// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned long __pmd_frag_nr; EXPORT_SYMBOL(__pmd_frag_nr); unsigned long __pmd_frag_size_shift; EXPORT_SYMBOL(__pmd_frag_size_shift); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is called when relaxing access to a hugepage. It's also called in the page * fault path when we don't hit any of the major fault cases, ie, a minor * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have * handled those two for us, we additionally deal with missing execute * permission here on some processors */ int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { int changed; #ifdef CONFIG_DEBUG_VM WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); #endif changed = !pmd_same(*(pmdp), entry); if (changed) { /* * We can use MMU_PAGE_2M here, because only radix * path look at the psize. */ __ptep_set_access_flags(vma, pmdp_ptep(pmdp), pmd_pte(entry), address, MMU_PAGE_2M); } return changed; } int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); } /* * set a new huge pmd. We should not be called for updating * an existing pmd entry. That should go via pmd_hugepage_update. */ void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { #ifdef CONFIG_DEBUG_VM /* * Make sure hardware valid bit is not set. We don't do * tlb flush for this update. */ WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); assert_spin_locked(pmd_lockptr(mm, pmdp)); WARN_ON(!(pmd_large(pmd))); #endif trace_hugepage_set_pmd(addr, pmd_val(pmd)); return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); } static void do_nothing(void *unused) { } /* * Serialize against find_current_mm_pte which does lock-less * lookup in page tables with local interrupts disabled. For huge pages * it casts pmd_t to pte_t. Since format of pte_t is different from * pmd_t we want to prevent transit from pmd pointing to page table * to pmd pointing to huge page (and back) while interrupts are disabled. * We clear pmd to possibly replace it with page table pointer in * different code paths. So make sure we wait for the parallel * find_current_mm_pte to finish. */ void serialize_against_pte_lookup(struct mm_struct *mm) { smp_mb(); smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); } /* * We use this to invalidate a pmdp entry before switching from a * hugepte to regular pmd entry. */ pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { unsigned long old_pmd; old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); return __pmd(old_pmd); } pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp, int full) { pmd_t pmd; VM_BUG_ON(addr & ~HPAGE_PMD_MASK); VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); /* * if it not a fullmm flush, then we can possibly end up converting * this PMD pte entry to a regular level 0 PTE by a parallel page fault. * Make sure we flush the tlb in this case. */ if (!full) flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); return pmd; } static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) { return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); } pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) { unsigned long pmdv; pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; return pmd_set_protbits(__pmd(pmdv), pgprot); } pmd_t mk_pmd(struct page *page, pgprot_t pgprot) { return pfn_pmd(page_to_pfn(page), pgprot); } pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { unsigned long pmdv; pmdv = pmd_val(pmd); pmdv &= _HPAGE_CHG_MASK; return pmd_set_protbits(__pmd(pmdv), newprot); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* For use by kexec */ void mmu_cleanup_all(void) { if (radix_enabled()) radix__mmu_cleanup_all(); else if (mmu_hash_ops.hpte_clear_all) mmu_hash_ops.hpte_clear_all(); reset_sprs(); } #ifdef CONFIG_MEMORY_HOTPLUG int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid, pgprot_t prot) { if (radix_enabled()) return radix__create_section_mapping(start, end, nid, prot); return hash__create_section_mapping(start, end, nid, prot); } int __meminit remove_section_mapping(unsigned long start, unsigned long end) { if (radix_enabled()) return radix__remove_section_mapping(start, end); return hash__remove_section_mapping(start, end); } #endif /* CONFIG_MEMORY_HOTPLUG */ void __init mmu_partition_table_init(void) { unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; unsigned long ptcr; BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); /* Initialize the Partition Table with no entries */ partition_tb = memblock_alloc(patb_size, patb_size); if (!partition_tb) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, patb_size, patb_size); /* * update partition table control register, * 64 K size. */ ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); set_ptcr_when_no_uv(ptcr); powernv_set_nmmu_ptcr(ptcr); } static void flush_partition(unsigned int lpid, bool radix) { if (radix) { radix__flush_all_lpid(lpid); radix__flush_all_lpid_guest(lpid); } else { asm volatile("ptesync" : : : "memory"); asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); /* do we need fixup here ?*/ asm volatile("eieio; tlbsync; ptesync" : : : "memory"); trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); } } void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, unsigned long dw1, bool flush) { unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); /* * When ultravisor is enabled, the partition table is stored in secure * memory and can only be accessed doing an ultravisor call. However, we * maintain a copy of the partition table in normal memory to allow Nest * MMU translations to occur (for normal VMs). * * Therefore, here we always update partition_tb, regardless of whether * we are running under an ultravisor or not. */ partition_tb[lpid].patb0 = cpu_to_be64(dw0); partition_tb[lpid].patb1 = cpu_to_be64(dw1); /* * If ultravisor is enabled, we do an ultravisor call to register the * partition table entry (PATE), which also do a global flush of TLBs * and partition table caches for the lpid. Otherwise, just do the * flush. The type of flush (hash or radix) depends on what the previous * use of the partition ID was, not the new use. */ if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { uv_register_pate(lpid, dw0, dw1); pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", dw0, dw1); } else if (flush) { /* * Boot does not need to flush, because MMU is off and each * CPU does a tlbiel_all() before switching them on, which * flushes everything. */ flush_partition(lpid, (old & PATB_HR)); } } EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); static pmd_t *get_pmd_from_cache(struct mm_struct *mm) { void *pmd_frag, *ret; if (PMD_FRAG_NR == 1) return NULL; spin_lock(&mm->page_table_lock); ret = mm->context.pmd_frag; if (ret) { pmd_frag = ret + PMD_FRAG_SIZE; /* * If we have taken up all the fragments mark PTE page NULL */ if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) pmd_frag = NULL; mm->context.pmd_frag = pmd_frag; } spin_unlock(&mm->page_table_lock); return (pmd_t *)ret; } static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) { void *ret = NULL; struct page *page; gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; if (mm == &init_mm) gfp &= ~__GFP_ACCOUNT; page = alloc_page(gfp); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } atomic_set(&page->pt_frag_refcount, 1); ret = page_address(page); /* * if we support only one fragment just return the * allocated page. */ if (PMD_FRAG_NR == 1) return ret; spin_lock(&mm->page_table_lock); /* * If we find pgtable_page set, we return * the allocated page with single fragement * count. */ if (likely(!mm->context.pmd_frag)) { atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); mm->context.pmd_frag = ret + PMD_FRAG_SIZE; } spin_unlock(&mm->page_table_lock); return (pmd_t *)ret; } pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) { pmd_t *pmd; pmd = get_pmd_from_cache(mm); if (pmd) return pmd; return __alloc_for_pmdcache(mm); } void pmd_fragment_free(unsigned long *pmd) { struct page *page = virt_to_page(pmd); if (PageReserved(page)) return free_reserved_page(page); BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); if (atomic_dec_and_test(&page->pt_frag_refcount)) { pgtable_pmd_page_dtor(page); __free_page(page); } } static inline void pgtable_free(void *table, int index) { switch (index) { case PTE_INDEX: pte_fragment_free(table, 0); break; case PMD_INDEX: pmd_fragment_free(table); break; case PUD_INDEX: __pud_free(table); break; #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) /* 16M hugepd directory at pud level */ case HTLB_16M_INDEX: BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); break; /* 16G hugepd directory at the pgd level */ case HTLB_16G_INDEX: BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); break; #endif /* We don't free pgd table via RCU callback */ default: BUG(); } } void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) { unsigned long pgf = (unsigned long)table; BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); pgf |= index; tlb_remove_table(tlb, (void *)pgf); } void __tlb_remove_table(void *_table) { void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; return pgtable_free(table, index); } #ifdef CONFIG_PROC_FS atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; void arch_report_meminfo(struct seq_file *m) { /* * Hash maps the memory with one size mmu_linear_psize. * So don't bother to print these on hash */ if (!radix_enabled()) return; seq_printf(m, "DirectMap4k: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); seq_printf(m, "DirectMap64k: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); seq_printf(m, "DirectMap2M: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); seq_printf(m, "DirectMap1G: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); } #endif /* CONFIG_PROC_FS */ pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { unsigned long pte_val; /* * Clear the _PAGE_PRESENT so that no hardware parallel update is * possible. Also keep the pte_present true so that we don't take * wrong fault. */ pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); return __pte(pte_val); } void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { if (radix_enabled()) return radix__ptep_modify_prot_commit(vma, addr, ptep, old_pte, pte); set_pte_at(vma->vm_mm, addr, ptep, pte); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * For hash translation mode, we use the deposited table to store hash slot * information and they are stored at PTRS_PER_PMD offset from related pmd * location. Hence a pmd move requires deposit and withdraw. * * For radix translation with split pmd ptl, we store the deposited table in the * pmd page. Hence if we have different pmd page we need to withdraw during pmd * move. * * With hash we use deposited table always irrespective of anon or not. * With radix we use deposited table only for anonymous mapping. */ int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, struct spinlock *old_pmd_ptl, struct vm_area_struct *vma) { if (radix_enabled()) return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); return true; } #endif /* * Does the CPU support tlbie? */ bool tlbie_capable __read_mostly = true; EXPORT_SYMBOL(tlbie_capable); /* * Should tlbie be used for management of CPU TLBs, for kernel and process * address spaces? tlbie may still be used for nMMU accelerators, and for KVM * guest address spaces. */ bool tlbie_enabled __read_mostly = true; static int __init setup_disable_tlbie(char *str) { if (!radix_enabled()) { pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); return 1; } tlbie_capable = false; tlbie_enabled = false; return 1; } __setup("disable_tlbie", setup_disable_tlbie); static int __init pgtable_debugfs_setup(void) { if (!tlbie_capable) return 0; /* * There is no locking vs tlb flushing when changing this value. * The tlb flushers will see one value or another, and use either * tlbie or tlbiel with IPIs. In both cases the TLBs will be * invalidated as expected. */ debugfs_create_bool("tlbie_enabled", 0600, powerpc_debugfs_root, &tlbie_enabled); return 0; } arch_initcall(pgtable_debugfs_setup);