/*
 * Digium, Inc.  Wildcard TE12xP T1/E1 card Driver
 *
 * Written by Michael Spiceland <mspiceland@digium.com>
 *
 * Adapted from the wctdm24xxp and wcte11xp drivers originally
 * written by Mark Spencer <markster@digium.com>
 *            Matthew Fredrickson <creslin@digium.com>
 *            William Meadows <wmeadows@digium.com>
 *
 * Copyright (C) 2007-2012, Digium, Inc.
 *
 * All rights reserved.
 *
 */

/*
 * See http://www.asterisk.org for more information about
 * the Asterisk project. Please do not directly contact
 * any of the maintainers of this project for assistance;
 * the project provides a web site, mailing lists and IRC
 * channels for your use.
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License Version 2 as published by the
 * Free Software Foundation. See the LICENSE file included with
 * this program for more details.
 */

#define pr_fmt(fmt)             KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/moduleparam.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/sched.h>

#include <linux/slab.h>

#include <dahdi/kernel.h>

#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0)
#include <linux/sched/signal.h>
#endif /* 4.11.0 */

#include "wct4xxp/wct4xxp.h"	/* For certain definitions */

#include "voicebus/voicebus.h"
#include "voicebus/vpmoct.h"
#include "wcte12xp.h"

#include "voicebus/GpakCust.h"
#include "voicebus/GpakApi.h"

#if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#error VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#endif

static int debug;
static int j1mode = -1;
static int alarmdebounce = 2500; /* LOF/LFA def to 2.5s AT&T TR54016*/
static int losalarmdebounce = 2500; /* LOS def to 2.5s AT&T TR54016*/
static int aisalarmdebounce = 2500; /* AIS(blue) def to 2.5s AT&T TR54016*/
static int yelalarmdebounce = 500; /* RAI(yellow) def to 0.5s AT&T devguide */
static int t1e1override = -1; /* deprecated */
static char *default_linemode = "auto"; /* 'auto', 'e1', 't1', or 'j1' */
static int latency = VOICEBUS_DEFAULT_LATENCY;
static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY;
static int vpmsupport = 1;
static int vpmtsisupport = 0;

static int vpmnlptype = DEFAULT_NLPTYPE;
static int vpmnlpthresh = DEFAULT_NLPTHRESH;
static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP;

static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec);
static int t1xxp_clear_maint(struct dahdi_span *span);

static const struct dahdi_echocan_features vpm150m_ec_features = {
	.NLP_automatic = 1,
	.CED_tx_detect = 1,
	.CED_rx_detect = 1,
};

static const struct dahdi_echocan_ops vpm150m_ec_ops = {
	.echocan_free = echocan_free,
};

static struct t1 *ifaces[WC_MAX_IFACES];

struct t1_desc {
	const char *name;
};

static const struct t1_desc te120p = {"Wildcard TE120P"};
static const struct t1_desc te122 = {"Wildcard TE122"};
static const struct t1_desc te121 = {"Wildcard TE121"};

static inline bool is_pcie(const struct t1 *t1)
{
	return (0 == strcmp(t1->variety, te121.name));
}

/* names of HWEC modules */
static const char *vpmadt032_name = "VPMADT032";
static const char *vpmoct_name = "VPMOCT032";

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static kmem_cache_t *cmd_cache;
#else
static struct kmem_cache *cmd_cache;
#endif

static struct command *get_free_cmd(struct t1 *wc)
{
	struct command *cmd;
	cmd = kmem_cache_alloc(cmd_cache, GFP_ATOMIC);
	if (cmd) {
		memset(cmd, 0, sizeof(*cmd));
		init_completion(&cmd->complete);
		INIT_LIST_HEAD(&cmd->node);
	}
	return cmd;
}

static void free_cmd(struct t1 *wc, struct command *cmd)
{
	kmem_cache_free(cmd_cache, cmd);
}

static struct command *_get_pending_cmd(struct t1 *wc)
{
	struct command *cmd = NULL;
	if (!list_empty(&wc->pending_cmds)) {
		cmd = list_entry(wc->pending_cmds.next, struct command, node);
		list_move_tail(&cmd->node, &wc->active_cmds);
	}
	return cmd;
}

static void submit_cmd(struct t1 *wc, struct command *cmd)
{
	unsigned long flags;
	spin_lock_irqsave(&wc->reglock, flags);
	list_add_tail(&cmd->node, &wc->pending_cmds);
	spin_unlock_irqrestore(&wc->reglock, flags);
}

static void _resend_cmds(struct t1 *wc)
{
	list_splice_init(&wc->active_cmds, &wc->pending_cmds);
	if (wc->vpmadt032)
		vpmadt032_resend(wc->vpmadt032);
}

static inline void cmd_dequeue_vpmoct(struct t1 *wc, u8 *eframe)
{
	struct vpmoct *vpm = wc->vpmoct;
	struct vpmoct_cmd *cmd;
	u8 i;

	/* Pop a command off pending list */
	spin_lock(&vpm->list_lock);
	if (list_empty(&vpm->pending_list)) {
		spin_unlock(&vpm->list_lock);
		return;
	}
	cmd = list_entry(vpm->pending_list.next, struct vpmoct_cmd, node);
	/* Push the command onto active list, if it's a syncronous cmd */
	if (is_vpmoct_cmd_read(cmd))
		list_move_tail(&cmd->node, &vpm->active_list);
	else
		list_del_init(&cmd->node);

	/* Skip audio */
	eframe += 66;

	/* Save ident so we can match the return eframe */
	cmd->txident = wc->txident;
	/* We have four timeslots to work with for a regular spi packet */
	/* TODO: Create debug flag for this in dev */
	eframe[CMD_BYTE(0, 0, 1)] = 0x12;
	eframe[CMD_BYTE(0, 1, 1)] = 0x34;
	eframe[CMD_BYTE(0, 2, 1)] = 0x56;
	eframe[CMD_BYTE(1, 0, 1)] = cmd->command;
	eframe[CMD_BYTE(1, 1, 1)] = cmd->address;
	eframe[CMD_BYTE(1, 2, 1)] = cmd->data[0];
	for (i = 1; i < cmd->chunksize; i++) {
		/* Every time slot is filled with chunk data
		 * ignoring command/address/data structure */
		eframe[CMD_BYTE(1, 2, 1) + 2*i] = cmd->data[i];
	}

	/* Clean up fire-and-forget messages from memory */
	if (list_empty(&cmd->node))
		kfree(cmd);

	spin_unlock(&vpm->list_lock);
#if 0
	dev_info(&wc->vb.pdev->dev, "Wrote: ");
	for (i = 0; i < 7; i++) {
		dev_info(&wc->vb.pdev->dev, "|%x %x %x|",
				eframe[CMD_BYTE(i, 0, 1)],
				eframe[CMD_BYTE(i, 1, 1)],
				eframe[CMD_BYTE(i, 2, 1)]);
	}
#endif
}

static void cmd_dequeue(struct t1 *wc, unsigned char *eframe, int frame_num, int slot)
{
	struct command *curcmd=NULL;
	u16 address;
	u8 data;
	u32 flags;

	/* Skip audio */
	eframe += 66;
	/* Search for something waiting to transmit */
	if ((slot < 6) && (frame_num) && (frame_num < DAHDI_CHUNKSIZE - 1)) {
		/* only 6 useable cs slots per */

		/* framer */
		curcmd = _get_pending_cmd(wc);
		if (curcmd) {
			curcmd->cs_slot = slot;
			curcmd->ident = wc->txident;

			address = curcmd->address;
			data = curcmd->data;
			flags = curcmd->flags;
		} else {
			/* If nothing else, use filler */
			address = 0x4a;
			data = 0;
			flags = __CMD_RD;
		}

		if (flags & __CMD_WR)
			eframe[CMD_BYTE(slot, 0, 0)] = 0x0c; /* 0c write command */
		else if (flags & __CMD_LEDS)
			eframe[CMD_BYTE(slot, 0, 0)] = 0x10 | ((address) & 0x0E); /* led set command */
		else if (flags & __CMD_PINS)
			eframe[CMD_BYTE(slot, 0, 0)] = 0x30; /* CPLD2 pin state */
		else
			eframe[CMD_BYTE(slot, 0, 0)] = 0x0a; /* read command */
		eframe[CMD_BYTE(slot, 1, 0)] = address;
		eframe[CMD_BYTE(slot, 2, 0)] = data;
	}

}

static inline void cmd_decipher(struct t1 *wc, const u8 *eframe)
{
	struct command *cmd = NULL;
	const int IS_VPM = 0;

	/* Skip audio */
	eframe += 66;

	while (!list_empty(&wc->active_cmds)) {
		cmd = list_entry(wc->active_cmds.next, struct command, node);
		if (cmd->ident != wc->rxident)
			break;

		if (cmd->flags & (__CMD_WR | __CMD_LEDS)) {
			/* Nobody is waiting on writes...so let's just
			 * free them here. */
			list_del_init(&cmd->node);
			free_cmd(wc, cmd);
		} else {
			cmd->data |= eframe[CMD_BYTE(cmd->cs_slot, 2, IS_VPM)];
			list_del_init(&cmd->node);
			complete(&cmd->complete);
		}
	}
}

inline void cmd_decipher_vpmoct(struct t1 *wc, const u8 *eframe)
{
	int i;
	struct vpmoct *vpm = wc->vpmoct;
	struct vpmoct_cmd *cmd;

	/* Skip audio and first 6 timeslots */
	eframe += 66;

	spin_lock(&vpm->list_lock);
	/* No command to handle, just exit */
	if (list_empty(&vpm->active_list)) {
		spin_unlock(&vpm->list_lock);
		return;
	}

	cmd = list_entry(vpm->active_list.next, struct vpmoct_cmd, node);
	if (wc->rxident == cmd->txident)
		list_del_init(&cmd->node);
	else
		cmd = NULL;
	spin_unlock(&vpm->list_lock);

	if (!cmd)
		return;

#if 0
	/* Store result */
	dev_info(&wc->vb.pdev->dev, "Read: ");
	for (i = 0; i < 7; i++) {
		dev_info(&wc->vb.pdev->dev, "|%x %x %x|",
				eframe[CMD_BYTE(i, 0, 1)],
				eframe[CMD_BYTE(i, 1, 1)],
				eframe[CMD_BYTE(i, 2, 1)]);
	}
	dev_info(&wc->vb.pdev->dev, "\n");
#endif
	cmd->command = eframe[CMD_BYTE(1, 0, 1)];
	cmd->address = eframe[CMD_BYTE(1, 1, 1)];
	for (i = 0; i < cmd->chunksize; ++i)
		cmd->data[i] = eframe[CMD_BYTE(1, 2, 1) + 2*i];
	complete(&cmd->complete);
}

inline void cmd_decipher_vpmadt032(struct t1 *wc, const u8 *eframe)
{
	struct vpmadt032 *vpm = wc->vpmadt032;
	struct vpmadt032_cmd *cmd;

	BUG_ON(!vpm);

	/* If the hardware is not processing any commands currently, then
	 * there is nothing for us to do here. */
	if (list_empty(&vpm->active_cmds)) {
		return;
	}

	spin_lock(&vpm->list_lock);
	cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node);
	if (wc->rxident == cmd->txident) {
		list_del_init(&cmd->node);
	} else {
		cmd = NULL;
	}
	spin_unlock(&vpm->list_lock);

	if (!cmd) {
		return;
	}

	/* Skip audio */
	eframe += 66;

	/* Store result */
	cmd->data  = (0xff & eframe[CMD_BYTE(2, 1, 1)]) << 8;
	cmd->data |= eframe[CMD_BYTE(2, 2, 1)];
	if (cmd->desc & __VPM150M_WR) {
		kfree(cmd);
	} else {
		cmd->desc |= __VPM150M_FIN;
		complete(&cmd->complete);
	}
}

static int config_vpmadt032(struct vpmadt032 *vpm, struct t1 *wc)
{
	int res, channel;
	GpakPortConfig_t portconfig = {0};
	gpakConfigPortStatus_t configportstatus;
	GPAK_PortConfigStat_t pstatus;
	GpakChannelConfig_t chanconfig;
	GPAK_ChannelConfigStat_t cstatus;
	GPAK_AlgControlStat_t algstatus;

	/* First Serial Port config */
	portconfig.SlotsSelect1 = SlotCfgNone;
	portconfig.FirstBlockNum1 = 0;
	portconfig.FirstSlotMask1 = 0x0000;
	portconfig.SecBlockNum1 = 1;
	portconfig.SecSlotMask1 = 0x0000;
	portconfig.SerialWordSize1 = SerWordSize8;
	portconfig.CompandingMode1 = cmpNone;
	portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh;
	portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh;
	portconfig.TxClockPolarity1 = SerClockActHigh;
	portconfig.RxClockPolarity1 = SerClockActHigh;
	portconfig.TxDataDelay1 = DataDelay0;
	portconfig.RxDataDelay1 = DataDelay0;
	portconfig.DxDelay1 = Disabled;
	portconfig.ThirdSlotMask1 = 0x0000;
	portconfig.FouthSlotMask1 = 0x0000;
	portconfig.FifthSlotMask1 = 0x0000;
	portconfig.SixthSlotMask1 = 0x0000;
	portconfig.SevenSlotMask1 = 0x0000;
	portconfig.EightSlotMask1 = 0x0000;

	/* Second Serial Port config */
	portconfig.SlotsSelect2 = SlotCfg8Groups;
	portconfig.FirstBlockNum2 = 0;
	portconfig.FirstSlotMask2 = 0x5554;
	portconfig.SecBlockNum2 = 1;
	portconfig.SecSlotMask2 = 0x5555;
	portconfig.ThirdSlotMask2 = 0x5555;
	portconfig.FouthSlotMask2 = 0x5555;
	portconfig.SerialWordSize2 = SerWordSize8;
	portconfig.CompandingMode2 = cmpNone;
	portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh;
	portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh;
	portconfig.TxClockPolarity2 = SerClockActHigh;
	portconfig.RxClockPolarity2 = SerClockActHigh;
	portconfig.TxDataDelay2 = DataDelay0;
	portconfig.RxDataDelay2 = DataDelay0;
	portconfig.DxDelay2 = Disabled;
	portconfig.FifthSlotMask2 = 0x0001;
	portconfig.SixthSlotMask2 = 0x0000;
	portconfig.SevenSlotMask2 = 0x0000;
	portconfig.EightSlotMask2 = 0x0000;

	/* Third Serial Port Config */
	portconfig.SlotsSelect3 = SlotCfg8Groups;
	portconfig.FirstBlockNum3 = 0;
	portconfig.FirstSlotMask3 = 0x5554;
	portconfig.SecBlockNum3 = 1;
	portconfig.SecSlotMask3 = 0x5555;
	portconfig.SerialWordSize3 = SerWordSize8;
	portconfig.CompandingMode3 = cmpNone;
	portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh;
	portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh;
	portconfig.TxClockPolarity3 = SerClockActHigh;
	portconfig.RxClockPolarity3 = SerClockActLow;
	portconfig.TxDataDelay3 = DataDelay0;
	portconfig.RxDataDelay3 = DataDelay0;
	portconfig.DxDelay3 = Disabled;
	portconfig.ThirdSlotMask3 = 0x5555;
	portconfig.FouthSlotMask3 = 0x5555;
	portconfig.FifthSlotMask3 = 0x0001;
	portconfig.SixthSlotMask3 = 0x0000;
	portconfig.SevenSlotMask3 = 0x0000;
	portconfig.EightSlotMask3 = 0x0000;

	if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) {
		t1_info(wc, "Configuration of ports failed (%d)!\n",
			configportstatus);
		return -1;
	} else {
		if (vpm->options.debug & DEBUG_VPMADT032_ECHOCAN)
			t1_info(wc, "Configured McBSP ports successfully\n");
	}

	if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) {
		t1_info(wc, "Error pinging DSP (%d)\n", res);
		return -1;
	}

	for (channel = 0; channel < ARRAY_SIZE(vpm->curecstate); ++channel) {
		vpm->curecstate[channel].tap_length = 0;
		vpm->curecstate[channel].nlp_type = vpm->options.vpmnlptype;
		vpm->curecstate[channel].nlp_threshold = vpm->options.vpmnlpthresh;
		vpm->curecstate[channel].nlp_max_suppress = vpm->options.vpmnlpmaxsupp;

		vpm->setchanconfig_from_state(vpm, channel, &chanconfig);
		if ((res = gpakConfigureChannel(vpm->dspid, channel, tdmToTdm, &chanconfig, &cstatus))) {
			t1_info(wc, "Unable to configure channel #%d (%d)",
				channel, res);
			if (res == 1) {
				printk(KERN_CONT ", reason %d", cstatus);
			}
			printk(KERN_CONT "\n");
			return -1;
		}

		if ((res = gpakAlgControl(vpm->dspid, channel, BypassEcanA, &algstatus))) {
			t1_info(wc, "Unable to disable echo can on channel %d "
				"(reason %d:%d)\n", channel + 1, res,
				algstatus);
			return -1;
		}
	}

	if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) {
		t1_info(wc, "Error pinging DSP (%d)\n", res);
		return -1;
	}

	set_bit(VPM150M_ACTIVE, &vpm->control);

	return 0;
}

#define debug_printk(wc, lvl, fmt, args...) if (debug >= (lvl)) do { \
	t1_info((wc), fmt , ## args); } while (0)

static void cmd_dequeue_vpmadt032(struct t1 *wc, unsigned char *eframe)
{
	struct vpmadt032_cmd *cmd;
	struct vpmadt032 *vpm = wc->vpmadt032;
	int x;
	unsigned char leds = ~((atomic_read(&wc->txints) / 1000) % 8) & 0x7;

	/* Skip audio */
	eframe += 66;

	if (test_bit(VPM150M_HPIRESET, &vpm->control)) {
		debug_printk(wc, 1, "HW Resetting VPMADT032 ...\n");
		for (x = 0; x < 4; x++) {
			if (!x) {
				if (test_and_clear_bit(VPM150M_HPIRESET,
						       &vpm->control)) {
					eframe[CMD_BYTE(x, 0, 1)] = 0x0b;
				} else {
					eframe[CMD_BYTE(x, 0, 1)] = leds;
				}
			} else {
				eframe[CMD_BYTE(x, 0, 1)] = 0x00 | leds;
			}
			eframe[CMD_BYTE(x, 1, 1)] = 0;
			eframe[CMD_BYTE(x, 2, 1)] = 0x00;
		}
		return;
	}

	if ((cmd = vpmadt032_get_ready_cmd(vpm))) {
		cmd->txident = wc->txident;
#if 0
		printk(KERN_DEBUG "Found command txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", cmd->txident, cmd->desc, cmd->address, cmd->data);
#endif
		if (cmd->desc & __VPM150M_RWPAGE) {
			/* Set CTRL access to page*/
			eframe[CMD_BYTE(0, 0, 1)] = (0x8 << 4);
			eframe[CMD_BYTE(0, 1, 1)] = 0;
			eframe[CMD_BYTE(0, 2, 1)] = 0x20;

			/* Do a page write */
			if (cmd->desc & __VPM150M_WR) {
				eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4) << 4);
			} else {
				eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4);
			}
			eframe[CMD_BYTE(1, 1, 1)] = 0;
			if (cmd->desc & __VPM150M_WR) {
				eframe[CMD_BYTE(1, 2, 1)] = cmd->data & 0xf;
			} else {
				eframe[CMD_BYTE(1, 2, 1)] = 0;
			}

			if (cmd->desc & __VPM150M_WR) {
				/* Fill in buffer to size */
				eframe[CMD_BYTE(2, 0, 1)] = 0;
				eframe[CMD_BYTE(2, 1, 1)] = 0;
				eframe[CMD_BYTE(2, 2, 1)] = 0;
			} else {
				/* Do reads twice b/c of vpmadt032 bug */
				eframe[CMD_BYTE(2, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4);
				eframe[CMD_BYTE(2, 1, 1)] = 0;
				eframe[CMD_BYTE(2, 2, 1)] = 0;
			}

			/* Clear XADD */
			eframe[CMD_BYTE(3, 0, 1)] = (0x8 << 4);
			eframe[CMD_BYTE(3, 1, 1)] = 0;
			eframe[CMD_BYTE(3, 2, 1)] = 0;

			/* Fill in buffer to size */
			eframe[CMD_BYTE(4, 0, 1)] = 0;
			eframe[CMD_BYTE(4, 1, 1)] = 0;
			eframe[CMD_BYTE(4, 2, 1)] = 0;

		} else {
			/* Set address */
			eframe[CMD_BYTE(0, 0, 1)] = ((0x8 | 0x4) << 4);
			eframe[CMD_BYTE(0, 1, 1)] = (cmd->address >> 8) & 0xff;
			eframe[CMD_BYTE(0, 2, 1)] = cmd->address & 0xff;

			/* Send/Get our data */
			if (cmd->desc & __VPM150M_WR) {
				eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1)) << 4);
			} else {
				eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4);
			}
			eframe[CMD_BYTE(1, 1, 1)] = (cmd->data >> 8) & 0xff;
			eframe[CMD_BYTE(1, 2, 1)] = cmd->data & 0xff;

			if (cmd->desc & __VPM150M_WR) {
				/* Fill in */
				eframe[CMD_BYTE(2, 0, 1)] = 0;
				eframe[CMD_BYTE(2, 1, 1)] = 0;
				eframe[CMD_BYTE(2, 2, 1)] = 0;
			} else {
				/* Do this again for reads b/c of the bug in vpmadt032 */
				eframe[CMD_BYTE(2, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4);
				eframe[CMD_BYTE(2, 1, 1)] = (cmd->data >> 8) & 0xff;
				eframe[CMD_BYTE(2, 2, 1)] = cmd->data & 0xff;
			}

			/* Fill in the rest */
			eframe[CMD_BYTE(3, 0, 1)] = 0;
			eframe[CMD_BYTE(3, 1, 1)] = 0;
			eframe[CMD_BYTE(3, 2, 1)] = 0;

			/* Fill in the rest */
			eframe[CMD_BYTE(4, 0, 1)] = 0;
			eframe[CMD_BYTE(4, 1, 1)] = 0;
			eframe[CMD_BYTE(4, 2, 1)] = 0;
		}
	} else if (test_and_clear_bit(VPM150M_SWRESET, &vpm->control)) {
		for (x = 0; x < 7; x++) {
			if (0 == x)  {
				eframe[CMD_BYTE(x, 0, 1)] = (0x8 << 4);
			} else {
				eframe[CMD_BYTE(x, 0, 1)] = 0x00;
			}
			eframe[CMD_BYTE(x, 1, 1)] = 0;
			if (0 == x) {
				eframe[CMD_BYTE(x, 2, 1)] = 0x01;
			} else {
				eframe[CMD_BYTE(x, 2, 1)] = 0x00;
			}
		}
	} else {
		for (x = 0; x < 7; x++) {
			eframe[CMD_BYTE(x, 0, 1)] = 0x00;
			eframe[CMD_BYTE(x, 1, 1)] = 0x00;
			eframe[CMD_BYTE(x, 2, 1)] = 0x00;
		}
	}

	/* Add our leds in */
	for (x = 0; x < 7; x++)
		eframe[CMD_BYTE(x, 0, 1)] |= leds;
}

static inline int t1_setreg(struct t1 *wc, int addr, int val)
{
	struct command *cmd;
	cmd = get_free_cmd(wc);
	if (!cmd) {
		WARN_ON(1);
		return -ENOMEM;
	}
	cmd->address = addr;
	cmd->data = val;
	cmd->flags |= __CMD_WR;
	submit_cmd(wc, cmd);
	return 0;
}

static void __t1_getreg(struct t1 *wc, int addr, struct command *cmd)
{
	cmd->address = addr;
	cmd->data = 0x00;
	cmd->flags = __CMD_RD;
	submit_cmd(wc, cmd);
}

static int __t1_getresult(struct t1 *wc, struct command *cmd)
{
	int ret;
	unsigned long flags;

	might_sleep();

	if (test_bit(IOERROR, &wc->bit_flags)) {
		spin_lock_irqsave(&wc->reglock, flags);
		list_del_init(&cmd->node);
		spin_unlock_irqrestore(&wc->reglock, flags);
		if (printk_ratelimit()) {
			dev_warn(&wc->vb.pdev->dev,
				 "Timeout in %s\n", __func__);
		}
		return -EIO;
	}

	ret = wait_for_completion_interruptible_timeout(&cmd->complete, HZ*10);
	if (unlikely(!ret)) {
		spin_lock_irqsave(&wc->reglock, flags);
		if (!list_empty(&cmd->node)) {
			/* Since we've removed this command from the list, we
			 * can go ahead and free it right away. */
			list_del_init(&cmd->node);
			spin_unlock_irqrestore(&wc->reglock, flags);
			if (-ERESTARTSYS != ret) {
				if (printk_ratelimit()) {
					dev_warn(&wc->vb.pdev->dev,
						 "Timeout in %s\n", __func__);
				}
				ret = -EIO;
				set_bit(IOERROR, &wc->bit_flags);
			}
			return ret;
		} else {
			/* Looks like this command was removed from the list by
			 * someone else already. Let's wait for them to complete
			 * it so that we don't free up the memory. */
			spin_unlock_irqrestore(&wc->reglock, flags);
			ret = wait_for_completion_timeout(&cmd->complete, HZ*2);
			WARN_ON(!ret);
			ret = cmd->data;
			return ret;
		}
	}
	ret = cmd->data;
	return ret;
}

static int t1_getreg(struct t1 *wc, int addr)
{
	int res;
	struct command *cmd =  NULL;
	cmd = get_free_cmd(wc);
	if (!cmd)
		return -ENOMEM;
	__t1_getreg(wc, addr, cmd);
	res = __t1_getresult(wc, cmd);
	free_cmd(wc, cmd);
	return res;
}

static void t1_setleds(struct t1 *wc, int leds)
{
	struct command *cmd;

	leds = (~leds) & 0x0E; /* invert the LED bits (3 downto 1)*/

	cmd = get_free_cmd(wc);
	if (!cmd)
		return;
	cmd->flags |= __CMD_LEDS;
	cmd->address = leds;
	submit_cmd(wc, cmd);
}

/**
 * t1_getpins - Returns the value of the jumpers on the card.
 * @wc:	The card to read from.
 * @pins: Pointer to u8 character to hold the pins value.
 *
 * Returns 0 on success, otherwise an error code.
 *
 */
static int t1_getpins(struct t1 *wc, u8 *pins)
{
	struct command *cmd;
	unsigned long flags;
	unsigned long ret;

	*pins = 0;

	cmd = get_free_cmd(wc);
	BUG_ON(!cmd);

	cmd->address = 0x00;
	cmd->data = 0x00;
	cmd->flags = __CMD_PINS;
	submit_cmd(wc, cmd);
	ret = wait_for_completion_interruptible_timeout(&cmd->complete, HZ*2);
	if (unlikely(!ret)) {
		spin_lock_irqsave(&wc->reglock, flags);
		list_del_init(&cmd->node);
		spin_unlock_irqrestore(&wc->reglock, flags);
		free_cmd(wc, cmd);
		if (-ERESTARTSYS != ret) {
			if (printk_ratelimit()) {
				dev_warn(&wc->vb.pdev->dev,
					 "Timeout in %s\n", __func__);
			}
			ret = -EIO;
		}
		return ret;
	}
	*pins = cmd->data;
	free_cmd(wc, cmd);
	return 0;
}

static void __t1xxp_set_clear(struct t1 *wc)
{
	int i, offset;
	int ret;
	unsigned short reg[3] = {0, 0, 0};

	/* Calculate all states on all 24 channels using the channel
	   flags, then write all 3 clear channel registers at once */

	for (i = 0; i < wc->span.channels; i++) {
		offset = i/8;
		if (wc->span.chans[i]->flags & DAHDI_FLAG_CLEAR)
			reg[offset] |= 1 << (7 - (i % 8));
		else
			reg[offset] &= ~(1 << (7 - (i % 8)));
	}

	ret = t1_setreg(wc, CCB1, reg[0]);
	if (ret < 0)
		t1_info(wc, "Unable to set clear/rbs mode!\n");

	ret = t1_setreg(wc, CCB2, reg[1]);
	if (ret < 0)
		t1_info(wc, "Unable to set clear/rbs mode!\n");

	ret = t1_setreg(wc, CCB3, reg[2]);
	if (ret < 0)
		t1_info(wc, "Unable to set clear/rbs mode!\n");
}

/**
 * _t1_free_channels - Free the memory allocated for the channels.
 *
 * Must be called with wc->reglock held.
 *
 */
static void _t1_free_channels(struct t1 *wc)
{
	int x;
	for (x = 0; x < ARRAY_SIZE(wc->chans); x++) {
		kfree(wc->chans[x]);
		kfree(wc->ec[x]);
		wc->chans[x] = NULL;
		wc->ec[x] = NULL;
	}
}

static void free_wc(struct t1 *wc)
{
	unsigned long flags;
	struct command *cmd;
	LIST_HEAD(list);

	spin_lock_irqsave(&wc->reglock, flags);
	_t1_free_channels(wc);
	list_splice_init(&wc->active_cmds, &list);
	list_splice_init(&wc->pending_cmds, &list);
	spin_unlock_irqrestore(&wc->reglock, flags);
	while (!list_empty(&list)) {
		cmd = list_entry(list.next, struct command, node);
		list_del_init(&cmd->node);
		free_cmd(wc, cmd);
	}

	if (wc->wq)
		destroy_workqueue(wc->wq);

#ifdef CONFIG_VOICEBUS_ECREFERENCE
	for (x = 0; x < ARRAY_SIZE(wc->ec_reference); ++x) {
		if (wc->ec_reference[x])
			dahdi_fifo_free(wc->ec_reference[x]);
	}
#endif

	kfree(wc->ddev->location);
	kfree(wc->ddev->devicetype);
	dahdi_free_device(wc->ddev);
	kfree(wc);
}

/**
 * t1_reset_registers - Put register back to their default values 
 *
 * Since the card does not have an ability to reset just the framer
 * specifically, we need to write all the default values to the framer.
 *
 */
static void t1_reset_registers(struct t1 *wc)
{
	int i;
	struct t1_reg {
		u8 address;
		u8 value;
	} __attribute__((packed));
	struct t1_reg *reg;
	static struct t1_reg DEFAULT_REGS[] = {
		{0x00, 0x7d}, {0x01, 0x7d}, {0x02, 0x00}, {0x03, 0x00},
		{0x04, 0xfd}, {0x05, 0xff}, {0x06, 0xff}, {0x07, 0xff},
		{0x08, 0x05}, {0x09, 0x00}, {0x0a, 0x00}, {0x0b, 0x00},
		{0x0c, 0x00}, {0x0d, 0x00}, {0x0e, 0x00}, {0x0f, 0x00},
		{0x10, 0x00}, {0x11, 0x00}, {0x12, 0x00}, {0x13, 0x00},
		{0x14, 0xff}, {0x15, 0xff}, {0x16, 0xff}, {0x17, 0xff},
		{0x18, 0xff}, {0x19, 0xff}, {0x1a, 0x00}, {0x1b, 0x00},
		{0x1c, 0x00}, {0x1d, 0x00}, {0x1e, 0x00}, {0x1f, 0x00},
		{0x20, 0x00}, {0x21, 0x00}, {0x22, 0x00}, {0x23, 0x04},
		{0x24, 0x00}, {0x25, 0x05}, {0x26, 0x7b}, {0x27, 0x03},
		{0x28, 0x40}, {0x29, 0x00}, {0x2a, 0x00}, {0x2b, 0x00},
		{0x2c, 0x00}, {0x2d, 0x00}, {0x2e, 0x00}, {0x2f, 0x00},
		{0x30, 0x00}, {0x31, 0x00}, {0x32, 0x00}, {0x33, 0x00},
		{0x34, 0x00}, {0x35, 0x00}, {0x36, 0x00}, {0x37, 0x80},
		{0x38, 0x00}, {0x39, 0x00}, {0x3a, 0x20}, {0x3b, 0x00},
		{0x3c, 0x00}, {0x3d, 0x00}, {0x3e, 0x0a}, {0x3f, 0x00},
		{0x40, 0x04}, {0x41, 0x00}, {0x42, 0x00}, {0x43, 0x00},
		{0x44, 0x30}, {0x45, 0x00}, {0x46, 0xc0}, {0x47, 0xff},
		{0x48, 0x00}, {0x49, 0x1c}, {0x4a, 0x05}, {0x4b, 0x03},
		{0x4c, 0xa3}, {0x4d, 0x28}, {0x4e, 0x00}, {0x4f, 0xc0},
		{0x50, 0x00}, {0x51, 0x00}, {0x52, 0x00}, {0x53, 0x00},
		{0x54, 0x00}, {0x55, 0x00}, {0x56, 0x00}, {0x57, 0x00},
		{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x00}, {0x5b, 0x00},
		{0x5c, 0x00}, {0x5d, 0x00}, {0x5e, 0x00}, {0x5f, 0x00},
		{0x60, 0x00}, {0x61, 0x20}, {0x62, 0x00}, {0x63, 0x00},
		{0x64, 0x5a}, {0x65, 0x02}, {0x66, 0x00}, {0x67, 0x00},
		{0x68, 0x10}, {0x69, 0x09}, {0x6a, 0x00}, {0x6b, 0x03},
		{0x6c, 0x00}, {0x6d, 0xc0}, {0x6e, 0x40}, {0x6f, 0x00},
		{0x70, 0x00}, {0x71, 0x00}, {0x72, 0x00}, {0x73, 0x00},
		{0x74, 0x00}, {0x75, 0x00}, {0x76, 0x00}, {0x77, 0x00},
		{0x78, 0x00}, {0x79, 0x00}, {0x7a, 0x00}, {0x7b, 0x00},
		{0x7c, 0x00}, {0x7d, 0x00}, {0x7e, 0x00}, {0x7f, 0x00},
		{0x80, 0x00}, {0x81, 0x22}, {0x82, 0x65}, {0x83, 0x35},
		{0x84, 0x31}, {0x85, 0x60}, {0x86, 0x03}, {0x87, 0x00},
		{0x88, 0x00}, {0x89, 0x00}, {0x8a, 0x00}, {0x8b, 0x00},
		{0x8c, 0x00}, {0x8d, 0x00}, {0x8e, 0x00}, {0x8f, 0x00},
		{0x90, 0x00}, {0x91, 0x00}, {0x92, 0x00}, {0x93, 0x18},
		{0x94, 0xfb}, {0x95, 0x0b}, {0x96, 0x00}, {0x97, 0x0b},
		{0x98, 0xdb}, {0x99, 0xdf}, {0x9a, 0x48}, {0x9b, 0x00},
		{0x9c, 0x3f}, {0x9d, 0x3f}, {0x9e, 0x77}, {0x9f, 0x77},
		{0xa0, 0x00}, {0xa1, 0xff}, {0xa2, 0xff}, {0xa3, 0xff},
		{0xa4, 0x00}, {0xa5, 0x00}, {0xa6, 0x00}, {0xa7, 0x00},
		{0xa8, 0x00}
	};

	for (i = 0; i < ARRAY_SIZE(DEFAULT_REGS); ++i) {
		reg = &DEFAULT_REGS[i];
		t1_setreg(wc, reg->address, reg->value);
	}
	/* Flush previous writes. */
	t1_getreg(wc, 0x1d);
}

static void t4_serial_setup(struct t1 *wc)
{
	t1_setreg(wc, 0x85, 0xe0);	/* GPC1: Multiplex mode enabled, FSC is output, active low, RCLK from channel 0 */
	t1_setreg(wc, 0x08, 0x05);	/* IPC: Interrupt push/pull active low */

	/* Global clocks (8.192 Mhz CLK) */
	t1_setreg(wc, 0x92, 0x00);	
	t1_setreg(wc, 0x93, 0x18);
	t1_setreg(wc, 0x94, 0xfb);
	t1_setreg(wc, 0x95, 0x0b);
	t1_setreg(wc, 0x96, 0x00);
	t1_setreg(wc, 0x97, 0x0b);
	t1_setreg(wc, 0x98, 0xdb);
	t1_setreg(wc, 0x99, 0xdf);

	/* Configure interrupts */	
	t1_setreg(wc, 0x46, 0xc0);	/* GCR: Interrupt on Activation/Deactivation of AIX, LOS */

	/* Configure system interface */
	t1_setreg(wc, 0x3e, 0x0a /* 0x02 */);	/* SIC1: 4.096 Mhz clock/bus, double buffer receive / transmit, byte interleaved */
	t1_setreg(wc, 0x3f, 0x00); 	/* SIC2: No FFS, no center receive eliastic buffer, phase 0 */
	t1_setreg(wc, 0x40, 0x04);	/* SIC3: Edges for capture */
	t1_setreg(wc, 0x44, 0x30);	/* CMR1: RCLK is at 8.192 Mhz dejittered */
	t1_setreg(wc, 0x45, 0x00);	/* CMR2: We provide sync and clock for tx and rx. */
	t1_setreg(wc, 0x22, 0x00);	/* XC0: Normal operation of Sa-bits */
	t1_setreg(wc, 0x23, 0x04);	/* XC1: 0 offset */
	t1_setreg(wc, 0x24, 0x00);	/* RC0: Just shy of 255 */
	t1_setreg(wc, 0x25, 0x05);	/* RC1: The rest of RC0 */
	
	/* Configure ports */
	t1_setreg(wc, 0x80, 0x00);	/* PC1: SPYR/SPYX input on RPA/XPA */
	t1_setreg(wc, 0x81, 0x22);	/* PC2: RMFB/XSIG output/input on RPB/XPB */
	t1_setreg(wc, 0x82, 0x65);	/* PC3: Some unused stuff */
	t1_setreg(wc, 0x83, 0x35);	/* PC4: Some more unused stuff */
	t1_setreg(wc, 0x84, 0x31);	/* PC5: XMFS active low, SCLKR is input, RCLK is output */
	t1_setreg(wc, 0x86, 0x03);	/* PC6: CLK1 is Tx Clock output, CLK2 is 8.192 Mhz from DCO-R */
	t1_setreg(wc, 0x3b, 0x00);	/* Clear LCR1 */
}

static void t1_configure_t1(struct t1 *wc, int lineconfig, int txlevel)
{
	unsigned int fmr4, fmr2, fmr1, fmr0, lim2;
	char *framing, *line;
	int mytxlevel;

	if ((txlevel > 7) || (txlevel < 4))
		mytxlevel = 0;
	else
		mytxlevel = txlevel - 4;
	fmr1 = 0x9e; /* FMR1: Mode 0, T1 mode, CRC on for ESF, 2.048 Mhz system data rate, no XAIS */
	fmr2 = 0x20; /* FMR2: no payload loopback, don't auto yellow alarm */


	if (SPANTYPE_DIGITAL_J1 == wc->span.spantype)
		fmr4 = 0x1c;
	else
		fmr4 = 0x0c; /* FMR4: Lose sync on 2 out of 5 framing bits, auto resync */

	lim2 = 0x21; /* LIM2: 50% peak is a "1", Advanced Loss recovery */
	lim2 |= (mytxlevel << 6);	/* LIM2: Add line buildout */
	t1_setreg(wc, 0x1d, fmr1);
	t1_setreg(wc, 0x1e, fmr2);

	/* Configure line interface */
	if (lineconfig & DAHDI_CONFIG_AMI) {
		line = "AMI";
		fmr0 = 0xa0;
	} else {
		line = "B8ZS";
		fmr0 = 0xf0;
	}
	if (lineconfig & DAHDI_CONFIG_D4) {
		framing = "D4";
	} else {
		framing = "ESF";
		fmr4 |= 0x2;
		fmr2 |= 0xc0;
	}
	t1_setreg(wc, 0x1c, fmr0);

	t1_setreg(wc, 0x20, fmr4);
	t1_setreg(wc, 0x21, 0x40);	/* FMR5: Enable RBS mode */

	t1_setreg(wc, 0x37, 0xf8);	/* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */
	t1_setreg(wc, 0x36, 0x08);	/* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */

	t1_setreg(wc, 0x02, 0x50);	/* CMDR: Reset the receiver and transmitter line interface */
	t1_setreg(wc, 0x02, 0x00);	/* CMDR: Reset the receiver and transmitter line interface */

	t1_setreg(wc, 0x3a, lim2);	/* LIM2: 50% peak amplitude is a "1" */
	t1_setreg(wc, 0x38, 0x0a);	/* PCD: LOS after 176 consecutive "zeros" */
	t1_setreg(wc, 0x39, 0x15);	/* PCR: 22 "ones" clear LOS */

	if (SPANTYPE_DIGITAL_J1 == wc->span.spantype)
		t1_setreg(wc, 0x24, 0x80); /* J1 overide */
		
	/* Generate pulse mask for T1 */
	switch (mytxlevel) {
	case 3:
		t1_setreg(wc, 0x26, 0x07);	/* XPM0 */
		t1_setreg(wc, 0x27, 0x01);	/* XPM1 */
		t1_setreg(wc, 0x28, 0x00);	/* XPM2 */
		break;
	case 2:
		t1_setreg(wc, 0x26, 0x8c);	/* XPM0 */
		t1_setreg(wc, 0x27, 0x11);	/* XPM1 */
		t1_setreg(wc, 0x28, 0x01);	/* XPM2 */
		break;
	case 1:
		t1_setreg(wc, 0x26, 0x8c);	/* XPM0 */
		t1_setreg(wc, 0x27, 0x01);	/* XPM1 */
		t1_setreg(wc, 0x28, 0x00);	/* XPM2 */
		break;
	case 0:
	default:
		t1_setreg(wc, 0x26, 0xd7);	/* XPM0 */
		t1_setreg(wc, 0x27, 0x22);	/* XPM1 */
		t1_setreg(wc, 0x28, 0x01);	/* XPM2 */
		break;
	}

	if (debug)
		t1_info(wc, "Span configured for %s/%s\n", framing, line);
}

static void t1_configure_e1(struct t1 *wc, int lineconfig)
{
	unsigned int fmr2, fmr1, fmr0;
	unsigned int cas = 0;
	char *crc4 = "";
	char *framing, *line;

	fmr1 = 0x46; /* FMR1: E1 mode, Automatic force resync, PCM30 mode, 8.192 Mhz backplane, no XAIS */
	fmr2 = 0x03; /* FMR2: Auto transmit remote alarm, auto loss of multiframe recovery, no payload loopback */

	if (lineconfig & DAHDI_CONFIG_CRC4) {
		fmr1 |= 0x08;	/* CRC4 transmit */
		fmr2 |= 0xc0;	/* CRC4 receive */
		crc4 = "/CRC4";
	}
	t1_setreg(wc, 0x1d, fmr1);
	t1_setreg(wc, 0x1e, fmr2);

	/* Configure line interface */
	if (lineconfig & DAHDI_CONFIG_AMI) {
		line = "AMI";
		fmr0 = 0xa0;
	} else {
		line = "HDB3";
		fmr0 = 0xf0;
	}
	if (lineconfig & DAHDI_CONFIG_CCS) {
		framing = "CCS";
	} else {
		framing = "CAS";
		cas = 0x40;
	}
	t1_setreg(wc, 0x1c, fmr0);

	t1_setreg(wc, 0x37, 0xf0 /*| 0x6 */ );	/* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */
	t1_setreg(wc, 0x36, 0x08);	/* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */

	t1_setreg(wc, 0x02, 0x50);	/* CMDR: Reset the receiver and transmitter line interface */
	t1_setreg(wc, 0x02, 0x00);	/* CMDR: Reset the receiver and transmitter line interface */

	/* Condition receive line interface for E1 after reset */
	t1_setreg(wc, 0xbb, 0x17);
	t1_setreg(wc, 0xbc, 0x55);
	t1_setreg(wc, 0xbb, 0x97);
	t1_setreg(wc, 0xbb, 0x11);
	t1_setreg(wc, 0xbc, 0xaa);
	t1_setreg(wc, 0xbb, 0x91);
	t1_setreg(wc, 0xbb, 0x12);
	t1_setreg(wc, 0xbc, 0x55);
	t1_setreg(wc, 0xbb, 0x92);
	t1_setreg(wc, 0xbb, 0x0c);
	t1_setreg(wc, 0xbb, 0x00);
	t1_setreg(wc, 0xbb, 0x8c);
	
	t1_setreg(wc, 0x3a, 0x20);	/* LIM2: 50% peak amplitude is a "1" */
	t1_setreg(wc, 0x38, 0x0a);	/* PCD: LOS after 176 consecutive "zeros" */
	t1_setreg(wc, 0x39, 0x15);	/* PCR: 22 "ones" clear LOS */
	
	t1_setreg(wc, 0x20, 0x9f);	/* XSW: Spare bits all to 1 */
	t1_setreg(wc, 0x21, 0x1c|cas);	/* XSP: E-bit set when async. AXS
					   auto, XSIF to 1 */
	
	
	/* Generate pulse mask for E1 */
	t1_setreg(wc, 0x26, 0x54);	/* XPM0 */
	t1_setreg(wc, 0x27, 0x02);	/* XPM1 */
	t1_setreg(wc, 0x28, 0x00);	/* XPM2 */

	t1_info(wc, "Span configured for %s/%s%s\n", framing, line, crc4);
}

static void t1xxp_framer_start(struct t1 *wc)
{
	if (dahdi_is_e1_span(&wc->span)) {
		t1_configure_e1(wc, wc->span.lineconfig);
	} else { /* is a T1 card */
		t1_configure_t1(wc, wc->span.lineconfig, wc->span.txlevel);
		__t1xxp_set_clear(wc);
	}

	set_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags);
}

static void set_span_devicetype(struct t1 *wc)
{
	const char *olddevicetype;
	olddevicetype = wc->ddev->devicetype;

#if defined(VPM_SUPPORT)
	if (wc->vpmadt032) {
		wc->ddev->devicetype = kasprintf(GFP_KERNEL,
						 "%s (VPMADT032)", wc->variety);
	} else if (wc->vpmoct) {
		wc->ddev->devicetype = kasprintf(GFP_KERNEL,
						 "%s (VPMOCT032)", wc->variety);
	} else {
		wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s", wc->variety);
	}
#else
	wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s", wc->variety);
#endif

	/* On the off chance that we were able to allocate it previously. */
	if (!wc->ddev->devicetype)
		wc->ddev->devicetype = olddevicetype;
	else
		kfree(olddevicetype);
}

static int t1xxp_startup(struct file *file, struct dahdi_span *span)
{
	struct t1 *wc = container_of(span, struct t1, span);
#ifndef CONFIG_VOICEBUS_ECREFERENCE
	unsigned int i;
#endif

	set_span_devicetype(wc);

#ifndef CONFIG_VOICEBUS_ECREFERENCE
	/* initialize the start value for the entire chunk of last ec buffer */
	for (i = 0; i < span->channels; i++) {
		memset(wc->ec_chunk1[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE);
		memset(wc->ec_chunk2[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE);
	}
#endif

	/* Reset framer with proper parameters and start */
	t1xxp_framer_start(wc);
	debug_printk(wc, 1, "Calling startup (flags is %lu)\n", span->flags);

	return 0;
}

static inline bool is_initialized(struct t1 *wc)
{
	WARN_ON(wc->not_ready < 0);
	return (wc->not_ready == 0);
}

/**
 * t1_wait_for_ready
 *
 * Check if the board has finished any setup and is ready to start processing
 * calls.
 */
static int t1_wait_for_ready(struct t1 *wc)
{
	while (!is_initialized(wc)) {
		if (fatal_signal_pending(current))
			return -EIO;
		msleep_interruptible(250);
	}
	return 0;
}

static int t1xxp_chanconfig(struct file *file,
			    struct dahdi_chan *chan, int sigtype)
{
	struct t1 *wc = chan->pvt;

	if (file->f_flags & O_NONBLOCK && !is_initialized(wc)) {
			return -EAGAIN;
	} else {
		t1_wait_for_ready(wc);
	}

	if (test_bit(DAHDI_FLAGBIT_RUNNING, &chan->span->flags) &&
	    dahdi_is_t1_span(&wc->span)) {
		__t1xxp_set_clear(wc);
	}
	return 0;
}

static int t1xxp_rbsbits(struct dahdi_chan *chan, int bits)
{
	u_char m,c;
	int n,b;
	struct t1 *wc = chan->pvt;
	unsigned long flags;
	
	debug_printk(wc, 2, "Setting bits to %d on channel %s\n",
		     bits, chan->name);
	if (dahdi_is_e1_span(&wc->span)) { /* do it E1 way */
		if (chan->chanpos == 16)
			return 0;

		n = chan->chanpos - 1;
		if (chan->chanpos > 15) n--;
		b = (n % 15);
		spin_lock_irqsave(&wc->reglock, flags);	
		c = wc->txsigs[b];
		m = (n / 15) << 2; /* nibble selector */
		c &= (0xf << m); /* keep the other nibble */
		c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
		wc->txsigs[b] = c;
		spin_unlock_irqrestore(&wc->reglock, flags);
		  /* output them to the chip */
		t1_setreg(wc, 0x71 + b, c);
	} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
		n = chan->chanpos - 1;
		b = (n / 4);
		spin_lock_irqsave(&wc->reglock, flags);	
		c = wc->txsigs[b];
		m = ((3 - (n % 4)) << 1); /* nibble selector */
		c &= ~(0x3 << m); /* keep the other nibble */
		c |= ((bits >> 2) & 0x3) << m; /* put our new nibble here */
		wc->txsigs[b] = c;
		spin_unlock_irqrestore(&wc->reglock, flags);
		/* output them to the chip */
		t1_setreg(wc, 0x70 + b, c);
		t1_setreg(wc, 0x70 + b + 6, c);
	} else if (wc->span.lineconfig & DAHDI_CONFIG_ESF) {
		n = chan->chanpos - 1;
		b = (n / 2);
		spin_lock_irqsave(&wc->reglock, flags);	
		c = wc->txsigs[b];
		m = ((n % 2) << 2); /* nibble selector */
		c &= (0xf << m); /* keep the other nibble */
		c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
		wc->txsigs[b] = c;
		spin_unlock_irqrestore(&wc->reglock, flags);
		  /* output them to the chip */
		t1_setreg(wc, 0x70 + b, c);
	} 
	debug_printk(wc, 2, "Finished setting RBS bits\n");

	return 0;
}

static void t1_check_sigbits(struct t1 *wc)
{
	struct command_container {
		struct command *cmd;
		struct list_head node;
		unsigned int index;
	};
	struct command_container *cont;
	LIST_HEAD(commands);
	int a,i,rxs;

	if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
		return;

	if (dahdi_is_e1_span(&wc->span)) {
		/* Send out all the commands first. */
		for (i = 0; i < 15; i++) {
			if (!(wc->span.chans[i+16]->sig & DAHDI_SIG_CLEAR) ||
			    !(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR))  {
				cont = kzalloc(sizeof(*cont), GFP_KERNEL);
				if (!cont) {
					WARN_ON_ONCE(1);
					goto done;
				}
				cont->cmd = get_free_cmd(wc);
				if (!cont->cmd) {
					WARN_ON_ONCE(1);
					goto done;
				}
				cont->index = i;
				list_add_tail(&cont->node, &commands);
				__t1_getreg(wc, 0x71 + i, cont->cmd);
			}
		}

		/* Now check the results */
		list_for_each_entry_reverse(cont, &commands, node) {
			i = cont->index;
			a = __t1_getresult(wc, cont->cmd);
			free_cmd(wc, cont->cmd);
			cont->cmd = NULL;
			if (a > -1) {
				/* Get high channel in low bits */
				rxs = (a & 0xf);
				if (!(wc->span.chans[i+16]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i+16]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i+16], rxs);
					}
				}
				rxs = (a >> 4) & 0xf;
				if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i], rxs);
					}
				}
			}
		}
	} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
		/* First we'll send out the commands */
		for (i = 0; i < 24; i += 4) {
			cont = kzalloc(sizeof(*cont), GFP_KERNEL);
			if (!cont) {
				WARN_ON_ONCE(1);
				goto done;
			}
			cont->cmd = get_free_cmd(wc);
			if (!cont->cmd) {
				WARN_ON_ONCE(1);
				goto done;
			}
			cont->index = i;
			list_add_tail(&cont->node, &commands);
			__t1_getreg(wc, 0x70 + (i>>2), cont->cmd);
		}

		/* Now we'll check the results */
		list_for_each_entry_reverse(cont, &commands, node) {
			i = cont->index;
			a = __t1_getresult(wc, cont->cmd);
			free_cmd(wc, cont->cmd);
			cont->cmd = NULL;
			if (a > -1) {
				/* Get high channel in low bits */
				rxs = (a & 0x3) << 2;
				if (!(wc->span.chans[i+3]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i+3]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i+3], rxs);
					}
				}
				rxs = (a & 0xc);
				if (!(wc->span.chans[i+2]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i+2]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i+2], rxs);
					}
				}
				rxs = (a >> 2) & 0xc;
				if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i+1]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i+1], rxs);
					}
				}
				rxs = (a >> 4) & 0xc;
				if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i], rxs);
					}	
				}
			}
		}
	} else {
		/* First send out the commands. */
		for (i = 0; i < 24; i += 2) {
			cont = kzalloc(sizeof(*cont), GFP_KERNEL);
			if (!cont) {
				WARN_ON_ONCE(1);
				goto done;
			}
			cont->cmd = get_free_cmd(wc);
			if (!cont->cmd) {
				WARN_ON_ONCE(1);
				goto done;
			}
			cont->index = i;
			list_add_tail(&cont->node, &commands);
			__t1_getreg(wc, 0x70 + (i>>1), cont->cmd);
		}

		list_for_each_entry_reverse(cont, &commands, node) {
			i = cont->index;
			a = __t1_getresult(wc, cont->cmd);
			free_cmd(wc, cont->cmd);
			cont->cmd = NULL;
			if (a > -1) {
				/* Get high channel in low bits */
				rxs = (a & 0xf);
				if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i+1]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i+1], rxs);
					}
				}
				rxs = (a >> 4) & 0xf;
				if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
					if (wc->span.chans[i]->rxsig != rxs) {
						dahdi_rbsbits(wc->span.chans[i], rxs);
					}
				}
			}
		}
	}
done:
	while (!list_empty(&commands)) {
		cont = container_of(commands.next,
				    struct command_container, node);
		if (unlikely(cont->cmd)) {
			/* We do not care about the result, let's just wait for
			 * the rest of the system to finish with it. */
			__t1_getresult(wc, cont->cmd);
			free_cmd(wc, cont->cmd);
			cont->cmd = NULL;
		}
		list_del(&cont->node);
		kfree(cont);
	}
	return;
}

struct maint_work_struct {
	struct work_struct work;
	struct t1 *wc;
	int cmd;
	struct dahdi_span *span;
};

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void t1xxp_maint_work(void *data)
{
	struct maint_work_struct *w = data;
#else
static void t1xxp_maint_work(struct work_struct *work)
{
	struct maint_work_struct *w = container_of(work,
					struct maint_work_struct, work);
#endif

	struct t1 *wc = w->wc;
	struct dahdi_span *span = w->span;
	int reg = 0;
	int cmd = w->cmd;

	if (dahdi_is_e1_span(&wc->span)) {
		switch (cmd) {
		case DAHDI_MAINT_NONE:
			t1_info(wc, "Clearing all maint modes\n");
			t1xxp_clear_maint(span);
			break;
		case DAHDI_MAINT_LOCALLOOP:
			t1xxp_clear_maint(span);
			reg = t1_getreg(wc, LIM0);
			if (reg < 0)
				goto cleanup;
			t1_setreg(wc, LIM0, reg | LIM0_LL);
			break;
		case DAHDI_MAINT_REMOTELOOP:
		case DAHDI_MAINT_LOOPUP:
		case DAHDI_MAINT_LOOPDOWN:
			t1_info(wc, "Only local loop supported in E1 mode\n");
			goto cleanup;
		default:
			t1_info(wc, "Unknown E1 maint command: %d\n", cmd);
			goto cleanup;
		}
	} else {
		switch (cmd) {
		case DAHDI_MAINT_NONE:
			t1xxp_clear_maint(span);
			break;
		case DAHDI_MAINT_LOCALLOOP:
			t1xxp_clear_maint(span);
 			reg = t1_getreg(wc, LIM0);
			if (reg < 0)
				goto cleanup;
			t1_setreg(wc, LIM0, reg | LIM0_LL);
			break;
 		case DAHDI_MAINT_NETWORKLINELOOP:
			t1xxp_clear_maint(span);
 			reg = t1_getreg(wc, LIM1);
			if (reg < 0)
				goto cleanup;
			t1_setreg(wc, LIM1, reg | LIM1_RL);
 			break;
 		case DAHDI_MAINT_NETWORKPAYLOADLOOP:
			t1xxp_clear_maint(span);
 			reg = t1_getreg(wc, LIM1);
			if (reg < 0)
				goto cleanup;
			t1_setreg(wc, LIM1, reg | (LIM1_RL | LIM1_JATT));
			break;
		case DAHDI_MAINT_LOOPUP:
			t1xxp_clear_maint(span);
			t1_setreg(wc, 0x21, 0x50);
			break;
		case DAHDI_MAINT_LOOPDOWN:
			t1xxp_clear_maint(span);
			t1_setreg(wc, 0x21, 0x60);
			break;
		default:
			t1_info(wc, "Unknown T1 maint command: %d\n", cmd);
			return;
		}
	}

cleanup:
	kfree(w);
	return;
}

static int t1xxp_maint(struct dahdi_span *span, int cmd)
{
	struct maint_work_struct *work;
	struct t1 *wc = container_of(span, struct t1, span);

	if (dahdi_is_e1_span(&wc->span)) {
		switch (cmd) {
		case DAHDI_MAINT_NONE:
		case DAHDI_MAINT_LOCALLOOP:
			break;
		case DAHDI_MAINT_REMOTELOOP:
		case DAHDI_MAINT_LOOPUP:
		case DAHDI_MAINT_LOOPDOWN:
			t1_info(wc, "Only local loop supported in E1 mode\n");
			return -ENOSYS;
		default:
			t1_info(wc, "Unknown E1 maint command: %d\n", cmd);
			return -ENOSYS;
		}
	} else {
		switch (cmd) {
		case DAHDI_MAINT_NONE:
		case DAHDI_MAINT_LOCALLOOP:
		case DAHDI_MAINT_NETWORKLINELOOP:
		case DAHDI_MAINT_NETWORKPAYLOADLOOP:
		case DAHDI_MAINT_LOOPUP:
		case DAHDI_MAINT_LOOPDOWN:
			break;
		default:
			t1_info(wc, "Unknown T1 maint command: %d\n", cmd);
			return -ENOSYS;
		}
	}

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
		t1_info(wc, "Failed to allocate memory for workqueue\n");
		return -ENOMEM;
	}

	work->span = span;
	work->wc = wc;
	work->cmd = cmd;

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
	INIT_WORK(&work->work, t1xxp_maint_work, work);
#else
	INIT_WORK(&work->work, t1xxp_maint_work);
#endif
	queue_work(wc->wq, &work->work);
	return 0;
}

static int t1xxp_clear_maint(struct dahdi_span *span)
{
	struct t1 *wc = container_of(span, struct t1, span);
	int reg = 0;

	/* Turn off local loop */
	reg = t1_getreg(wc, LIM0);
	if (reg < 0)
		return -EIO;
	t1_setreg(wc, LIM0, reg & ~LIM0_LL);

	/* Turn off remote loop & jitter attenuator */
	reg = t1_getreg(wc, LIM1);
	if (reg < 0)
		return -EIO;
	t1_setreg(wc, LIM1, reg & ~(LIM1_RL | LIM1_JATT));

	/* Clear loopup/loopdown signals on the line */
	t1_setreg(wc, 0x21, 0x40);
	return 0;
}


static int t1xxp_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
	struct t4_regs regs;
	unsigned int x;
	struct t1 *wc;

	switch (cmd) {
	case WCT4_GET_REGS:
		wc = chan->pvt;
		for (x = 0; x < sizeof(regs.regs) / sizeof(regs.regs[0]); x++)
			regs.regs[x] = t1_getreg(wc, x);

		if (copy_to_user((void __user *) data, &regs, sizeof(regs)))
			return -EFAULT;
		break;
	default:
		return -ENOTTY;
	}
	return 0;
}

static const char *t1xxp_echocan_name(const struct dahdi_chan *chan)
{
	struct t1 *wc = chan->pvt;
	if (wc->vpmadt032)
		return vpmadt032_name;
	else if (wc->vpmoct)
		return vpmoct_name;
	return NULL;
}

static int t1xxp_echocan_create(struct dahdi_chan *chan,
				struct dahdi_echocanparams *ecp,
				struct dahdi_echocanparam *p,
				struct dahdi_echocan_state **ec)
{
	struct t1 *wc = chan->pvt;
	enum adt_companding comp;

	if (!vpmsupport || !test_bit(VPM150M_ACTIVE, &wc->ctlreg))
		return -ENODEV;

	if (wc->vpmadt032) {
		*ec = wc->ec[chan->chanpos - 1];
		(*ec)->ops = &vpm150m_ec_ops;
		(*ec)->features = vpm150m_ec_features;

		comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ?
				ADT_COMP_ALAW : ADT_COMP_ULAW;

		return vpmadt032_echocan_create(wc->vpmadt032, chan->chanpos-1,
						comp, ecp, p);
	} else if (wc->vpmoct) {
		/* Hookup legacy callbacks */
		*ec = wc->ec[chan->chanpos - 1];
		(*ec)->ops = &vpm150m_ec_ops;
		(*ec)->features = vpm150m_ec_features;

		return vpmoct_echocan_create(wc->vpmoct, chan->chanpos-1,
				chan->span->deflaw);
	} else {
		return -ENODEV;
	}
}

static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec)
{
	struct t1 *wc = chan->pvt;
	if (wc->vpmadt032)
		vpmadt032_echocan_free(wc->vpmadt032, chan->chanpos - 1, ec);
	else if (wc->vpmoct)
		vpmoct_echocan_free(wc->vpmoct, chan->chanpos - 1);
}

static void
setchanconfig_from_state(struct vpmadt032 *vpm, int channel,
			 GpakChannelConfig_t *chanconfig)
{
	GpakEcanParms_t *p;

	BUG_ON(!vpm);

	chanconfig->PcmInPortA = 3;
	chanconfig->PcmInSlotA = (channel + 1) * 2;
	chanconfig->PcmOutPortA = SerialPortNull;
	chanconfig->PcmOutSlotA = (channel + 1) * 2;
	chanconfig->PcmInPortB = 2;
	chanconfig->PcmInSlotB = (channel + 1) * 2;
	chanconfig->PcmOutPortB = 3;
	chanconfig->PcmOutSlotB = (channel + 1) * 2;
	chanconfig->ToneTypesA = Null_tone;
	chanconfig->MuteToneA = Disabled;
	chanconfig->FaxCngDetA = Disabled;
	chanconfig->ToneTypesB = Null_tone;
	chanconfig->EcanEnableA = Enabled;
	chanconfig->EcanEnableB = Disabled;
	chanconfig->MuteToneB = Disabled;
	chanconfig->FaxCngDetB = Disabled;

	chanconfig->SoftwareCompand = cmpNone;

	chanconfig->FrameRate = rate10ms;

	p = &chanconfig->EcanParametersA;

	vpmadt032_get_default_parameters(p);

	p->EcanNlpType = vpm->curecstate[channel].nlp_type;
	p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold;
	p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress;

	memcpy(&chanconfig->EcanParametersB,
		&chanconfig->EcanParametersA,
		sizeof(chanconfig->EcanParametersB));
}

#ifdef VPM_SUPPORT

struct vpm_load_work {
	struct work_struct work;
	struct t1 *wc;
};

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpm_load_func(void *data)
{
	struct maint_work_struct *w = data;
#else
static void vpm_load_func(struct work_struct *work)
{
	struct vpm_load_work *w = container_of(work,
					struct vpm_load_work, work);
#endif
	struct t1 *wc = w->wc;
	int res;

	res = vpmadt032_init(wc->vpmadt032);
	if (res) {
		/* There was some problem during initialization, but it passed
		 * the address test, let's try again in a bit. */
		wc->vpm_check = jiffies + HZ/2;
		return;
	}

	if (config_vpmadt032(wc->vpmadt032, wc)) {
		clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
		wc->vpm_check = jiffies + HZ/2;
		return;
	}

	/* turn on vpm (RX audio from vpm module) */
	set_bit(VPM150M_ACTIVE, &wc->ctlreg);
	wc->vpm_check = jiffies + HZ*5;
	if (vpmtsisupport) {
		debug_printk(wc, 1, "enabling VPM TSI pin\n");
		/* turn on vpm timeslot interchange pin */
		set_bit(0, &wc->ctlreg);
	}

	wc->not_ready--;
	kfree(w);
}

static int vpm_start_load(struct t1 *wc)
{
	struct vpm_load_work *work;

	work = kzalloc(sizeof(*work), GFP_KERNEL);
	if (!work)
		return -ENOMEM;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
	INIT_WORK(&work->work, vpm_load_func, work);
#else
	INIT_WORK(&work->work, vpm_load_func);
#endif
	work->wc = wc;

	queue_work(wc->wq, &work->work);
	wc->not_ready++;
	return 0;
}

static void t1_vpm_load_complete(struct device *dev, bool operational)
{
	unsigned long flags;
	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
	struct t1 *wc = pci_get_drvdata(pdev);
	struct vpmoct *vpm = NULL;

	if (!wc || is_initialized(wc)) {
		WARN_ON(!wc);
		return;
	}

	spin_lock_irqsave(&wc->reglock, flags);
	wc->not_ready--;
	if (operational) {
		set_bit(VPM150M_ACTIVE, &wc->ctlreg);
	} else {
		clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
		vpm = wc->vpmoct;
		wc->vpmoct = NULL;
	}
	spin_unlock_irqrestore(&wc->reglock, flags);

	if (vpm)
		vpmoct_free(vpm);
}

static void check_and_load_vpm(struct t1 *wc)
{
	unsigned long flags;
	struct vpmadt032_options options;
	struct vpmadt032 *vpmadt = NULL;

	if (!vpmsupport) {
		t1_info(wc, "VPM Support Disabled via module parameter\n");
		return;
	}

	memset(&options, 0, sizeof(options));
	options.debug = debug;
	options.vpmnlptype = vpmnlptype;
	options.vpmnlpthresh = vpmnlpthresh;
	options.vpmnlpmaxsupp = vpmnlpmaxsupp;
	options.channels = dahdi_is_t1_span(&wc->span) ? 24 : 32;

	/* We do not want to check that the VPM is alive until after we're
	 * done setting it up here, an hour should cover it... */
	wc->vpm_check = jiffies + HZ*3600;

	/* If there was one already allocated, let's free it. */
	if (wc->vpmadt032) {
		vpmadt = wc->vpmadt032;
		clear_bit(VPM150M_ACTIVE, &vpmadt->control);
		flush_workqueue(vpmadt->wq);
		spin_lock_irqsave(&wc->reglock, flags);
		wc->vpmadt032 = NULL;
		spin_unlock_irqrestore(&wc->reglock, flags);
		vpmadt032_free(vpmadt);
	}

	vpmadt = vpmadt032_alloc(&options);
	if (!vpmadt)
		return;

	vpmadt->setchanconfig_from_state = setchanconfig_from_state;

	spin_lock_irqsave(&wc->reglock, flags);
	wc->vpmadt032 = vpmadt;
	spin_unlock_irqrestore(&wc->reglock, flags);

	/* Probe for and attempt to load a vpmadt032 module */
	if (vpmadt032_test(vpmadt, &wc->vb) || vpm_start_load(wc)) {
		/* There does not appear to be a VPMADT032 installed. */
		clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
		spin_lock_irqsave(&wc->reglock, flags);
		wc->vpmadt032 = NULL;
		spin_unlock_irqrestore(&wc->reglock, flags);
		vpmadt032_free(vpmadt);
	}

	/* Probe for and attempt to load a vpmoct032 module */
	if (NULL == wc->vpmadt032) {
		struct vpmoct *vpmoct;

		/* Check for vpmoct */
		vpmoct = vpmoct_alloc();
		if (!vpmoct)
			return;

		vpmoct->dev = &wc->vb.pdev->dev;

		spin_lock_irqsave(&wc->reglock, flags);
		wc->vpmoct = vpmoct;
		wc->not_ready++;
		spin_unlock_irqrestore(&wc->reglock, flags);

		vpmoct_init(vpmoct, t1_vpm_load_complete);
	}

	set_span_devicetype(wc);
}
#else
static inline void check_and_load_vpm(const struct t1 *wc)
{
	return;
}
#endif

static void t1_chan_set_sigcap(struct dahdi_span *span, int x)
{
	struct t1 *wc = container_of(span, struct t1, span);
	struct dahdi_chan *chan = wc->chans[x];
	chan->sigcap = DAHDI_SIG_CLEAR;
	/* E&M variant supported depends on span type */
	if (dahdi_is_e1_span(&wc->span)) {
		/* E1 sigcap setup */
		if (span->lineconfig & DAHDI_CONFIG_CCS) {
			/* CCS setup */
			chan->sigcap |= DAHDI_SIG_MTP2 | DAHDI_SIG_SF;
			return;
		}
		/* clear out sig and sigcap for channel 16 on E1 CAS
		 * lines, otherwise, set it correctly */
		if (x == 15) {
			/* CAS signaling channel setup */
			wc->chans[15]->sigcap = 0;
			wc->chans[15]->sig = 0;
			return;
		}
		/* normal CAS setup */
		chan->sigcap |= DAHDI_SIG_EM_E1 | DAHDI_SIG_FXSLS |
			DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_SF |
			DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_FXOKS |
			DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
	} else {
		/* T1 sigcap setup */
		chan->sigcap |= DAHDI_SIG_EM | DAHDI_SIG_FXSLS |
			DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_MTP2 |
			DAHDI_SIG_SF | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS |
			DAHDI_SIG_FXOKS | DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
	}
}

static int
t1xxp_spanconfig(struct file *file, struct dahdi_span *span,
		 struct dahdi_lineconfig *lc)
{
	struct t1 *wc = container_of(span, struct t1, span);
	int i;

	if (file->f_flags & O_NONBLOCK) {
		if (!is_initialized(wc))
			return -EAGAIN;
	} else {
		t1_wait_for_ready(wc);
	}

	/* Do we want to SYNC on receive or not */
	if (lc->sync) {
		set_bit(7, &wc->ctlreg);
		span->syncsrc = span->spanno;
	} else {
		clear_bit(7, &wc->ctlreg);
		span->syncsrc = 0;
	}

	/* make sure that sigcaps gets updated if necessary */
	for (i = 0; i < wc->span.channels; i++)
		t1_chan_set_sigcap(span, i);

	/* If already running, apply changes immediately */
	if (test_bit(DAHDI_FLAGBIT_RUNNING, &span->flags))
		return t1xxp_startup(file, span);

	return 0;
}

static int t1xxp_enable_hw_preechocan(struct dahdi_chan *chan)
{
	struct t1 *wc = chan->pvt;

	if (!wc->vpmoct)
		return 0;

	return vpmoct_preecho_enable(wc->vpmoct, chan->chanpos - 1);
}

static void t1xxp_disable_hw_preechocan(struct dahdi_chan *chan)
{
	struct t1 *wc = chan->pvt;

	if (!wc->vpmoct)
		return;

	vpmoct_preecho_disable(wc->vpmoct, chan->chanpos - 1);
}

/**
 * t1_software_init - Initialize the board for the given type.
 * @wc:		The board to initialize.
 * @type:	The type of board we are, T1 / E1
 *
 * This function is called at startup and when the type of the span is changed
 * via the dahdi_device before the span is assigned a number.
 *
 */
static int t1_software_init(struct t1 *wc, enum linemode type)
{
	int x;
	struct dahdi_chan *chans[32] = {NULL,};
	struct dahdi_echocan_state *ec[32] = {NULL,};
	unsigned long flags;
	int res = 0;

	/* We may already be setup properly. */
	if (wc->span.channels == ((E1 == type) ? 31 : 24))
		return 0;

	for (x = 0; x < ((E1 == type) ? 31 : 24); x++) {
		chans[x] = kzalloc(sizeof(*chans[x]), GFP_KERNEL);
		ec[x] = kzalloc(sizeof(*ec[x]), GFP_KERNEL);
		if (!chans[x] || !ec[x])
			goto error_exit;
	}

	set_span_devicetype(wc);

	/* Because the interrupt handler is running, we need to atomically
	 * swap the channel arrays. */
	spin_lock_irqsave(&wc->reglock, flags);
	_t1_free_channels(wc);
	memcpy(wc->chans, chans, sizeof(wc->chans));
	memcpy(wc->ec, ec, sizeof(wc->ec));
	memset(chans, 0, sizeof(chans));
	memset(ec, 0, sizeof(ec));

	switch (type) {
	case E1:
		wc->span.channels = 31;
		wc->span.spantype = SPANTYPE_DIGITAL_E1;
		wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_HDB3 |
			DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4;
		wc->span.deflaw = DAHDI_LAW_ALAW;
		break;
	case T1:
		wc->span.channels = 24;
		wc->span.spantype = SPANTYPE_DIGITAL_T1;
		wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS |
			DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF;
		wc->span.deflaw = DAHDI_LAW_MULAW;
		break;
	case J1:
		wc->span.channels = 24;
		wc->span.spantype = SPANTYPE_DIGITAL_J1;
		wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS |
			DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF;
		wc->span.deflaw = DAHDI_LAW_MULAW;
		break;
	default:
		spin_unlock_irqrestore(&wc->reglock, flags);
		res = -EINVAL;
		goto error_exit;
	}

	spin_unlock_irqrestore(&wc->reglock, flags);

	if (!wc->ddev->location)
		return -ENOMEM;

	t1_info(wc, "Setting up global serial parameters for %s\n",
		dahdi_spantype2str(wc->span.spantype));

	t4_serial_setup(wc);
	set_bit(DAHDI_FLAGBIT_RBS, &wc->span.flags);
	for (x = 0; x < wc->span.channels; x++) {
		snprintf(wc->chans[x]->name, sizeof(wc->chans[x]->name),
			 "%s/%d", wc->span.name, x + 1);
		t1_chan_set_sigcap(&wc->span, x);
		wc->chans[x]->pvt = wc;
		wc->chans[x]->chanpos = x + 1;
	}

	check_and_load_vpm(wc);
	set_span_devicetype(wc);

	return 0;

error_exit:
	for (x = 0; x < ARRAY_SIZE(chans); ++x) {
		kfree(chans[x]);
		kfree(ec[x]);
	}
	return res;
}

/**
 * t1xx_set_linemode - Change the type of span before assignment.
 * @span:		The span to change.
 * @linemode:		Text string for the line mode.
 *
 * This function may be called after the dahdi_device is registered but
 * before the spans are assigned numbers (and are visible to the rest of
 * DAHDI).
 *
 */
static int t1xxp_set_linemode(struct dahdi_span *span, enum spantypes linemode)
{
	int res;
	struct t1 *wc = container_of(span, struct t1, span);

	/* We may already be set to the requested type. */
	if (span->spantype == linemode)
		return 0;

	res = t1_wait_for_ready(wc);
	if (res)
		return res;

	/* Stop the processing of the channels since we're going to change
	 * them. */
	clear_bit(INITIALIZED, &wc->bit_flags);
	synchronize_irq(wc->vb.pdev->irq);
	smp_mb__after_atomic();
	del_timer_sync(&wc->timer);
	flush_workqueue(wc->wq);

	t1_reset_registers(wc);

	switch (linemode) {
	case SPANTYPE_DIGITAL_T1:
		dev_info(&wc->vb.pdev->dev,
			 "Changing from %s to T1 line mode.\n",
			 dahdi_spantype2str(wc->span.spantype));
		res = t1_software_init(wc, T1);
		break;
	case SPANTYPE_DIGITAL_E1:
		dev_info(&wc->vb.pdev->dev,
			 "Changing from %s to E1 line mode.\n",
			 dahdi_spantype2str(wc->span.spantype));
		res = t1_software_init(wc, E1);
		break;
	case SPANTYPE_DIGITAL_J1:
		dev_info(&wc->vb.pdev->dev,
			 "Changing from %s to E1 line mode.\n",
			 dahdi_spantype2str(wc->span.spantype));
		res = t1_software_init(wc, J1);
		break;
	default:
		dev_err(&wc->vb.pdev->dev,
			"Got invalid linemode '%s' from dahdi\n",
			dahdi_spantype2str(linemode));
		res = -EINVAL;
	}

	/* Since we probably reallocated the channels we need to make
	 * sure they are configured before setting INITIALIZED again. */
	if (!res) {
		dahdi_init_span(span);
		set_bit(INITIALIZED, &wc->bit_flags);
		mod_timer(&wc->timer, jiffies + HZ/5);
	}
	return res;
}

#if 0

#ifdef VPM_SUPPORT
static inline unsigned char t1_vpm_in(struct t1 *wc, int unit, const unsigned int addr) 
{
		return t1_getreg_full(wc, addr, unit);
}

static inline unsigned char t1_vpm_out(struct t1 *wc, int unit, const unsigned int addr, const unsigned char val) 
{
		return t1_setreg(wc, addr, val, unit);
}

#endif
#endif

static int t1_hardware_post_init(struct t1 *wc, enum linemode *type)
{
	int res;
	int reg;
	int x;

	/* T1 or E1 */
	if ((-1 != t1e1override) || (-1 != j1mode)) {
		*type = (t1e1override) ? E1 : (j1mode) ? J1 : T1;
	} else {
		if (!strcasecmp(default_linemode, "e1")) {
			*type = E1;
		} else if (!strcasecmp(default_linemode, "t1")) {
			*type = T1;
		} else if (!strcasecmp(default_linemode, "j1")) {
			*type = J1;
		} else {
			u8 pins;
			res = t1_getpins(wc, &pins);
			if (res)
				return res;
			*type = (pins & 0x01) ? T1 : E1;
		}
	}
	debug_printk(wc, 1, "linemode: %s\n", (*type == T1) ? "T1" :
					(J1 == *type) ? "J1" : "E1");
	
	/* what version of the FALC are we using? */
	reg = t1_setreg(wc, 0x4a, 0xaa);
	reg = t1_getreg(wc, 0x4a);
	if (reg < 0) {
		t1_info(wc, "Failed to read FALC version (%d)\n", reg);
		return -EIO;
	}
	debug_printk(wc, 1, "FALC version: %08x\n", reg);

	/* make sure reads and writes work */
	for (x = 0; x < 256; x++) {
		t1_setreg(wc, 0x14, x);
		reg = t1_getreg(wc, 0x14);
		if (reg < 0) {
			t1_info(wc, "Failed register read (%d)\n", reg);
			return -EIO;
		}
		if (reg != x) {
			t1_info(wc, "Register test failed. "
				"Wrote '%x' but read '%x'\n", x, reg);
			return -EIO;
		}
	}

	t1_setleds(wc, wc->ledstate);

	return 0;
}

static void t1_check_alarms(struct t1 *wc)
{
	unsigned char c,d;
	int alarms;
	int x,j;
	unsigned char fmr4; /* must read this always */
	struct command *cmds[3];

	if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
		return;

	for (x = 0; x < ARRAY_SIZE(cmds); ++x) {
		cmds[x] = get_free_cmd(wc);
		if (!cmds[x]) {
			WARN_ON(1);
			for (x = 0; x < ARRAY_SIZE(cmds); ++x)
				free_cmd(wc, cmds[x]);
			return;
		}
	}

	/* Since this is voicebus, if we issue all the reads initially and then
	 * check the results we can save ourselves some time. Otherwise, each
	 * read will take a minimum of 3ms to go through the complete pipeline.
	 */
	__t1_getreg(wc, 0x4c, cmds[0]);
	__t1_getreg(wc, 0x20, cmds[1]); /* must read this even if not used */
	__t1_getreg(wc, 0x4d, cmds[2]);

	d = __t1_getresult(wc, cmds[2]);
	fmr4 = __t1_getresult(wc, cmds[1]);
	c = __t1_getresult(wc, cmds[0]);

	for (x=0; x < ARRAY_SIZE(cmds); ++x)
		free_cmd(wc, cmds[x]);

	/* Assume no alarms */
	alarms = 0;

	/* And consider only carrier alarms */
	wc->span.alarms &= (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE | DAHDI_ALARM_NOTOPEN);

	if (dahdi_is_e1_span(&wc->span)) {
		if (c & 0x04) {
			/* No multiframe found, force RAI high after 400ms only if
			   we haven't found a multiframe since last loss
			   of frame */
			if (!wc->flags.nmf) {
				t1_setreg(wc, 0x20, 0x9f | 0x20);	/* LIM0: Force RAI High */
				wc->flags.nmf = 1;
				t1_info(wc, "NMF workaround on!\n");
			}
			t1_setreg(wc, 0x1e, 0xc3);	/* Reset to CRC4 mode */
			t1_setreg(wc, 0x1c, 0xf2);	/* Force Resync */
			t1_setreg(wc, 0x1c, 0xf0);	/* Force Resync */
		} else if (!(c & 0x02)) {
			if (wc->flags.nmf) {
				t1_setreg(wc, 0x20, 0x9f);	/* LIM0: Clear forced RAI */
				wc->flags.nmf = 0;
				t1_info(wc, "NMF workaround off!\n");
			}
		}
	} else {
		/* Detect loopup code if we're not sending one */
		if ((!wc->span.mainttimer) && (d & 0x08)) {
			/* Loop-up code detected */
			if ((++wc->loopupcnt > 80) &&
			    (wc->span.maintstat != DAHDI_MAINT_REMOTELOOP)) {
				t1_notice(wc, "Loopup detected,"\
					" enabling remote loop\n");
				t1_setreg(wc, 0x36, 0x08);	/* LIM0: Disable any local loop */
				t1_setreg(wc, 0x37, 0xf6);	/* LIM1: Enable remote loop */
				wc->span.maintstat = DAHDI_MAINT_REMOTELOOP;
			}
		} else {
			wc->loopupcnt = 0;
		}

		/* Same for loopdown code */
		if ((!wc->span.mainttimer) && (d & 0x10)) {
			/* Loop-down code detected */
			if ((++wc->loopdowncnt > 80) &&
			    (wc->span.maintstat == DAHDI_MAINT_REMOTELOOP)) {
				t1_notice(wc, "Loopdown detected,"\
					" disabling remote loop\n");
				t1_setreg(wc, 0x36, 0x08);	/* LIM0: Disable any local loop */
				t1_setreg(wc, 0x37, 0xf0);	/* LIM1: Disable remote loop */
				wc->span.maintstat = DAHDI_MAINT_NONE;
			}
		} else {
			wc->loopdowncnt = 0;
		}
	}

	if (wc->span.lineconfig & DAHDI_CONFIG_NOTOPEN) {
		for (x=0,j=0;x < wc->span.channels;x++)
			if ((wc->span.chans[x]->flags & DAHDI_FLAG_OPEN) ||
			    dahdi_have_netdev(wc->span.chans[x]))
				j++;
		if (!j)
			alarms |= DAHDI_ALARM_NOTOPEN;
	}

	if (c & 0x20) { /* LOF/LFA */
		if (wc->alarmcount >= (alarmdebounce/100))
			alarms |= DAHDI_ALARM_RED;
		else {
			if (unlikely(debug && !wc->alarmcount)) {
				/* starting to debounce LOF/LFA */
				t1_info(wc, "LOF/LFA detected but "
					"debouncing for %d ms\n",
					alarmdebounce);
			}
			wc->alarmcount++;
		}
	} else
		wc->alarmcount = 0;

	if (c & 0x80) { /* LOS */
		if (wc->losalarmcount >= (losalarmdebounce/100))
			alarms |= DAHDI_ALARM_RED;
		else {
			if (unlikely(debug && !wc->losalarmcount)) {
				/* starting to debounce LOS */
				t1_info(wc, "LOS detected but debouncing "
					"for %d ms\n", losalarmdebounce);
			}
			wc->losalarmcount++;
		}
	} else
		wc->losalarmcount = 0;

	if (c & 0x40) { /* AIS */
		if (wc->aisalarmcount >= (aisalarmdebounce/100))
			alarms |= DAHDI_ALARM_BLUE;
		else {
			if (unlikely(debug && !wc->aisalarmcount)) {
				/* starting to debounce AIS */
				t1_info(wc, "AIS detected but debouncing "
					"for %d ms\n", aisalarmdebounce);
			}
			wc->aisalarmcount++;
		}
	} else
		wc->aisalarmcount = 0;

	/* Keep track of recovering */
	if ((!alarms) && wc->span.alarms) 
		wc->alarmtimer = jiffies + 5*HZ;
	if (wc->alarmtimer)
		alarms |= DAHDI_ALARM_RECOVER;

	/* If receiving alarms, go into Yellow alarm state */
	if (alarms && !wc->flags.sendingyellow) {
		t1_info(wc, "Setting yellow alarm\n");

		/* We manually do yellow alarm to handle RECOVER and NOTOPEN, otherwise it's auto anyway */
		t1_setreg(wc, 0x20, fmr4 | 0x20);
		wc->flags.sendingyellow = 1;
	} else if (!alarms && wc->flags.sendingyellow) {
		t1_info(wc, "Clearing yellow alarm\n");
		/* We manually do yellow alarm to handle RECOVER  */
		t1_setreg(wc, 0x20, fmr4 & ~0x20);
		wc->flags.sendingyellow = 0;
	}
	/*
	if ((c & 0x10))
		alarms |= DAHDI_ALARM_YELLOW;
	*/

	if (c & 0x10) { /* receiving yellow (RAI) */
		if (wc->yelalarmcount >= (yelalarmdebounce/100))
			alarms |= DAHDI_ALARM_YELLOW;
		else {
			if (unlikely(debug && !wc->yelalarmcount)) {
				/* starting to debounce AIS */
				t1_info(wc, "yelllow (RAI) detected but "
					"debouncing for %d ms\n",
					yelalarmdebounce);
			}
			wc->yelalarmcount++;
		}
	} else
		wc->yelalarmcount = 0;

	if (wc->span.mainttimer || wc->span.maintstat) 
		alarms |= DAHDI_ALARM_LOOPBACK;
	wc->span.alarms = alarms;
	dahdi_alarm_notify(&wc->span);
}

static void handle_leds(struct t1 *wc)
{
	unsigned char led;
	unsigned long flags;

	led = wc->ledstate;

	if ((wc->span.alarms & (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE))
		|| wc->losalarmcount) {
		/* When we're in red alarm, blink the led once a second. */
		if (time_after(jiffies, wc->blinktimer)) {
			led = (led & __LED_GREEN) ? SET_LED_RED(led) : UNSET_LED_REDGREEN(led);
		}
	} else if (wc->span.alarms & DAHDI_ALARM_YELLOW) {
		led = (led & __LED_RED) ? SET_LED_GREEN(led) : SET_LED_RED(led);
	} else {
		if (wc->span.maintstat != DAHDI_MAINT_NONE)
			led = SET_LED_ORANGE(led);
		else
			led = UNSET_LED_ORANGE(led);

		if (test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags))
			led = SET_LED_GREEN(led);
		else
			led = UNSET_LED_REDGREEN(led);
	}

	if (led != wc->ledstate) {
		struct command *cmd;
		cmd = get_free_cmd(wc);
		if (cmd) {
			wc->blinktimer = jiffies + HZ/2;
			cmd->flags |= __CMD_LEDS;
			cmd->address = ~led & 0x0E;
			submit_cmd(wc, cmd);
			spin_lock_irqsave(&wc->reglock, flags);
			wc->ledstate = led;
			spin_unlock_irqrestore(&wc->reglock, flags);
		}
	}
}


static void t1_do_counters(struct t1 *wc)
{
	if (wc->alarmtimer && time_after(jiffies, wc->alarmtimer)) {
		wc->span.alarms &= ~(DAHDI_ALARM_RECOVER);
		wc->alarmtimer = 0;
		dahdi_alarm_notify(&wc->span);
	}
}

static void insert_tdm_data(const struct t1 *wc, u8 *sframe)
{
	int i;
	register u8 *chanchunk;
	const int channels = wc->span.channels;

	for (i = 0; i < channels; ++i) {
		chanchunk = &wc->chans[i]->writechunk[0];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
		sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
	}
}

static inline void t1_transmitprep(struct t1 *wc, u8 *sframe)
{
	int x;
	int y;
	u8 *eframe = sframe;

	/* Calculate Transmission */
	if (likely(test_bit(INITIALIZED, &wc->bit_flags)))
		_dahdi_transmit(&wc->span);

#ifdef CONFIG_VOICEBUS_ECREFERENCE
	for (chan = 0; chan < wc->span.channels; chan++) {
		__dahdi_fifo_put(wc->ec_reference[chan],
			    wc->chans[chan]->writechunk, DAHDI_CHUNKSIZE);
	}
#endif

	if (likely(test_bit(INITIALIZED, &wc->bit_flags)))
		insert_tdm_data(wc, sframe);

	spin_lock(&wc->reglock);
	for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
		/* process the command queue */
		for (y = 0; y < 7; y++)
			cmd_dequeue(wc, eframe, x, y);

#ifdef VPM_SUPPORT
		if (wc->vpmadt032) {
			cmd_dequeue_vpmadt032(wc, eframe);
		} else if (wc->vpmoct) {
			cmd_dequeue_vpmoct(wc, eframe);
		}
#endif

		if (x < DAHDI_CHUNKSIZE - 1) {
			eframe[EFRAME_SIZE] = wc->ctlreg;
			eframe[EFRAME_SIZE + 1] = wc->txident++;
		}
		eframe += (EFRAME_SIZE + EFRAME_GAP);
	}
	spin_unlock(&wc->reglock);
}

/**
 * is_good_frame() - Whether the SFRAME received was one sent.
 *
 */
static inline bool is_good_frame(const u8 *sframe)
{
        const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
        const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
        return a != b;
}

/**
 * extract_tdm_data() - Move TDM data from sframe to channels.
 *
 */
static void extract_tdm_data(struct t1 *wc, const u8 *const sframe)
{
	int i;
	register u8 *chanchunk;
	const int channels = wc->span.channels;

	for (i = 0; i < channels; ++i) {
		chanchunk = &wc->chans[i]->readchunk[0];
		chanchunk[0] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*0];
		chanchunk[1] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*1];
		chanchunk[2] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*2];
		chanchunk[3] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*3];
		chanchunk[4] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*4];
		chanchunk[5] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*5];
		chanchunk[6] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*6];
		chanchunk[7] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*7];
	}

	/* Pre-echo with the vpmoct overwrites the 24th timeslot with the
	 * specified channel's pre-echo audio stream. This timeslot is unused
	 * by the te12xp */
	if (wc->vpmoct && wc->vpmoct->preecho_enabled) {
		chanchunk = &wc->vpmoct->preecho_buf[0];
		chanchunk[0] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*0];
		chanchunk[1] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*1];
		chanchunk[2] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*2];
		chanchunk[3] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*3];
		chanchunk[4] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*4];
		chanchunk[5] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*5];
		chanchunk[6] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*6];
		chanchunk[7] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*7];
	}
}

static inline void t1_receiveprep(struct t1 *wc, const u8* sframe)
{
	int x;
	unsigned char expected;
	const u8 *eframe = sframe;

	if (!is_good_frame(sframe))
		return;

	if (likely(test_bit(INITIALIZED, &wc->bit_flags)))
		extract_tdm_data(wc, sframe);

	spin_lock(&wc->reglock);
	for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
		if (x < DAHDI_CHUNKSIZE - 1) {
			expected = wc->rxident+1;
			wc->rxident = eframe[EFRAME_SIZE + 1];
			wc->statreg = eframe[EFRAME_SIZE + 2];
			if (wc->rxident != expected) {
				wc->ddev->irqmisses++;
				_resend_cmds(wc);
				if (unlikely(debug)) {
					t1_info(wc, "oops: rxident=%d "
						"expected=%d x=%d\n",
						wc->rxident, expected, x);
				}
			}
		}
		cmd_decipher(wc, eframe);
#ifdef VPM_SUPPORT
		if (wc->vpmadt032)
			cmd_decipher_vpmadt032(wc, eframe);
		else if (wc->vpmoct)
			cmd_decipher_vpmoct(wc, eframe);
#endif
		eframe += (EFRAME_SIZE + EFRAME_GAP);
	}

	spin_unlock(&wc->reglock);
	
	/* echo cancel */
	if (likely(test_bit(INITIALIZED, &wc->bit_flags))) {
		for (x = 0; x < wc->span.channels; x++) {
			struct dahdi_chan *const c = wc->chans[x];
#ifdef CONFIG_VOICEBUS_ECREFERENCE
			unsigned char buffer[DAHDI_CHUNKSIZE];
			__dahdi_fifo_get(wc->ec_reference[x], buffer,
				    ARRAY_SIZE(buffer));
			_dahdi_ec_chunk(c, c->readchunk,
				       buffer);
#else
			if ((wc->vpmoct) &&
			   (c->chanpos-1 == wc->vpmoct->preecho_timeslot) &&
			    (wc->vpmoct->preecho_enabled)) {
				__dahdi_ec_chunk(c, c->readchunk,
						 wc->vpmoct->preecho_buf,
						 c->writechunk);
			} else {
				_dahdi_ec_chunk(c, c->readchunk,
						wc->ec_chunk2[x]);
				memcpy(wc->ec_chunk2[x], wc->ec_chunk1[x],
					DAHDI_CHUNKSIZE);
				memcpy(wc->ec_chunk1[x], c->writechunk,
					DAHDI_CHUNKSIZE);
			}
		}
#endif
		_dahdi_receive(&wc->span);
	}
}

static void t1_handle_transmit(struct voicebus *vb, struct list_head *buffers)
{
	struct t1 *wc = container_of(vb, struct t1, vb);
	struct vbb *vbb;

	list_for_each_entry(vbb, buffers, entry) {
		memset(vbb->data, 0, sizeof(vbb->data));
		atomic_inc(&wc->txints);
		t1_transmitprep(wc, vbb->data);
		handle_leds(wc);
	}
}

static void t1_handle_receive(struct voicebus *vb, struct list_head *buffers)
{
	struct t1 *wc = container_of(vb, struct t1, vb);
	struct vbb *vbb;
	list_for_each_entry(vbb, buffers, entry)
		t1_receiveprep(wc, vbb->data);
}

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void timer_work_func(void *param)
{
	struct t1 *wc = param;
#else
static void timer_work_func(struct work_struct *work)
{
	struct t1 *wc = container_of(work, struct t1, timer_work);
#endif
	if (test_bit(INITIALIZED, &wc->bit_flags))
		mod_timer(&wc->timer, jiffies + HZ/30);
	t1_do_counters(wc);
	t1_check_alarms(wc);
	t1_check_sigbits(wc);
}

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpm_check_func(void *data)
{
	struct t1 *wc = data;
#else
static void vpm_check_func(struct work_struct *work)
{
	struct t1 *wc = container_of(work, struct t1, vpm_check_work);
#endif
	int res;
	u16 version;
	const int MAX_CHECKS = 5;

	/* If there is a failed VPM module, do not block dahdi_cfg
	 * indefinitely. */
	if (++wc->vpm_check_count > MAX_CHECKS) {
		wc->not_ready--;
		wc->vpm_check = MAX_JIFFY_OFFSET;
		t1_info(wc, "Disabling VPMADT032 Checking.\n");
		return;
	}

	if (!test_bit(INITIALIZED, &wc->bit_flags))
		return;

	if (test_bit(VPM150M_ACTIVE, &wc->ctlreg)) {
		res = gpakPingDsp(wc->vpmadt032->dspid, &version);
		if (!res) {
			set_bit(VPM150M_ACTIVE, &wc->ctlreg);
			wc->vpm_check = jiffies + HZ*5;
			wc->vpm_check_count = 0;
			return;
		}

		clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
		t1_info(wc, "VPMADT032 is non-responsive.  Resetting.\n");
	}


	if (!test_bit(INITIALIZED, &wc->bit_flags))
		return;

	res = vpmadt032_reset(wc->vpmadt032);
	if (res) {
		t1_info(wc, "Failed VPMADT032 reset. VPMADT032 is disabled.\n");
		wc->vpm_check = jiffies + HZ*5;
		return;
	}

	if (!test_bit(INITIALIZED, &wc->bit_flags))
		return;

	res = config_vpmadt032(wc->vpmadt032, wc);
	if (res) {
		/* We failed the configuration, let's try again. */
		t1_info(wc, "Failed to configure the ports.  Retrying.\n");

		if (!test_bit(INITIALIZED, &wc->bit_flags))
			return;
		queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);
		return;
	}

	if (!test_bit(INITIALIZED, &wc->bit_flags))
		return;

	/* Looks like the reset went ok so we can put the VPM module back in
	 * the TDM path. */
	set_bit(VPM150M_ACTIVE, &wc->ctlreg);
	t1_info(wc, "VPMADT032 is reenabled.\n");
	wc->vpm_check = jiffies + HZ*5;
	wc->not_ready--;
	return;
}

static void te12xp_timer(TIMER_DATA_TYPE timer)
{
	unsigned long flags;
	struct t1 *wc = from_timer(wc, timer, timer);

	if (unlikely(!test_bit(INITIALIZED, &wc->bit_flags)))
		return;

	queue_work(wc->wq, &wc->timer_work);

	spin_lock_irqsave(&wc->reglock, flags);
	if (!wc->vpmadt032)
		goto unlock_exit;

	if (time_after(wc->vpm_check, jiffies))
		goto unlock_exit;

	queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);

unlock_exit:
	spin_unlock_irqrestore(&wc->reglock, flags);
	return;
}

static void t1_handle_error(struct voicebus *vb)
{
	unsigned long flags;
	struct t1 *wc = container_of(vb, struct t1, vb);

	spin_lock_irqsave(&wc->reglock, flags);
	if (!wc->vpmadt032)
		goto unlock_exit;
	clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
	queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);

unlock_exit:
	spin_unlock_irqrestore(&wc->reglock, flags);
}

static const struct voicebus_operations voicebus_operations = {
	.handle_receive = t1_handle_receive,
	.handle_transmit = t1_handle_transmit,
	.handle_error = t1_handle_error,
};

#ifdef CONFIG_VOICEBUS_SYSFS
static ssize_t voicebus_current_latency_show(struct device *dev,
					     struct device_attribute *attr,
					     char *buf)
{
	unsigned long flags;
	struct t1 *wc = dev_get_drvdata(dev);
	unsigned int current_latency;
	spin_lock_irqsave(&wc->vb.lock, flags);
	current_latency = wc->vb.min_tx_buffer_count;
	spin_unlock_irqrestore(&wc->vb.lock, flags);
	return sprintf(buf, "%d\n", current_latency);
}

static DEVICE_ATTR(voicebus_current_latency, 0400,
		   voicebus_current_latency_show, NULL);


static ssize_t vpm_firmware_version_show(struct device *dev,
				struct device_attribute *attr,
				char *buf)
{
	int res;
	u16 version = 0;
	struct t1 *wc = dev_get_drvdata(dev);

	if (wc->vpmadt032) {
		res = gpakPingDsp(wc->vpmadt032->dspid, &version);
		if (res) {
			t1_info(wc, "Failed gpakPingDsp %d\n", res);
			version = -1;
		}
	}

	return sprintf(buf, "%x.%02x\n", (version & 0xff00) >> 8, (version & 0xff));
}

static DEVICE_ATTR(vpm_firmware_version, 0400,
		   vpm_firmware_version_show, NULL);

static void create_sysfs_files(struct t1 *wc)
{
	int ret;
	ret = device_create_file(&wc->vb.pdev->dev,
				 &dev_attr_voicebus_current_latency);
	if (ret) {
		dev_info(&wc->vb.pdev->dev,
			"Failed to create device attributes.\n");
	}

	ret = device_create_file(&wc->vb.pdev->dev,
				 &dev_attr_vpm_firmware_version);
	if (ret) {
		dev_info(&wc->vb.pdev->dev,
			"Failed to create device attributes.\n");
	}
}

static void remove_sysfs_files(struct t1 *wc)
{
	device_remove_file(&wc->vb.pdev->dev,
			   &dev_attr_vpm_firmware_version);

	device_remove_file(&wc->vb.pdev->dev,
			   &dev_attr_voicebus_current_latency);
}

#else

static inline void create_sysfs_files(struct t1 *wc) { return; }
static inline void remove_sysfs_files(struct t1 *wc) { return; }

#endif /* CONFIG_VOICEBUS_SYSFS */

static const struct dahdi_span_ops t1_span_ops = {
	.owner = THIS_MODULE,
	.spanconfig = t1xxp_spanconfig,
	.chanconfig = t1xxp_chanconfig,
	.startup = t1xxp_startup,
	.rbsbits = t1xxp_rbsbits,
	.maint = t1xxp_maint,
	.ioctl = t1xxp_ioctl,
	.set_spantype = t1xxp_set_linemode,
#ifdef VPM_SUPPORT
	.enable_hw_preechocan = t1xxp_enable_hw_preechocan,
	.disable_hw_preechocan = t1xxp_disable_hw_preechocan,
	.echocan_create = t1xxp_echocan_create,
	.echocan_name = t1xxp_echocan_name,
#endif
};

static int __devinit te12xp_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct t1 *wc;
	const struct t1_desc *d = (struct t1_desc *) ent->driver_data;
	unsigned int x;
	int res;
	unsigned int index = -1;
	enum linemode type;

	for (x = 0; x < ARRAY_SIZE(ifaces); x++) {
		if (!ifaces[x]) {
			index = x;
			break;
		}
	}

	if (-1 == index) {
		printk(KERN_INFO "%s: Too many interfaces\n",
		       THIS_MODULE->name);
		return -EIO;
	}
	
	wc = kzalloc(sizeof(*wc), GFP_KERNEL);
	if (!wc)
		return -ENOMEM;

	/* Set the performance counters to -1 since this card currently does
	 * not support collecting them. */
	memset(&wc->span.count, -1, sizeof(wc->span.count));

	ifaces[index] = wc;

	sprintf(wc->span.name, "WCT1/%d", index);
	snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Card %d",
		 d->name, index);
	wc->not_ready = 1;
	wc->ledstate = -1;
	wc->variety = d->name;
	wc->txident = 1;
	spin_lock_init(&wc->reglock);
	INIT_LIST_HEAD(&wc->active_cmds);
	INIT_LIST_HEAD(&wc->pending_cmds);
	timer_setup(&wc->timer, te12xp_timer, 0);

#	if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
	INIT_WORK(&wc->timer_work, timer_work_func, wc);
#	else
	INIT_WORK(&wc->timer_work, timer_work_func);
#	endif

#	if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
	INIT_WORK(&wc->vpm_check_work, vpm_check_func, wc);
#	else
	INIT_WORK(&wc->vpm_check_work, vpm_check_func);
#	endif

	wc->ddev = dahdi_create_device();
	if (!wc->ddev) {
		ifaces[index] = NULL;
		kfree(wc);
		return -ENOMEM;
	}
	wc->ddev->manufacturer = "Digium";
	wc->ddev->location = kasprintf(GFP_KERNEL, "PCI Bus %02d Slot %02d",
				      pdev->bus->number,
				      PCI_SLOT(pdev->devfn) + 1);
	if (!wc->ddev->location) {
		ifaces[index] = NULL;
		kfree(wc);
		return -ENOMEM;
	}

#ifdef CONFIG_VOICEBUS_ECREFERENCE
	for (x = 0; x < ARRAY_SIZE(wc->ec_reference); ++x) {
		/* 256 is used here since it is the largest power of two that
		 * will contain 8 * VOICBUS_DEFAULT_LATENCY */
		wc->ec_reference[x] = dahdi_fifo_alloc(256, GFP_KERNEL);

		if (IS_ERR(wc->ec_reference[x])) {
			res = PTR_ERR(wc->ec_reference[x]);
			wc->ec_reference[x] = NULL;
			free_wc(wc);
			return res;
		}

	}
#endif /* CONFIG_VOICEBUS_ECREFERENCE */

#ifdef CONFIG_VOICEBUS_DISABLE_ASPM
	if (is_pcie(wc)) {
		pci_disable_link_state(pdev->bus->self, PCIE_LINK_STATE_L0S |
			PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
	};
#endif

	snprintf(wc->name, sizeof(wc->name)-1, "wcte12xp%d", index);
	pci_set_drvdata(pdev, wc);
	wc->vb.ops = &voicebus_operations;
	wc->vb.pdev = pdev;
	wc->vb.debug = &debug;
	res = voicebus_init(&wc->vb, wc->name);
	if (res) {
		free_wc(wc);
		ifaces[index] = NULL;
		return res;
	}
	
	wc->wq = create_singlethread_workqueue(wc->name);
	if (!wc->wq) {
		kfree(wc);
		ifaces[index] = NULL;
		return -ENOMEM;
	}

	voicebus_set_minlatency(&wc->vb, latency);
	voicebus_set_maxlatency(&wc->vb, max_latency);
	max_latency = wc->vb.max_latency;

	create_sysfs_files(wc);

	voicebus_lock_latency(&wc->vb);
	if (voicebus_start(&wc->vb)) {
		voicebus_release(&wc->vb);
		free_wc(wc);
		ifaces[index] = NULL;
		return -EIO;
	}

	res = t1_hardware_post_init(wc, &type);
	if (res) {
		voicebus_release(&wc->vb);
		free_wc(wc);
		ifaces[index] = NULL;
		return res;
	}

	wc->span.chans = wc->chans;

	res = t1_software_init(wc, type);
	if (res) {
		voicebus_release(&wc->vb);
		free_wc(wc);
		ifaces[index] = NULL;
		return res;
	}

	wc->span.ops = &t1_span_ops;
	list_add_tail(&wc->span.device_node, &wc->ddev->spans);
	res = dahdi_register_device(wc->ddev, &wc->vb.pdev->dev);
	if (res) {
		t1_info(wc, "Unable to register with DAHDI\n");
		return res;
	}

	set_bit(INITIALIZED, &wc->bit_flags);
	mod_timer(&wc->timer, jiffies + HZ/5);

	t1_info(wc, "Found a %s\n", wc->variety);
	voicebus_unlock_latency(&wc->vb);

	wc->not_ready--;
	return 0;
}

static void __devexit te12xp_remove_one(struct pci_dev *pdev)
{
	struct t1 *wc = pci_get_drvdata(pdev);
#ifdef VPM_SUPPORT
	unsigned long flags;
	struct vpmadt032 *vpmadt = wc->vpmadt032;
	struct vpmoct	 *vpmoct = wc->vpmoct;
#endif
	if (!wc)
		return;

	dahdi_unregister_device(wc->ddev);

	remove_sysfs_files(wc);

	clear_bit(INITIALIZED, &wc->bit_flags);
	smp_mb__after_atomic();

	del_timer_sync(&wc->timer);
	flush_workqueue(wc->wq);
#ifdef VPM_SUPPORT
	if (vpmadt) {
		clear_bit(VPM150M_ACTIVE, &vpmadt->control);
		flush_workqueue(vpmadt->wq);
	} else if (vpmoct) {
		while (t1_wait_for_ready(wc))
			schedule();
	}
#endif
	del_timer_sync(&wc->timer);

	voicebus_release(&wc->vb);

#ifdef VPM_SUPPORT
	if (vpmadt) {
		spin_lock_irqsave(&wc->reglock, flags);
		wc->vpmadt032 = NULL;
		spin_unlock_irqrestore(&wc->reglock, flags);
		vpmadt032_free(vpmadt);
	} else if (vpmoct) {
		spin_lock_irqsave(&wc->reglock, flags);
		wc->vpmoct = NULL;
		spin_unlock_irqrestore(&wc->reglock, flags);
		vpmoct_free(vpmoct);
	}
#endif

	t1_info(wc, "Freed a Wildcard TE12xP.\n");
	free_wc(wc);
}

static DEFINE_PCI_DEVICE_TABLE(te12xp_pci_tbl) = {
	{ 0xd161, 0x0120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te120p},
	{ 0xd161, 0x8000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te121},
	{ 0xd161, 0x8001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te122},
	{ 0 }
};

static void te12xp_shutdown(struct pci_dev *pdev)
{
	struct t1 *wc = pci_get_drvdata(pdev);
	voicebus_quiesce(&wc->vb);
}

static int te12xp_suspend(struct pci_dev *pdev, pm_message_t state)
{
	return -ENOSYS;
}

MODULE_DEVICE_TABLE(pci, te12xp_pci_tbl);

static struct pci_driver te12xp_driver = {
	.name = "wcte12xp",
	.probe = te12xp_init_one,
	.remove = __devexit_p(te12xp_remove_one),
	.shutdown = te12xp_shutdown,
	.suspend = te12xp_suspend,
	.id_table = te12xp_pci_tbl,
};

static int __init te12xp_init(void)
{
	int res;

#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 23)
	cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0,
#if defined(CONFIG_SLUB) && (LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 22))
				SLAB_HWCACHE_ALIGN | SLAB_STORE_USER, NULL, NULL);
#else
				SLAB_HWCACHE_ALIGN, NULL, NULL);
#endif
#else
	cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0,
				SLAB_HWCACHE_ALIGN, NULL);
#endif
	if (!cmd_cache)
		return -ENOMEM;

	if ((-1 != t1e1override) || (-1 != j1mode)) {
		pr_info("'t1e1override' and 'j1mode' are deprecated. "
			"Please use 'default_linemode' instead.\n");
		/* If someone is setting j1mode, then, t1e1override most likely
		 * needs to be forced to t1 mode */
		if (j1mode > 0)
			t1e1override = 0;
	} else if (strcasecmp(default_linemode, "auto") &&
		   strcasecmp(default_linemode, "t1") &&
		   strcasecmp(default_linemode, "j1") &&
		   strcasecmp(default_linemode, "e1")) {
		pr_err("'%s' is an unknown span type.\n", default_linemode);
		default_linemode = "auto";
		kmem_cache_destroy(cmd_cache);
		return -EINVAL;
	}
	res = pci_register_driver(&te12xp_driver);
	if (res) {
		kmem_cache_destroy(cmd_cache);
		return -ENODEV;
	}

	return 0;
}


static void __exit te12xp_cleanup(void)
{
	pci_unregister_driver(&te12xp_driver);
	kmem_cache_destroy(cmd_cache);
}

module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(t1e1override, int, S_IRUGO | S_IWUSR);
module_param(default_linemode, charp, S_IRUGO);
MODULE_PARM_DESC(default_linemode, "\"auto\"(default), \"e1\", or \"t1\". "
		 "\"auto\" will use the value from the hardware jumpers.");
module_param(j1mode, int, S_IRUGO | S_IWUSR);
module_param(alarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(losalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(aisalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(yelalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(latency, int, S_IRUGO);
module_param(max_latency, int, S_IRUGO);
#ifdef VPM_SUPPORT
module_param(vpmsupport, int, S_IRUGO);
module_param(vpmtsisupport, int, S_IRUGO);
module_param(vpmnlptype, int, S_IRUGO);
module_param(vpmnlpthresh, int, S_IRUGO);
module_param(vpmnlpmaxsupp, int, S_IRUGO);
#endif

MODULE_DESCRIPTION("Wildcard VoiceBus Digital Card Driver");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL v2");

module_init(te12xp_init);
module_exit(te12xp_cleanup);