dir = "in"; else dir = "out"; hs_ep->dir_in = dir_in; hs_ep->index = epnum; snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); INIT_LIST_HEAD(&hs_ep->queue); INIT_LIST_HEAD(&hs_ep->ep.ep_list); /* add to the list of endpoints known by the gadget driver */ if (epnum) list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); hs_ep->parent = hsotg; hs_ep->ep.name = hs_ep->name; if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); else usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT); hs_ep->ep.ops = &dwc2_hsotg_ep_ops; if (epnum == 0) { hs_ep->ep.caps.type_control = true; } else { if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { hs_ep->ep.caps.type_iso = true; hs_ep->ep.caps.type_bulk = true; } hs_ep->ep.caps.type_int = true; } if (dir_in) hs_ep->ep.caps.dir_in = true; else hs_ep->ep.caps.dir_out = true; /* * if we're using dma, we need to set the next-endpoint pointer * to be something valid. */ if (using_dma(hsotg)) { u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); if (dir_in) dwc2_writel(hsotg, next, DIEPCTL(epnum)); else dwc2_writel(hsotg, next, DOEPCTL(epnum)); } } /** * dwc2_hsotg_hw_cfg - read HW configuration registers * @hsotg: Programming view of the DWC_otg controller * * Read the USB core HW configuration registers */ static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) { u32 cfg; u32 ep_type; u32 i; /* check hardware configuration */ hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; /* Add ep0 */ hsotg->num_of_eps++; hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); if (!hsotg->eps_in[0]) return -ENOMEM; /* Same dwc2_hsotg_ep is used in both directions for ep0 */ hsotg->eps_out[0] = hsotg->eps_in[0]; cfg = hsotg->hw_params.dev_ep_dirs; for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { ep_type = cfg & 3; /* Direction in or both */ if (!(ep_type & 2)) { hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); if (!hsotg->eps_in[i]) return -ENOMEM; } /* Direction out or both */ if (!(ep_type & 1)) { hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); if (!hsotg->eps_out[i]) return -ENOMEM; } } hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", hsotg->num_of_eps, hsotg->dedicated_fifos ? "dedicated" : "shared", hsotg->fifo_mem); return 0; } /** * dwc2_hsotg_dump - dump state of the udc * @hsotg: Programming view of the DWC_otg controller * */ static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) { #ifdef DEBUG struct device *dev = hsotg->dev; u32 val; int idx; dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), dwc2_readl(hsotg, DIEPMSK)); dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); /* show periodic fifo settings */ for (idx = 1; idx < hsotg->num_of_eps; idx++) { val = dwc2_readl(hsotg, DPTXFSIZN(idx)); dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, val >> FIFOSIZE_DEPTH_SHIFT, val & FIFOSIZE_STARTADDR_MASK); } for (idx = 0; idx < hsotg->num_of_eps; idx++) { dev_info(dev, "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, dwc2_readl(hsotg, DIEPCTL(idx)), dwc2_readl(hsotg, DIEPTSIZ(idx)), dwc2_readl(hsotg, DIEPDMA(idx))); val = dwc2_readl(hsotg, DOEPCTL(idx)); dev_info(dev, "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, dwc2_readl(hsotg, DOEPCTL(idx)), dwc2_readl(hsotg, DOEPTSIZ(idx)), dwc2_readl(hsotg, DOEPDMA(idx))); } dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); #endif } /** * dwc2_gadget_init - init function for gadget * @hsotg: Programming view of the DWC_otg controller * */ int dwc2_gadget_init(struct dwc2_hsotg *hsotg) { struct device *dev = hsotg->dev; int epnum; int ret; /* Dump fifo information */ dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", hsotg->params.g_np_tx_fifo_size); dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); hsotg->gadget.max_speed = USB_SPEED_HIGH; hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; hsotg->gadget.name = dev_name(dev); hsotg->remote_wakeup_allowed = 0; if (hsotg->params.lpm) hsotg->gadget.lpm_capable = true; if (hsotg->dr_mode == USB_DR_MODE_OTG) hsotg->gadget.is_otg = 1; else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) hsotg->op_state = OTG_STATE_B_PERIPHERAL; ret = dwc2_hsotg_hw_cfg(hsotg); if (ret) { dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); return ret; } hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); if (!hsotg->ctrl_buff) return -ENOMEM; hsotg->ep0_buff = devm_kzalloc(hsotg->dev, DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); if (!hsotg->ep0_buff) return -ENOMEM; if (using_desc_dma(hsotg)) { ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); if (ret < 0) return ret; } ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, IRQF_SHARED, dev_name(hsotg->dev), hsotg); if (ret < 0) { dev_err(dev, "cannot claim IRQ for gadget\n"); return ret; } /* hsotg->num_of_eps holds number of EPs other than ep0 */ if (hsotg->num_of_eps == 0) { dev_err(dev, "wrong number of EPs (zero)\n"); return -EINVAL; } /* setup endpoint information */ INIT_LIST_HEAD(&hsotg->gadget.ep_list); hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; /* allocate EP0 request */ hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, GFP_KERNEL); if (!hsotg->ctrl_req) { dev_err(dev, "failed to allocate ctrl req\n"); return -ENOMEM; } /* initialise the endpoints now the core has been initialised */ for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { if (hsotg->eps_in[epnum]) dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], epnum, 1); if (hsotg->eps_out[epnum]) dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], epnum, 0); } dwc2_hsotg_dump(hsotg); return 0; } /** * dwc2_hsotg_remove - remove function for hsotg driver * @hsotg: Programming view of the DWC_otg controller * */ int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) { usb_del_gadget_udc(&hsotg->gadget); dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); return 0; } int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) { unsigned long flags; if (hsotg->lx_state != DWC2_L0) return 0; if (hsotg->driver) { int ep; dev_info(hsotg->dev, "suspending usb gadget %s\n", hsotg->driver->driver.name); spin_lock_irqsave(&hsotg->lock, flags); if (hsotg->enabled) dwc2_hsotg_core_disconnect(hsotg); dwc2_hsotg_disconnect(hsotg); hsotg->gadget.speed = USB_SPEED_UNKNOWN; spin_unlock_irqrestore(&hsotg->lock, flags); for (ep = 1; ep < hsotg->num_of_eps; ep++) { if (hsotg->eps_in[ep]) dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); if (hsotg->eps_out[ep]) dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); } } return 0; } int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) { unsigned long flags; if (hsotg->lx_state == DWC2_L2) return 0; if (hsotg->driver) { dev_info(hsotg->dev, "resuming usb gadget %s\n", hsotg->driver->driver.name); spin_lock_irqsave(&hsotg->lock, flags); dwc2_hsotg_core_init_disconnected(hsotg, false); if (hsotg->enabled) { /* Enable ACG feature in device mode,if supported */ dwc2_enable_acg(hsotg); dwc2_hsotg_core_connect(hsotg); } spin_unlock_irqrestore(&hsotg->lock, flags); } return 0; } /** * dwc2_backup_device_registers() - Backup controller device registers. * When suspending usb bus, registers needs to be backuped * if controller power is disabled once suspended. * * @hsotg: Programming view of the DWC_otg controller */ int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) { struct dwc2_dregs_backup *dr; int i; dev_dbg(hsotg->dev, "%s\n", __func__); /* Backup dev regs */ dr = &hsotg->dr_backup; dr->dcfg = dwc2_readl(hsotg, DCFG); dr->dctl = dwc2_readl(hsotg, DCTL); dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); for (i = 0; i < hsotg->num_of_eps; i++) { /* Backup IN EPs */ dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); /* Ensure DATA PID is correctly configured */ if (dr->diepctl[i] & DXEPCTL_DPID) dr->diepctl[i] |= DXEPCTL_SETD1PID; else dr->diepctl[i] |= DXEPCTL_SETD0PID; dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); /* Backup OUT EPs */ dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); /* Ensure DATA PID is correctly configured */ if (dr->doepctl[i] & DXEPCTL_DPID) dr->doepctl[i] |= DXEPCTL_SETD1PID; else dr->doepctl[i] |= DXEPCTL_SETD0PID; dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); } dr->valid = true; return 0; } /** * dwc2_restore_device_registers() - Restore controller device registers. * When resuming usb bus, device registers needs to be restored * if controller power were disabled. * * @hsotg: Programming view of the DWC_otg controller * @remote_wakeup: Indicates whether resume is initiated by Device or Host. * * Return: 0 if successful, negative error code otherwise */ int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) { struct dwc2_dregs_backup *dr; int i; dev_dbg(hsotg->dev, "%s\n", __func__); /* Restore dev regs */ dr = &hsotg->dr_backup; if (!dr->valid) { dev_err(hsotg->dev, "%s: no device registers to restore\n", __func__); return -EINVAL; } dr->valid = false; if (!remote_wakeup) dwc2_writel(hsotg, dr->dctl, DCTL); dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); for (i = 0; i < hsotg->num_of_eps; i++) { /* Restore IN EPs */ dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); /** WA for enabled EPx's IN in DDMA mode. On entering to * hibernation wrong value read and saved from DIEPDMAx, * as result BNA interrupt asserted on hibernation exit * by restoring from saved area. */ if (hsotg->params.g_dma_desc && (dr->diepctl[i] & DXEPCTL_EPENA)) dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); /* Restore OUT EPs */ dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); /* WA for enabled EPx's OUT in DDMA mode. On entering to * hibernation wrong value read and saved from DOEPDMAx, * as result BNA interrupt asserted on hibernation exit * by restoring from saved area. */ if (hsotg->params.g_dma_desc && (dr->doepctl[i] & DXEPCTL_EPENA)) dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); } return 0; } /** * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode * * @hsotg: Programming view of DWC_otg controller * */ void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) { u32 val; if (!hsotg->params.lpm) return; val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; dwc2_writel(hsotg, val, GLPMCFG); dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); } /** * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. * * @hsotg: Programming view of the DWC_otg controller * * Return non-zero if failed to enter to hibernation. */ int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) { u32 gpwrdn; int ret = 0; /* Change to L2(suspend) state */ hsotg->lx_state = DWC2_L2; dev_dbg(hsotg->dev, "Start of hibernation completed\n"); ret = dwc2_backup_global_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to backup global registers\n", __func__); return ret; } ret = dwc2_backup_device_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to backup device registers\n", __func__); return ret; } gpwrdn = GPWRDN_PWRDNRSTN; gpwrdn |= GPWRDN_PMUACTV; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Set flag to indicate that we are in hibernation */ hsotg->hibernated = 1; /* Enable interrupts from wake up logic */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PMUINTSEL; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Unmask device mode interrupts in GPWRDN */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_RST_DET_MSK; gpwrdn |= GPWRDN_LNSTSCHG_MSK; gpwrdn |= GPWRDN_STS_CHGINT_MSK; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Enable Power Down Clamp */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PWRDNCLMP; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Switch off VDD */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PWRDNSWTCH; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Save gpwrdn register for further usage if stschng interrupt */ hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); dev_dbg(hsotg->dev, "Hibernation completed\n"); return ret; } /** * dwc2_gadget_exit_hibernation() * This function is for exiting from Device mode hibernation by host initiated * resume/reset and device initiated remote-wakeup. * * @hsotg: Programming view of the DWC_otg controller * @rem_wakeup: indicates whether resume is initiated by Device or Host. * @reset: indicates whether resume is initiated by Reset. * * Return non-zero if failed to exit from hibernation. */ int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, int reset) { u32 pcgcctl; u32 gpwrdn; u32 dctl; int ret = 0; struct dwc2_gregs_backup *gr; struct dwc2_dregs_backup *dr; gr = &hsotg->gr_backup; dr = &hsotg->dr_backup; if (!hsotg->hibernated) { dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); return 1; } dev_dbg(hsotg->dev, "%s: called with rem_wakeup = %d reset = %d\n", __func__, rem_wakeup, reset); dwc2_hib_restore_common(hsotg, rem_wakeup, 0); if (!reset) { /* Clear all pending interupts */ dwc2_writel(hsotg, 0xffffffff, GINTSTS); } /* De-assert Restore */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn &= ~GPWRDN_RESTORE; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); if (!rem_wakeup) { pcgcctl = dwc2_readl(hsotg, PCGCTL); pcgcctl &= ~PCGCTL_RSTPDWNMODULE; dwc2_writel(hsotg, pcgcctl, PCGCTL); } /* Restore GUSBCFG, DCFG and DCTL */ dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); dwc2_writel(hsotg, dr->dcfg, DCFG); dwc2_writel(hsotg, dr->dctl, DCTL); /* De-assert Wakeup Logic */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn &= ~GPWRDN_PMUACTV; dwc2_writel(hsotg, gpwrdn, GPWRDN); if (rem_wakeup) { udelay(10); /* Start Remote Wakeup Signaling */ dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); } else { udelay(50); /* Set Device programming done bit */ dctl = dwc2_readl(hsotg, DCTL); dctl |= DCTL_PWRONPRGDONE; dwc2_writel(hsotg, dctl, DCTL); } /* Wait for interrupts which must be cleared */ mdelay(2); /* Clear all pending interupts */ dwc2_writel(hsotg, 0xffffffff, GINTSTS); /* Restore global registers */ ret = dwc2_restore_global_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to restore registers\n", __func__); return ret; } /* Restore device registers */ ret = dwc2_restore_device_registers(hsotg, rem_wakeup); if (ret) { dev_err(hsotg->dev, "%s: failed to restore device registers\n", __func__); return ret; } if (rem_wakeup) { mdelay(10); dctl = dwc2_readl(hsotg, DCTL); dctl &= ~DCTL_RMTWKUPSIG; dwc2_writel(hsotg, dctl, DCTL); } hsotg->hibernated = 0; hsotg->lx_state = DWC2_L0; dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); return ret; }