// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2006 * Author(s): Heiko Carstens */ #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_MUTEX(vmem_mutex); static void __ref *vmem_alloc_pages(unsigned int order) { unsigned long size = PAGE_SIZE << order; if (slab_is_available()) return (void *)__get_free_pages(GFP_KERNEL, order); return (void *) memblock_phys_alloc(size, size); } static void vmem_free_pages(unsigned long addr, int order) { /* We don't expect boot memory to be removed ever. */ if (!slab_is_available() || WARN_ON_ONCE(PageReserved(phys_to_page(addr)))) return; free_pages(addr, order); } void *vmem_crst_alloc(unsigned long val) { unsigned long *table; table = vmem_alloc_pages(CRST_ALLOC_ORDER); if (table) crst_table_init(table, val); return table; } pte_t __ref *vmem_pte_alloc(void) { unsigned long size = PTRS_PER_PTE * sizeof(pte_t); pte_t *pte; if (slab_is_available()) pte = (pte_t *) page_table_alloc(&init_mm); else pte = (pte_t *) memblock_phys_alloc(size, size); if (!pte) return NULL; memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE); return pte; } static void vmem_pte_free(unsigned long *table) { /* We don't expect boot memory to be removed ever. */ if (!slab_is_available() || WARN_ON_ONCE(PageReserved(virt_to_page(table)))) return; page_table_free(&init_mm, table); } #define PAGE_UNUSED 0xFD /* * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges * from unused_pmd_start to next PMD_SIZE boundary. */ static unsigned long unused_pmd_start; static void vmemmap_flush_unused_pmd(void) { if (!unused_pmd_start) return; memset(__va(unused_pmd_start), PAGE_UNUSED, ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start); unused_pmd_start = 0; } static void __vmemmap_use_sub_pmd(unsigned long start, unsigned long end) { /* * As we expect to add in the same granularity as we remove, it's * sufficient to mark only some piece used to block the memmap page from * getting removed (just in case the memmap never gets initialized, * e.g., because the memory block never gets onlined). */ memset(__va(start), 0, sizeof(struct page)); } static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end) { /* * We only optimize if the new used range directly follows the * previously unused range (esp., when populating consecutive sections). */ if (unused_pmd_start == start) { unused_pmd_start = end; if (likely(IS_ALIGNED(unused_pmd_start, PMD_SIZE))) unused_pmd_start = 0; return; } vmemmap_flush_unused_pmd(); __vmemmap_use_sub_pmd(start, end); } static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end) { void *page = __va(ALIGN_DOWN(start, PMD_SIZE)); vmemmap_flush_unused_pmd(); /* Could be our memmap page is filled with PAGE_UNUSED already ... */ __vmemmap_use_sub_pmd(start, end); /* Mark the unused parts of the new memmap page PAGE_UNUSED. */ if (!IS_ALIGNED(start, PMD_SIZE)) memset(page, PAGE_UNUSED, start - __pa(page)); /* * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of * consecutive sections. Remember for the last added PMD the last * unused range in the populated PMD. */ if (!IS_ALIGNED(end, PMD_SIZE)) unused_pmd_start = end; } /* Returns true if the PMD is completely unused and can be freed. */ static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end) { void *page = __va(ALIGN_DOWN(start, PMD_SIZE)); vmemmap_flush_unused_pmd(); memset(__va(start), PAGE_UNUSED, end - start); return !memchr_inv(page, PAGE_UNUSED, PMD_SIZE); } /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */ static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr, unsigned long end, bool add, bool direct) { unsigned long prot, pages = 0; int ret = -ENOMEM; pte_t *pte; prot = pgprot_val(PAGE_KERNEL); if (!MACHINE_HAS_NX) prot &= ~_PAGE_NOEXEC; pte = pte_offset_kernel(pmd, addr); for (; addr < end; addr += PAGE_SIZE, pte++) { if (!add) { if (pte_none(*pte)) continue; if (!direct) vmem_free_pages(pfn_to_phys(pte_pfn(*pte)), 0); pte_clear(&init_mm, addr, pte); } else if (pte_none(*pte)) { if (!direct) { void *new_page = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE); if (!new_page) goto out; pte_val(*pte) = __pa(new_page) | prot; } else { pte_val(*pte) = addr | prot; } } else { continue; } pages++; } ret = 0; out: if (direct) update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages); return ret; } static void try_free_pte_table(pmd_t *pmd, unsigned long start) { pte_t *pte; int i; /* We can safely assume this is fully in 1:1 mapping & vmemmap area */ pte = pte_offset_kernel(pmd, start); for (i = 0; i < PTRS_PER_PTE; i++, pte++) { if (!pte_none(*pte)) return; } vmem_pte_free(__va(pmd_deref(*pmd))); pmd_clear(pmd); } /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */ static int __ref modify_pmd_table(pud_t *pud, unsigned long addr, unsigned long end, bool add, bool direct) { unsigned long next, prot, pages = 0; int ret = -ENOMEM; pmd_t *pmd; pte_t *pte; prot = pgprot_val(SEGMENT_KERNEL); if (!MACHINE_HAS_NX) prot &= ~_SEGMENT_ENTRY_NOEXEC; pmd = pmd_offset(pud, addr); for (; addr < end; addr = next, pmd++) { next = pmd_addr_end(addr, end); if (!add) { if (pmd_none(*pmd)) continue; if (pmd_large(*pmd) && !add) { if (IS_ALIGNED(addr, PMD_SIZE) && IS_ALIGNED(next, PMD_SIZE)) { if (!direct) vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE)); pmd_clear(pmd); pages++; } else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) { vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE)); pmd_clear(pmd); } continue; } } else if (pmd_none(*pmd)) { if (IS_ALIGNED(addr, PMD_SIZE) && IS_ALIGNED(next, PMD_SIZE) && MACHINE_HAS_EDAT1 && addr && direct && !debug_pagealloc_enabled()) { pmd_val(*pmd) = addr | prot; pages++; continue; } else if (!direct && MACHINE_HAS_EDAT1) { void *new_page; /* * Use 1MB frames for vmemmap if available. We * always use large frames even if they are only * partially used. Otherwise we would have also * page tables since vmemmap_populate gets * called for each section separately. */ new_page = vmemmap_alloc_block(PMD_SIZE, NUMA_NO_NODE); if (new_page) { pmd_val(*pmd) = __pa(new_page) | prot; if (!IS_ALIGNED(addr, PMD_SIZE) || !IS_ALIGNED(next, PMD_SIZE)) { vmemmap_use_new_sub_pmd(addr, next); } continue; } } pte = vmem_pte_alloc(); if (!pte) goto out; pmd_populate(&init_mm, pmd, pte); } else if (pmd_large(*pmd)) { if (!direct) vmemmap_use_sub_pmd(addr, next); continue; } ret = modify_pte_table(pmd, addr, next, add, direct); if (ret) goto out; if (!add) try_free_pte_table(pmd, addr & PMD_MASK); } ret = 0; out: if (direct) update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages); return ret; } static void try_free_pmd_table(pud_t *pud, unsigned long start) { const unsigned long end = start + PUD_SIZE; pmd_t *pmd; int i; /* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */ if (end > VMALLOC_START) return; #ifdef CONFIG_KASAN if (start < KASAN_SHADOW_END && end > KASAN_SHADOW_START) return; #endif pmd = pmd_offset(pud, start); for (i = 0; i < PTRS_PER_PMD; i++, pmd++) if (!pmd_none(*pmd)) return; vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER); pud_clear(pud); } static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end, bool add, bool direct) { unsigned long next, prot, pages = 0; int ret = -ENOMEM; pud_t *pud; pmd_t *pmd; prot = pgprot_val(REGION3_KERNEL); if (!MACHINE_HAS_NX) prot &= ~_REGION_ENTRY_NOEXEC; pud = pud_offset(p4d, addr); for (; addr < end; addr = next, pud++) { next = pud_addr_end(addr, end); if (!add) { if (pud_none(*pud)) continue; if (pud_large(*pud)) { if (IS_ALIGNED(addr, PUD_SIZE) && IS_ALIGNED(next, PUD_SIZE)) { pud_clear(pud); pages++; } continue; } } else if (pud_none(*pud)) { if (IS_ALIGNED(addr, PUD_SIZE) && IS_ALIGNED(next, PUD_SIZE) && MACHINE_HAS_EDAT2 && addr && direct && !debug_pagealloc_enabled()) { pud_val(*pud) = addr | prot; pages++; continue; } pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!pmd) goto out; pud_populate(&init_mm, pud, pmd); } else if (pud_large(*pud)) { continue; } ret = modify_pmd_table(pud, addr, next, add, direct); if (ret) goto out; if (!add) try_free_pmd_table(pud, addr & PUD_MASK); } ret = 0; out: if (direct) update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages); return ret; } static void try_free_pud_table(p4d_t *p4d, unsigned long start) { const unsigned long end = start + P4D_SIZE; pud_t *pud; int i; /* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */ if (end > VMALLOC_START) return; #ifdef CONFIG_KASAN if (start < KASAN_SHADOW_END && end > KASAN_SHADOW_START) return; #endif pud = pud_offset(p4d, start); for (i = 0; i < PTRS_PER_PUD; i++, pud++) { if (!pud_none(*pud)) return; } vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER); p4d_clear(p4d); } static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end, bool add, bool direct) { unsigned long next; int ret = -ENOMEM; p4d_t *p4d; pud_t *pud; p4d = p4d_offset(pgd, addr); for (; addr < end; addr = next, p4d++) { next = p4d_addr_end(addr, end); if (!add) { if (p4d_none(*p4d)) continue; } else if (p4d_none(*p4d)) { pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); if (!pud) goto out; p4d_populate(&init_mm, p4d, pud); } ret = modify_pud_table(p4d, addr, next, add, direct); if (ret) goto out; if (!add) try_free_pud_table(p4d, addr & P4D_MASK); } ret = 0; out: return ret; } static void try_free_p4d_table(pgd_t *pgd, unsigned long start) { const unsigned long end = start + PGDIR_SIZE; p4d_t *p4d; int i; /* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */ if (end > VMALLOC_START) return; #ifdef CONFIG_KASAN if (start < KASAN_SHADOW_END && end > KASAN_SHADOW_START) return; #endif p4d = p4d_offset(pgd, start); for (i = 0; i < PTRS_PER_P4D; i++, p4d++) { if (!p4d_none(*p4d)) return; } vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER); pgd_clear(pgd); } static int modify_pagetable(unsigned long start, unsigned long end, bool add, bool direct) { unsigned long addr, next; int ret = -ENOMEM; pgd_t *pgd; p4d_t *p4d; if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end))) return -EINVAL; for (addr = start; addr < end; addr = next) { next = pgd_addr_end(addr, end); pgd = pgd_offset_k(addr); if (!add) { if (pgd_none(*pgd)) continue; } else if (pgd_none(*pgd)) { p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); if (!p4d) goto out; pgd_populate(&init_mm, pgd, p4d); } ret = modify_p4d_table(pgd, addr, next, add, direct); if (ret) goto out; if (!add) try_free_p4d_table(pgd, addr & PGDIR_MASK); } ret = 0; out: if (!add) flush_tlb_kernel_range(start, end); return ret; } static int add_pagetable(unsigned long start, unsigned long end, bool direct) { return modify_pagetable(start, end, true, direct); } static int remove_pagetable(unsigned long start, unsigned long end, bool direct) { return modify_pagetable(start, end, false, direct); } /* * Add a physical memory range to the 1:1 mapping. */ static int vmem_add_range(unsigned long start, unsigned long size) { return add_pagetable(start, start + size, true); } /* * Remove a physical memory range from the 1:1 mapping. */ static void vmem_remove_range(unsigned long start, unsigned long size) { remove_pagetable(start, start + size, true); } /* * Add a backed mem_map array to the virtual mem_map array. */ int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { int ret; mutex_lock(&vmem_mutex); /* We don't care about the node, just use NUMA_NO_NODE on allocations */ ret = add_pagetable(start, end, false); if (ret) remove_pagetable(start, end, false); mutex_unlock(&vmem_mutex); return ret; } void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) { mutex_lock(&vmem_mutex); remove_pagetable(start, end, false); mutex_unlock(&vmem_mutex); } void vmem_remove_mapping(unsigned long start, unsigned long size) { mutex_lock(&vmem_mutex); vmem_remove_range(start, size); mutex_unlock(&vmem_mutex); } int vmem_add_mapping(unsigned long start, unsigned long size) { int ret; if (start + size > VMEM_MAX_PHYS || start + size < start) return -ERANGE; mutex_lock(&vmem_mutex); ret = vmem_add_range(start, size); if (ret) vmem_remove_range(start, size); mutex_unlock(&vmem_mutex); return ret; } /* * map whole physical memory to virtual memory (identity mapping) * we reserve enough space in the vmalloc area for vmemmap to hotplug * additional memory segments. */ void __init vmem_map_init(void) { phys_addr_t base, end; u64 i; for_each_mem_range(i, &base, &end) vmem_add_range(base, end - base); __set_memory((unsigned long)_stext, (unsigned long)(_etext - _stext) >> PAGE_SHIFT, SET_MEMORY_RO | SET_MEMORY_X); __set_memory((unsigned long)_etext, (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT, SET_MEMORY_RO); __set_memory((unsigned long)_sinittext, (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT, SET_MEMORY_RO | SET_MEMORY_X); __set_memory(__stext_dma, (__etext_dma - __stext_dma) >> PAGE_SHIFT, SET_MEMORY_RO | SET_MEMORY_X); /* we need lowcore executable for our LPSWE instructions */ set_memory_x(0, 1); pr_info("Write protected kernel read-only data: %luk\n", (unsigned long)(__end_rodata - _stext) >> 10); }