// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #define PM8XXX_MAX_ROWS 18 #define PM8XXX_MAX_COLS 8 #define PM8XXX_ROW_SHIFT 3 #define PM8XXX_MATRIX_MAX_SIZE (PM8XXX_MAX_ROWS * PM8XXX_MAX_COLS) #define PM8XXX_MIN_ROWS 5 #define PM8XXX_MIN_COLS 5 #define MAX_SCAN_DELAY 128 #define MIN_SCAN_DELAY 1 /* in nanoseconds */ #define MAX_ROW_HOLD_DELAY 122000 #define MIN_ROW_HOLD_DELAY 30500 #define MAX_DEBOUNCE_TIME 20 #define MIN_DEBOUNCE_TIME 5 #define KEYP_CTRL 0x148 #define KEYP_CTRL_EVNTS BIT(0) #define KEYP_CTRL_EVNTS_MASK 0x3 #define KEYP_CTRL_SCAN_COLS_SHIFT 5 #define KEYP_CTRL_SCAN_COLS_MIN 5 #define KEYP_CTRL_SCAN_COLS_BITS 0x3 #define KEYP_CTRL_SCAN_ROWS_SHIFT 2 #define KEYP_CTRL_SCAN_ROWS_MIN 5 #define KEYP_CTRL_SCAN_ROWS_BITS 0x7 #define KEYP_CTRL_KEYP_EN BIT(7) #define KEYP_SCAN 0x149 #define KEYP_SCAN_READ_STATE BIT(0) #define KEYP_SCAN_DBOUNCE_SHIFT 1 #define KEYP_SCAN_PAUSE_SHIFT 3 #define KEYP_SCAN_ROW_HOLD_SHIFT 6 #define KEYP_TEST 0x14A #define KEYP_TEST_CLEAR_RECENT_SCAN BIT(6) #define KEYP_TEST_CLEAR_OLD_SCAN BIT(5) #define KEYP_TEST_READ_RESET BIT(4) #define KEYP_TEST_DTEST_EN BIT(3) #define KEYP_TEST_ABORT_READ BIT(0) #define KEYP_TEST_DBG_SELECT_SHIFT 1 /* bits of these registers represent * '0' for key press * '1' for key release */ #define KEYP_RECENT_DATA 0x14B #define KEYP_OLD_DATA 0x14C #define KEYP_CLOCK_FREQ 32768 /** * struct pmic8xxx_kp - internal keypad data structure * @num_cols: number of columns of keypad * @num_rows: number of row of keypad * @input: input device pointer for keypad * @regmap: regmap handle * @key_sense_irq: key press/release irq number * @key_stuck_irq: key stuck notification irq number * @keycodes: array to hold the key codes * @dev: parent device pointer * @keystate: present key press/release state * @stuckstate: present state when key stuck irq * @ctrl_reg: control register value */ struct pmic8xxx_kp { unsigned int num_rows; unsigned int num_cols; struct input_dev *input; struct regmap *regmap; int key_sense_irq; int key_stuck_irq; unsigned short keycodes[PM8XXX_MATRIX_MAX_SIZE]; struct device *dev; u16 keystate[PM8XXX_MAX_ROWS]; u16 stuckstate[PM8XXX_MAX_ROWS]; u8 ctrl_reg; }; static u8 pmic8xxx_col_state(struct pmic8xxx_kp *kp, u8 col) { /* all keys pressed on that particular row? */ if (col == 0x00) return 1 << kp->num_cols; else return col & ((1 << kp->num_cols) - 1); } /* * Synchronous read protocol for RevB0 onwards: * * 1. Write '1' to ReadState bit in KEYP_SCAN register * 2. Wait 2*32KHz clocks, so that HW can successfully enter read mode * synchronously * 3. Read rows in old array first if events are more than one * 4. Read rows in recent array * 5. Wait 4*32KHz clocks * 6. Write '0' to ReadState bit of KEYP_SCAN register so that hw can * synchronously exit read mode. */ static int pmic8xxx_chk_sync_read(struct pmic8xxx_kp *kp) { int rc; unsigned int scan_val; rc = regmap_read(kp->regmap, KEYP_SCAN, &scan_val); if (rc < 0) { dev_err(kp->dev, "Error reading KEYP_SCAN reg, rc=%d\n", rc); return rc; } scan_val |= 0x1; rc = regmap_write(kp->regmap, KEYP_SCAN, scan_val); if (rc < 0) { dev_err(kp->dev, "Error writing KEYP_SCAN reg, rc=%d\n", rc); return rc; } /* 2 * 32KHz clocks */ udelay((2 * DIV_ROUND_UP(USEC_PER_SEC, KEYP_CLOCK_FREQ)) + 1); return rc; } static int pmic8xxx_kp_read_data(struct pmic8xxx_kp *kp, u16 *state, u16 data_reg, int read_rows) { int rc, row; unsigned int val; for (row = 0; row < read_rows; row++) { rc = regmap_read(kp->regmap, data_reg, &val); if (rc) return rc; dev_dbg(kp->dev, "%d = %d\n", row, val); state[row] = pmic8xxx_col_state(kp, val); } return 0; } static int pmic8xxx_kp_read_matrix(struct pmic8xxx_kp *kp, u16 *new_state, u16 *old_state) { int rc, read_rows; unsigned int scan_val; if (kp->num_rows < PM8XXX_MIN_ROWS) read_rows = PM8XXX_MIN_ROWS; else read_rows = kp->num_rows; pmic8xxx_chk_sync_read(kp); if (old_state) { rc = pmic8xxx_kp_read_data(kp, old_state, KEYP_OLD_DATA, read_rows); if (rc < 0) { dev_err(kp->dev, "Error reading KEYP_OLD_DATA, rc=%d\n", rc); return rc; } } rc = pmic8xxx_kp_read_data(kp, new_state, KEYP_RECENT_DATA, read_rows); if (rc < 0) { dev_err(kp->dev, "Error reading KEYP_RECENT_DATA, rc=%d\n", rc); return rc; } /* 4 * 32KHz clocks */ udelay((4 * DIV_ROUND_UP(USEC_PER_SEC, KEYP_CLOCK_FREQ)) + 1); rc = regmap_read(kp->regmap, KEYP_SCAN, &scan_val); if (rc < 0) { dev_err(kp->dev, "Error reading KEYP_SCAN reg, rc=%d\n", rc); return rc; } scan_val &= 0xFE; rc = regmap_write(kp->regmap, KEYP_SCAN, scan_val); if (rc < 0) dev_err(kp->dev, "Error writing KEYP_SCAN reg, rc=%d\n", rc); return rc; } static void __pmic8xxx_kp_scan_matrix(struct pmic8xxx_kp *kp, u16 *new_state, u16 *old_state) { int row, col, code; for (row = 0; row < kp->num_rows; row++) { int bits_changed = new_state[row] ^ old_state[row]; if (!bits_changed) continue; for (col = 0; col < kp->num_cols; col++) { if (!(bits_changed & (1 << col))) continue; dev_dbg(kp->dev, "key [%d:%d] %s\n", row, col, !(new_state[row] & (1 << col)) ? "pressed" : "released"); code = MATRIX_SCAN_CODE(row, col, PM8XXX_ROW_SHIFT); input_event(kp->input, EV_MSC, MSC_SCAN, code); input_report_key(kp->input, kp->keycodes[code], !(new_state[row] & (1 << col))); input_sync(kp->input); } } } static bool pmic8xxx_detect_ghost_keys(struct pmic8xxx_kp *kp, u16 *new_state) { int row, found_first = -1; u16 check, row_state; check = 0; for (row = 0; row < kp->num_rows; row++) { row_state = (~new_state[row]) & ((1 << kp->num_cols) - 1); if (hweight16(row_state) > 1) { if (found_first == -1) found_first = row; if (check & row_state) { dev_dbg(kp->dev, "detected ghost key on row[%d]" " and row[%d]\n", found_first, row); return true; } } check |= row_state; } return false; } static int pmic8xxx_kp_scan_matrix(struct pmic8xxx_kp *kp, unsigned int events) { u16 new_state[PM8XXX_MAX_ROWS]; u16 old_state[PM8XXX_MAX_ROWS]; int rc; switch (events) { case 0x1: rc = pmic8xxx_kp_read_matrix(kp, new_state, NULL); if (rc < 0) return rc; /* detecting ghost key is not an error */ if (pmic8xxx_detect_ghost_keys(kp, new_state)) return 0; __pmic8xxx_kp_scan_matrix(kp, new_state, kp->keystate); memcpy(kp->keystate, new_state, sizeof(new_state)); break; case 0x3: /* two events - eventcounter is gray-coded */ rc = pmic8xxx_kp_read_matrix(kp, new_state, old_state); if (rc < 0) return rc; __pmic8xxx_kp_scan_matrix(kp, old_state, kp->keystate); __pmic8xxx_kp_scan_matrix(kp, new_state, old_state); memcpy(kp->keystate, new_state, sizeof(new_state)); break; case 0x2: dev_dbg(kp->dev, "Some key events were lost\n"); rc = pmic8xxx_kp_read_matrix(kp, new_state, old_state); if (rc < 0) return rc; __pmic8xxx_kp_scan_matrix(kp, old_state, kp->keystate); __pmic8xxx_kp_scan_matrix(kp, new_state, old_state); memcpy(kp->keystate, new_state, sizeof(new_state)); break; default: rc = -EINVAL; } return rc; } /* * NOTE: We are reading recent and old data registers blindly * whenever key-stuck interrupt happens, because events counter doesn't * get updated when this interrupt happens due to key stuck doesn't get * considered as key state change. * * We are not using old data register contents after they are being read * because it might report the key which was pressed before the key being stuck * as stuck key because it's pressed status is stored in the old data * register. */ static irqreturn_t pmic8xxx_kp_stuck_irq(int irq, void *data) { u16 new_state[PM8XXX_MAX_ROWS]; u16 old_state[PM8XXX_MAX_ROWS]; int rc; struct pmic8xxx_kp *kp = data; rc = pmic8xxx_kp_read_matrix(kp, new_state, old_state); if (rc < 0) { dev_err(kp->dev, "failed to read keypad matrix\n"); return IRQ_HANDLED; } __pmic8xxx_kp_scan_matrix(kp, new_state, kp->stuckstate); return IRQ_HANDLED; } static irqreturn_t pmic8xxx_kp_irq(int irq, void *data) { struct pmic8xxx_kp *kp = data; unsigned int ctrl_val, events; int rc; rc = regmap_read(kp->regmap, KEYP_CTRL, &ctrl_val); if (rc < 0) { dev_err(kp->dev, "failed to read keyp_ctrl register\n"); return IRQ_HANDLED; } events = ctrl_val & KEYP_CTRL_EVNTS_MASK; rc = pmic8xxx_kp_scan_matrix(kp, events); if (rc < 0) dev_err(kp->dev, "failed to scan matrix\n"); return IRQ_HANDLED; } static int pmic8xxx_kpd_init(struct pmic8xxx_kp *kp, struct platform_device *pdev) { const struct device_node *of_node = pdev->dev.of_node; unsigned int scan_delay_ms; unsigned int row_hold_ns; unsigned int debounce_ms; int bits, rc, cycles; u8 scan_val = 0, ctrl_val = 0; static const u8 row_bits[] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, }; /* Find column bits */ if (kp->num_cols < KEYP_CTRL_SCAN_COLS_MIN) bits = 0; else bits = kp->num_cols - KEYP_CTRL_SCAN_COLS_MIN; ctrl_val = (bits & KEYP_CTRL_SCAN_COLS_BITS) << KEYP_CTRL_SCAN_COLS_SHIFT; /* Find row bits */ if (kp->num_rows < KEYP_CTRL_SCAN_ROWS_MIN) bits = 0; else bits = row_bits[kp->num_rows - KEYP_CTRL_SCAN_ROWS_MIN]; ctrl_val |= (bits << KEYP_CTRL_SCAN_ROWS_SHIFT); rc = regmap_write(kp->regmap, KEYP_CTRL, ctrl_val); if (rc < 0) { dev_err(kp->dev, "Error writing KEYP_CTRL reg, rc=%d\n", rc); return rc; } if (of_property_read_u32(of_node, "scan-delay", &scan_delay_ms)) scan_delay_ms = MIN_SCAN_DELAY; if (scan_delay_ms > MAX_SCAN_DELAY || scan_delay_ms < MIN_SCAN_DELAY || !is_power_of_2(scan_delay_ms)) { dev_err(&pdev->dev, "invalid keypad scan time supplied\n"); return -EINVAL; } if (of_property_read_u32(of_node, "row-hold", &row_hold_ns)) row_hold_ns = MIN_ROW_HOLD_DELAY; if (row_hold_ns > MAX_ROW_HOLD_DELAY || row_hold_ns < MIN_ROW_HOLD_DELAY || ((row_hold_ns % MIN_ROW_HOLD_DELAY) != 0)) { dev_err(&pdev->dev, "invalid keypad row hold time supplied\n"); return -EINVAL; } if (of_property_read_u32(of_node, "debounce", &debounce_ms)) debounce_ms = MIN_DEBOUNCE_TIME; if (((debounce_ms % 5) != 0) || debounce_ms > MAX_DEBOUNCE_TIME || debounce_ms < MIN_DEBOUNCE_TIME) { dev_err(&pdev->dev, "invalid debounce time supplied\n"); return -EINVAL; } bits = (debounce_ms / 5) - 1; scan_val |= (bits << KEYP_SCAN_DBOUNCE_SHIFT); bits = fls(scan_delay_ms) - 1; scan_val |= (bits << KEYP_SCAN_PAUSE_SHIFT); /* Row hold time is a multiple of 32KHz cycles. */ cycles = (row_hold_ns * KEYP_CLOCK_FREQ) / NSEC_PER_SEC; scan_val |= (cycles << KEYP_SCAN_ROW_HOLD_SHIFT); rc = regmap_write(kp->regmap, KEYP_SCAN, scan_val); if (rc) dev_err(kp->dev, "Error writing KEYP_SCAN reg, rc=%d\n", rc); return rc; } static int pmic8xxx_kp_enable(struct pmic8xxx_kp *kp) { int rc; kp->ctrl_reg |= KEYP_CTRL_KEYP_EN; rc = regmap_write(kp->regmap, KEYP_CTRL, kp->ctrl_reg); if (rc < 0) dev_err(kp->dev, "Error writing KEYP_CTRL reg, rc=%d\n", rc); return rc; } static int pmic8xxx_kp_disable(struct pmic8xxx_kp *kp) { int rc; kp->ctrl_reg &= ~KEYP_CTRL_KEYP_EN; rc = regmap_write(kp->regmap, KEYP_CTRL, kp->ctrl_reg); if (rc < 0) return rc; return rc; } static int pmic8xxx_kp_open(struct input_dev *dev) { struct pmic8xxx_kp *kp = input_get_drvdata(dev); return pmic8xxx_kp_enable(kp); } static void pmic8xxx_kp_close(struct input_dev *dev) { struct pmic8xxx_kp *kp = input_get_drvdata(dev); pmic8xxx_kp_disable(kp); } /* * keypad controller should be initialized in the following sequence * only, otherwise it might get into FSM stuck state. * * - Initialize keypad control parameters, like no. of rows, columns, * timing values etc., * - configure rows and column gpios pull up/down. * - set irq edge type. * - enable the keypad controller. */ static int pmic8xxx_kp_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; unsigned int rows, cols; bool repeat; bool wakeup; struct pmic8xxx_kp *kp; int rc; unsigned int ctrl_val; rc = matrix_keypad_parse_properties(&pdev->dev, &rows, &cols); if (rc) return rc; if (cols > PM8XXX_MAX_COLS || rows > PM8XXX_MAX_ROWS || cols < PM8XXX_MIN_COLS) { dev_err(&pdev->dev, "invalid platform data\n"); return -EINVAL; } repeat = !of_property_read_bool(np, "linux,input-no-autorepeat"); wakeup = of_property_read_bool(np, "wakeup-source") || /* legacy name */ of_property_read_bool(np, "linux,keypad-wakeup"); kp = devm_kzalloc(&pdev->dev, sizeof(*kp), GFP_KERNEL); if (!kp) return -ENOMEM; kp->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!kp->regmap) return -ENODEV; platform_set_drvdata(pdev, kp); kp->num_rows = rows; kp->num_cols = cols; kp->dev = &pdev->dev; kp->input = devm_input_allocate_device(&pdev->dev); if (!kp->input) { dev_err(&pdev->dev, "unable to allocate input device\n"); return -ENOMEM; } kp->key_sense_irq = platform_get_irq(pdev, 0); if (kp->key_sense_irq < 0) return kp->key_sense_irq; kp->key_stuck_irq = platform_get_irq(pdev, 1); if (kp->key_stuck_irq < 0) return kp->key_stuck_irq; kp->input->name = "PMIC8XXX keypad"; kp->input->phys = "pmic8xxx_keypad/input0"; kp->input->id.bustype = BUS_I2C; kp->input->id.version = 0x0001; kp->input->id.product = 0x0001; kp->input->id.vendor = 0x0001; kp->input->open = pmic8xxx_kp_open; kp->input->close = pmic8xxx_kp_close; rc = matrix_keypad_build_keymap(NULL, NULL, PM8XXX_MAX_ROWS, PM8XXX_MAX_COLS, kp->keycodes, kp->input); if (rc) { dev_err(&pdev->dev, "failed to build keymap\n"); return rc; } if (repeat) __set_bit(EV_REP, kp->input->evbit); input_set_capability(kp->input, EV_MSC, MSC_SCAN); input_set_drvdata(kp->input, kp); /* initialize keypad state */ memset(kp->keystate, 0xff, sizeof(kp->keystate)); memset(kp->stuckstate, 0xff, sizeof(kp->stuckstate)); rc = pmic8xxx_kpd_init(kp, pdev); if (rc < 0) { dev_err(&pdev->dev, "unable to initialize keypad controller\n"); return rc; } rc = devm_request_any_context_irq(&pdev->dev, kp->key_sense_irq, pmic8xxx_kp_irq, IRQF_TRIGGER_RISING, "pmic-keypad", kp); if (rc < 0) { dev_err(&pdev->dev, "failed to request keypad sense irq\n"); return rc; } rc = devm_request_any_context_irq(&pdev->dev, kp->key_stuck_irq, pmic8xxx_kp_stuck_irq, IRQF_TRIGGER_RISING, "pmic-keypad-stuck", kp); if (rc < 0) { dev_err(&pdev->dev, "failed to request keypad stuck irq\n"); return rc; } rc = regmap_read(kp->regmap, KEYP_CTRL, &ctrl_val); if (rc < 0) { dev_err(&pdev->dev, "failed to read KEYP_CTRL register\n"); return rc; } kp->ctrl_reg = ctrl_val; rc = input_register_device(kp->input); if (rc < 0) { dev_err(&pdev->dev, "unable to register keypad input device\n"); return rc; } device_init_wakeup(&pdev->dev, wakeup); return 0; } static int pmic8xxx_kp_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pmic8xxx_kp *kp = platform_get_drvdata(pdev); struct input_dev *input_dev = kp->input; if (device_may_wakeup(dev)) { enable_irq_wake(kp->key_sense_irq); } else { guard(mutex)(&input_dev->mutex); if (input_device_enabled(input_dev)) pmic8xxx_kp_disable(kp); } return 0; } static int pmic8xxx_kp_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pmic8xxx_kp *kp = platform_get_drvdata(pdev); struct input_dev *input_dev = kp->input; if (device_may_wakeup(dev)) { disable_irq_wake(kp->key_sense_irq); } else { guard(mutex)(&input_dev->mutex); if (input_device_enabled(input_dev)) pmic8xxx_kp_enable(kp); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(pm8xxx_kp_pm_ops, pmic8xxx_kp_suspend, pmic8xxx_kp_resume); static const struct of_device_id pm8xxx_match_table[] = { { .compatible = "qcom,pm8058-keypad" }, { .compatible = "qcom,pm8921-keypad" }, { } }; MODULE_DEVICE_TABLE(of, pm8xxx_match_table); static struct platform_driver pmic8xxx_kp_driver = { .probe = pmic8xxx_kp_probe, .driver = { .name = "pm8xxx-keypad", .pm = pm_sleep_ptr(&pm8xxx_kp_pm_ops), .of_match_table = pm8xxx_match_table, }, }; module_platform_driver(pmic8xxx_kp_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("PMIC8XXX keypad driver"); MODULE_ALIAS("platform:pmic8xxx_keypad"); MODULE_AUTHOR("Trilok Soni ");