// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011 Kionix, Inc. * Written by Chris Hudson */ #include #include #include #include #include #include #include #define NAME "kxtj9" #define G_MAX 8000 /* OUTPUT REGISTERS */ #define XOUT_L 0x06 #define WHO_AM_I 0x0F /* CONTROL REGISTERS */ #define INT_REL 0x1A #define CTRL_REG1 0x1B #define INT_CTRL1 0x1E #define DATA_CTRL 0x21 /* CONTROL REGISTER 1 BITS */ #define PC1_OFF 0x7F #define PC1_ON (1 << 7) /* Data ready function enable bit: set during probe if using irq mode */ #define DRDYE (1 << 5) /* DATA CONTROL REGISTER BITS */ #define ODR12_5F 0 #define ODR25F 1 #define ODR50F 2 #define ODR100F 3 #define ODR200F 4 #define ODR400F 5 #define ODR800F 6 /* INTERRUPT CONTROL REGISTER 1 BITS */ /* Set these during probe if using irq mode */ #define KXTJ9_IEL (1 << 3) #define KXTJ9_IEA (1 << 4) #define KXTJ9_IEN (1 << 5) /* INPUT_ABS CONSTANTS */ #define FUZZ 3 #define FLAT 3 /* RESUME STATE INDICES */ #define RES_DATA_CTRL 0 #define RES_CTRL_REG1 1 #define RES_INT_CTRL1 2 #define RESUME_ENTRIES 3 /* * The following table lists the maximum appropriate poll interval for each * available output data rate. */ static const struct { unsigned int cutoff; u8 mask; } kxtj9_odr_table[] = { { 3, ODR800F }, { 5, ODR400F }, { 10, ODR200F }, { 20, ODR100F }, { 40, ODR50F }, { 80, ODR25F }, { 0, ODR12_5F}, }; struct kxtj9_data { struct i2c_client *client; struct kxtj9_platform_data pdata; struct input_dev *input_dev; unsigned int last_poll_interval; u8 shift; u8 ctrl_reg1; u8 data_ctrl; u8 int_ctrl; }; static int kxtj9_i2c_read(struct kxtj9_data *tj9, u8 addr, u8 *data, int len) { struct i2c_msg msgs[] = { { .addr = tj9->client->addr, .flags = tj9->client->flags, .len = 1, .buf = &addr, }, { .addr = tj9->client->addr, .flags = tj9->client->flags | I2C_M_RD, .len = len, .buf = data, }, }; return i2c_transfer(tj9->client->adapter, msgs, 2); } static void kxtj9_report_acceleration_data(struct kxtj9_data *tj9) { s16 acc_data[3]; /* Data bytes from hardware xL, xH, yL, yH, zL, zH */ s16 x, y, z; int err; err = kxtj9_i2c_read(tj9, XOUT_L, (u8 *)acc_data, 6); if (err < 0) dev_err(&tj9->client->dev, "accelerometer data read failed\n"); x = le16_to_cpu(acc_data[tj9->pdata.axis_map_x]); y = le16_to_cpu(acc_data[tj9->pdata.axis_map_y]); z = le16_to_cpu(acc_data[tj9->pdata.axis_map_z]); x >>= tj9->shift; y >>= tj9->shift; z >>= tj9->shift; input_report_abs(tj9->input_dev, ABS_X, tj9->pdata.negate_x ? -x : x); input_report_abs(tj9->input_dev, ABS_Y, tj9->pdata.negate_y ? -y : y); input_report_abs(tj9->input_dev, ABS_Z, tj9->pdata.negate_z ? -z : z); input_sync(tj9->input_dev); } static irqreturn_t kxtj9_isr(int irq, void *dev) { struct kxtj9_data *tj9 = dev; int err; /* data ready is the only possible interrupt type */ kxtj9_report_acceleration_data(tj9); err = i2c_smbus_read_byte_data(tj9->client, INT_REL); if (err < 0) dev_err(&tj9->client->dev, "error clearing interrupt status: %d\n", err); return IRQ_HANDLED; } static int kxtj9_update_g_range(struct kxtj9_data *tj9, u8 new_g_range) { switch (new_g_range) { case KXTJ9_G_2G: tj9->shift = 4; break; case KXTJ9_G_4G: tj9->shift = 3; break; case KXTJ9_G_8G: tj9->shift = 2; break; default: return -EINVAL; } tj9->ctrl_reg1 &= 0xe7; tj9->ctrl_reg1 |= new_g_range; return 0; } static int kxtj9_update_odr(struct kxtj9_data *tj9, unsigned int poll_interval) { int err; int i; /* Use the lowest ODR that can support the requested poll interval */ for (i = 0; i < ARRAY_SIZE(kxtj9_odr_table); i++) { tj9->data_ctrl = kxtj9_odr_table[i].mask; if (poll_interval < kxtj9_odr_table[i].cutoff) break; } err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, 0); if (err < 0) return err; err = i2c_smbus_write_byte_data(tj9->client, DATA_CTRL, tj9->data_ctrl); if (err < 0) return err; err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1); if (err < 0) return err; return 0; } static int kxtj9_device_power_on(struct kxtj9_data *tj9) { if (tj9->pdata.power_on) return tj9->pdata.power_on(); return 0; } static void kxtj9_device_power_off(struct kxtj9_data *tj9) { int err; tj9->ctrl_reg1 &= PC1_OFF; err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1); if (err < 0) dev_err(&tj9->client->dev, "soft power off failed\n"); if (tj9->pdata.power_off) tj9->pdata.power_off(); } static int kxtj9_enable(struct kxtj9_data *tj9) { int err; err = kxtj9_device_power_on(tj9); if (err < 0) return err; /* ensure that PC1 is cleared before updating control registers */ err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, 0); if (err < 0) return err; /* only write INT_CTRL_REG1 if in irq mode */ if (tj9->client->irq) { err = i2c_smbus_write_byte_data(tj9->client, INT_CTRL1, tj9->int_ctrl); if (err < 0) return err; } err = kxtj9_update_g_range(tj9, tj9->pdata.g_range); if (err < 0) return err; /* turn on outputs */ tj9->ctrl_reg1 |= PC1_ON; err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1); if (err < 0) return err; err = kxtj9_update_odr(tj9, tj9->last_poll_interval); if (err < 0) return err; /* clear initial interrupt if in irq mode */ if (tj9->client->irq) { err = i2c_smbus_read_byte_data(tj9->client, INT_REL); if (err < 0) { dev_err(&tj9->client->dev, "error clearing interrupt: %d\n", err); goto fail; } } return 0; fail: kxtj9_device_power_off(tj9); return err; } static void kxtj9_disable(struct kxtj9_data *tj9) { kxtj9_device_power_off(tj9); } static int kxtj9_input_open(struct input_dev *input) { struct kxtj9_data *tj9 = input_get_drvdata(input); return kxtj9_enable(tj9); } static void kxtj9_input_close(struct input_dev *dev) { struct kxtj9_data *tj9 = input_get_drvdata(dev); kxtj9_disable(tj9); } /* * When IRQ mode is selected, we need to provide an interface to allow the user * to change the output data rate of the part. For consistency, we are using * the set_poll method, which accepts a poll interval in milliseconds, and then * calls update_odr() while passing this value as an argument. In IRQ mode, the * data outputs will not be read AT the requested poll interval, rather, the * lowest ODR that can support the requested interval. The client application * will be responsible for retrieving data from the input node at the desired * interval. */ /* Returns currently selected poll interval (in ms) */ static ssize_t kxtj9_get_poll(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); return sprintf(buf, "%d\n", tj9->last_poll_interval); } /* Allow users to select a new poll interval (in ms) */ static ssize_t kxtj9_set_poll(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); struct input_dev *input_dev = tj9->input_dev; unsigned int interval; int error; error = kstrtouint(buf, 10, &interval); if (error < 0) return error; /* Lock the device to prevent races with open/close (and itself) */ guard(mutex)(&input_dev->mutex); guard(disable_irq)(&client->irq); /* * Set current interval to the greater of the minimum interval or * the requested interval */ tj9->last_poll_interval = max(interval, tj9->pdata.min_interval); kxtj9_update_odr(tj9, tj9->last_poll_interval); return count; } static DEVICE_ATTR(poll, S_IRUGO|S_IWUSR, kxtj9_get_poll, kxtj9_set_poll); static struct attribute *kxtj9_attrs[] = { &dev_attr_poll.attr, NULL }; static umode_t kxtj9_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct i2c_client *client = to_i2c_client(dev); return client->irq ? attr->mode : 0; } static struct attribute_group kxtj9_group = { .attrs = kxtj9_attrs, .is_visible = kxtj9_attr_is_visible, }; __ATTRIBUTE_GROUPS(kxtj9); static void kxtj9_poll(struct input_dev *input) { struct kxtj9_data *tj9 = input_get_drvdata(input); unsigned int poll_interval = input_get_poll_interval(input); kxtj9_report_acceleration_data(tj9); if (poll_interval != tj9->last_poll_interval) { kxtj9_update_odr(tj9, poll_interval); tj9->last_poll_interval = poll_interval; } } static void kxtj9_platform_exit(void *data) { struct kxtj9_data *tj9 = data; if (tj9->pdata.exit) tj9->pdata.exit(); } static int kxtj9_verify(struct kxtj9_data *tj9) { int retval; retval = kxtj9_device_power_on(tj9); if (retval < 0) return retval; retval = i2c_smbus_read_byte_data(tj9->client, WHO_AM_I); if (retval < 0) { dev_err(&tj9->client->dev, "read err int source\n"); goto out; } retval = (retval != 0x07 && retval != 0x08) ? -EIO : 0; out: kxtj9_device_power_off(tj9); return retval; } static int kxtj9_probe(struct i2c_client *client) { const struct kxtj9_platform_data *pdata = dev_get_platdata(&client->dev); struct kxtj9_data *tj9; struct input_dev *input_dev; int err; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(&client->dev, "client is not i2c capable\n"); return -ENXIO; } if (!pdata) { dev_err(&client->dev, "platform data is NULL; exiting\n"); return -EINVAL; } tj9 = devm_kzalloc(&client->dev, sizeof(*tj9), GFP_KERNEL); if (!tj9) { dev_err(&client->dev, "failed to allocate memory for module data\n"); return -ENOMEM; } tj9->client = client; tj9->pdata = *pdata; if (pdata->init) { err = pdata->init(); if (err < 0) return err; } err = devm_add_action_or_reset(&client->dev, kxtj9_platform_exit, tj9); if (err) return err; err = kxtj9_verify(tj9); if (err < 0) { dev_err(&client->dev, "device not recognized\n"); return err; } i2c_set_clientdata(client, tj9); tj9->ctrl_reg1 = tj9->pdata.res_12bit | tj9->pdata.g_range; tj9->last_poll_interval = tj9->pdata.init_interval; input_dev = devm_input_allocate_device(&client->dev); if (!input_dev) { dev_err(&client->dev, "input device allocate failed\n"); return -ENOMEM; } input_set_drvdata(input_dev, tj9); tj9->input_dev = input_dev; input_dev->name = "kxtj9_accel"; input_dev->id.bustype = BUS_I2C; input_dev->open = kxtj9_input_open; input_dev->close = kxtj9_input_close; input_set_abs_params(input_dev, ABS_X, -G_MAX, G_MAX, FUZZ, FLAT); input_set_abs_params(input_dev, ABS_Y, -G_MAX, G_MAX, FUZZ, FLAT); input_set_abs_params(input_dev, ABS_Z, -G_MAX, G_MAX, FUZZ, FLAT); if (client->irq <= 0) { err = input_setup_polling(input_dev, kxtj9_poll); if (err) return err; } err = input_register_device(input_dev); if (err) { dev_err(&client->dev, "unable to register input polled device %s: %d\n", input_dev->name, err); return err; } if (client->irq) { /* If in irq mode, populate INT_CTRL_REG1 and enable DRDY. */ tj9->int_ctrl |= KXTJ9_IEN | KXTJ9_IEA | KXTJ9_IEL; tj9->ctrl_reg1 |= DRDYE; err = devm_request_threaded_irq(&client->dev, client->irq, NULL, kxtj9_isr, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "kxtj9-irq", tj9); if (err) { dev_err(&client->dev, "request irq failed: %d\n", err); return err; } } return 0; } static int kxtj9_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); struct input_dev *input_dev = tj9->input_dev; guard(mutex)(&input_dev->mutex); if (input_device_enabled(input_dev)) kxtj9_disable(tj9); return 0; } static int kxtj9_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct kxtj9_data *tj9 = i2c_get_clientdata(client); struct input_dev *input_dev = tj9->input_dev; guard(mutex)(&input_dev->mutex); if (input_device_enabled(input_dev)) kxtj9_enable(tj9); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(kxtj9_pm_ops, kxtj9_suspend, kxtj9_resume); static const struct i2c_device_id kxtj9_id[] = { { NAME }, { } }; MODULE_DEVICE_TABLE(i2c, kxtj9_id); static struct i2c_driver kxtj9_driver = { .driver = { .name = NAME, .dev_groups = kxtj9_groups, .pm = pm_sleep_ptr(&kxtj9_pm_ops), }, .probe = kxtj9_probe, .id_table = kxtj9_id, }; module_i2c_driver(kxtj9_driver); MODULE_DESCRIPTION("KXTJ9 accelerometer driver"); MODULE_AUTHOR("Chris Hudson "); MODULE_LICENSE("GPL");