#!/usr/bin/env python3 # -*- coding: utf-8 -*- # TRX Toolkit # Virtual Um-interface (fake transceiver) # # (C) 2017-2019 by Vadim Yanitskiy # # All Rights Reserved # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. APP_CR_HOLDERS = [("2017-2019", "Vadim Yanitskiy ")] import logging as log import signal import argparse import random import select import sys import re from app_common import ApplicationBase from burst_fwd import BurstForwarder from transceiver import Transceiver from data_msg import Modulation from clck_gen import CLCKGen from trx_list import TRXList from fake_pm import FakePM from gsm_shared import * class FakeTRX(Transceiver): """ Fake transceiver with RF path (burst loss, RSSI, TA, ToA) simulation. == ToA / RSSI measurement simulation Since this is a virtual environment, we can simulate different parameters of the physical RF interface: - ToA (Timing of Arrival) - measured difference between expected and actual time of burst arrival in units of 1/256 of GSM symbol periods. A pair of both base and threshold values defines a range of ToA value randomization: from (toa256_base - toa256_rand_threshold) to (toa256_base + toa256_rand_threshold). - RSSI (Received Signal Strength Indication) - measured "power" of the signal (per burst) in dBm. A pair of both base and threshold values defines a range of RSSI value randomization: from (rssi_base - rssi_rand_threshold) to (rssi_base + rssi_rand_threshold). - C/I (Carrier-to-Interference ratio) - value in cB (centiBels), computed from the training sequence of each received burst, by comparing the "ideal" training sequence with the actual one. A pair of both base and threshold values defines a range of C/I randomization: from (ci_base - ci_rand_threshold) to (ci_base + ci_rand_threshold). Please note that the randomization is optional and disabled by default. == Timing Advance handling The BTS is using ToA measurements for UL bursts in order to calculate Timing Advance value, that is then indicated to a MS, which in its turn shall apply this value to the transmitted signal in order to compensate the delay. Basically, every burst is transmitted in advance defined by the indicated Timing Advance value. The valid range is 0..63, where each unit means one GSM symbol advance. The actual Timing Advance value is set using SETTA control command from MS. By default, it's set to 0. == Path loss simulation === Burst dropping In some cases, e.g. due to a weak signal or high interference, a burst can be lost, i.e. not detected by the receiver. This can also be simulated using FAKE_DROP command on the control interface: - burst_drop_amount - the amount of DL/UL bursts to be dropped (i.e. not forwarded towards the MS/BTS), - burst_drop_period - drop a DL/UL burst if its (fn % period) == 0. == Configuration All simulation parameters mentioned above can be changed at runtime using the commands with prefix 'FAKE_' on the control interface. All of them are handled by our custom CTRL command handler. """ NOMINAL_TX_POWER_DEFAULT = 50 # dBm TX_ATT_DEFAULT = 0 # dB PATH_LOSS_DEFAULT = 110 # dB TOA256_BASE_DEFAULT = 0 CI_BASE_DEFAULT = 90 # Default values for NOPE / IDLE indications TOA256_NOISE_DEFAULT = 0 RSSI_NOISE_DEFAULT = -110 CI_NOISE_DEFAULT = -30 def __init__(self, *trx_args, **trx_kwargs): Transceiver.__init__(self, *trx_args, **trx_kwargs) # fake RSSI is disabled by default, only enabled through TRXC FAKE_RSSI. # When disabled, RSSI is calculated based on Tx power and Rx path loss self.fake_rssi_enabled = False self.rf_muted = False # Actual ToA, RSSI, C/I, TA values self.tx_power_base = self.NOMINAL_TX_POWER_DEFAULT self.tx_att_base = self.TX_ATT_DEFAULT self.toa256_base = self.TOA256_BASE_DEFAULT self.rssi_base = self.NOMINAL_TX_POWER_DEFAULT - self.TX_ATT_DEFAULT - self.PATH_LOSS_DEFAULT self.ci_base = self.CI_BASE_DEFAULT self.ta = 0 # ToA, RSSI, C/I randomization thresholds self.toa256_rand_threshold = 0 self.rssi_rand_threshold = 0 self.ci_rand_threshold = 0 # Path loss simulation (burst dropping) self.burst_drop_amount = 0 self.burst_drop_period = 1 @property def toa256(self): # Check if randomization is required if self.toa256_rand_threshold == 0: return self.toa256_base # Generate a random ToA value in required range toa256_min = self.toa256_base - self.toa256_rand_threshold toa256_max = self.toa256_base + self.toa256_rand_threshold return random.randint(toa256_min, toa256_max) @property def rssi(self): # Check if randomization is required if self.rssi_rand_threshold == 0: return self.rssi_base # Generate a random RSSI value in required range rssi_min = self.rssi_base - self.rssi_rand_threshold rssi_max = self.rssi_base + self.rssi_rand_threshold return random.randint(rssi_min, rssi_max) @property def tx_power(self): return self.tx_power_base - self.tx_att_base @property def ci(self): # Check if randomization is required if self.ci_rand_threshold == 0: return self.ci_base # Generate a random C/I value in required range ci_min = self.ci_base - self.ci_rand_threshold ci_max = self.ci_base + self.ci_rand_threshold return random.randint(ci_min, ci_max) # Path loss simulation: burst dropping # Returns: True - drop, False - keep def sim_burst_drop(self, msg): # Check if dropping is required if self.burst_drop_amount == 0: return False if msg.fn % self.burst_drop_period == 0: log.info("(%s) Simulation: dropping burst (fn=%u %% %u == 0)" % (self, msg.fn, self.burst_drop_period)) self.burst_drop_amount -= 1 return True return False def _handle_data_msg_v1(self, src_msg, msg): # C/I (Carrier-to-Interference ratio) msg.ci = self.ci # Pick modulation type by burst length bl = len(src_msg.burst) msg.mod_type = Modulation.pick_by_bl(bl) # Pick TSC (Training Sequence Code) and TSC set if msg.mod_type is Modulation.ModGMSK: ss = TrainingSeqGMSK.pick(src_msg.burst) msg.tsc = ss.tsc if ss is not None else 0 msg.tsc_set = ss.tsc_set if ss is not None else 0 else: # TODO: other modulation types (at least 8-PSK) msg.tsc_set = 0 msg.tsc = 0 # Takes (partially initialized) TRXD Rx message, # simulates RF path parameters (such as RSSI), # and sends towards the L1 def handle_data_msg(self, src_trx, src_msg, msg): if self.rf_muted: msg.nope_ind = True elif not msg.nope_ind: # Path loss simulation msg.nope_ind = self.sim_burst_drop(msg) if msg.nope_ind: # Before TRXDv1, we simply drop the message if msg.ver < 0x01: del msg return # Since TRXDv1, we should send a NOPE.ind del msg.burst # burst bits are omited msg.burst = None # TODO: shoud we make these values configurable? msg.toa256 = self.TOA256_NOISE_DEFAULT msg.rssi = self.RSSI_NOISE_DEFAULT msg.ci = self.CI_NOISE_DEFAULT self.data_if.send_msg(msg) return # Complete message header msg.toa256 = self.toa256 # Apply RSSI based on transmitter: if not self.fake_rssi_enabled: msg.rssi = src_trx.tx_power - src_msg.pwr - self.PATH_LOSS_DEFAULT else: # Apply fake RSSI msg.rssi = self.rssi # Version specific fields if msg.ver >= 0x01: self._handle_data_msg_v1(src_msg, msg) # Apply optional Timing Advance if src_trx.ta != 0: msg.toa256 -= src_trx.ta * 256 Transceiver.handle_data_msg(self, msg) # Simulation specific CTRL command handler def ctrl_cmd_handler(self, request): # Timing Advance # Syntax: CMD SETTA if self.ctrl_if.verify_cmd(request, "SETTA", 1): log.debug("(%s) Recv SETTA cmd" % self) # Store indicated value self.ta = int(request[1]) return 0 # Timing of Arrival simulation # Absolute form: CMD FAKE_TOA elif self.ctrl_if.verify_cmd(request, "FAKE_TOA", 2): log.debug("(%s) Recv FAKE_TOA cmd" % self) # Parse and apply both base and threshold self.toa256_base = int(request[1]) self.toa256_rand_threshold = int(request[2]) return 0 # Timing of Arrival simulation # Relative form: CMD FAKE_TOA <+-BASE_DELTA> elif self.ctrl_if.verify_cmd(request, "FAKE_TOA", 1): log.debug("(%s) Recv FAKE_TOA cmd" % self) # Parse and apply delta self.toa256_base += int(request[1]) return 0 # RSSI simulation # Absolute form: CMD FAKE_RSSI elif self.ctrl_if.verify_cmd(request, "FAKE_RSSI", 2): log.debug("(%s) Recv FAKE_RSSI cmd" % self) # Use negative threshold to disable fake_rssi if previously enabled: if int(request[2]) < 0: self.fake_rssi_enabled = False return 0 # Parse and apply both base and threshold self.rssi_base = int(request[1]) self.rssi_rand_threshold = int(request[2]) self.fake_rssi_enabled = True return 0 # RSSI simulation # Relative form: CMD FAKE_RSSI <+-BASE_DELTA> elif self.ctrl_if.verify_cmd(request, "FAKE_RSSI", 1): log.debug("(%s) Recv FAKE_RSSI cmd" % self) # Parse and apply delta self.rssi_base += int(request[1]) return 0 # C/I simulation # Absolute form: CMD FAKE_CI elif self.ctrl_if.verify_cmd(request, "FAKE_CI", 2): log.debug("(%s) Recv FAKE_CI cmd" % self) # Parse and apply both base and threshold self.ci_base = int(request[1]) self.ci_rand_threshold = int(request[2]) return 0 # C/I simulation # Relative form: CMD FAKE_CI <+-BASE_DELTA> elif self.ctrl_if.verify_cmd(request, "FAKE_CI", 1): log.debug("(%s) Recv FAKE_CI cmd" % self) # Parse and apply delta self.ci_base += int(request[1]) return 0 # Path loss simulation: burst dropping # Syntax: CMD FAKE_DROP # Dropping pattern: fn % 1 == 0 elif self.ctrl_if.verify_cmd(request, "FAKE_DROP", 1): log.debug("(%s) Recv FAKE_DROP cmd" % self) # Parse / validate amount of bursts num = int(request[1]) if num < 0: log.error("(%s) FAKE_DROP amount shall not " "be negative" % self) return -1 self.burst_drop_amount = num self.burst_drop_period = 1 return 0 # Path loss simulation: burst dropping # Syntax: CMD FAKE_DROP # Dropping pattern: fn % period == 0 elif self.ctrl_if.verify_cmd(request, "FAKE_DROP", 2): log.debug("(%s) Recv FAKE_DROP cmd" % self) # Parse / validate amount of bursts num = int(request[1]) if num < 0: log.error("(%s) FAKE_DROP amount shall not " "be negative" % self) return -1 # Parse / validate period period = int(request[2]) if period <= 0: log.error("(%s) FAKE_DROP period shall " "be greater than zero" % self) return -1 self.burst_drop_amount = num self.burst_drop_period = period return 0 # Artificial delay for the TRXC interface # Syntax: CMD FAKE_TRXC_DELAY elif self.ctrl_if.verify_cmd(request, "FAKE_TRXC_DELAY", 1): log.debug("(%s) Recv FAKE_TRXC_DELAY cmd", self) self.ctrl_if.rsp_delay_ms = int(request[1]) log.info("(%s) Artificial TRXC delay set to %d", self, self.ctrl_if.rsp_delay_ms) # Unhandled command return None class Application(ApplicationBase): def __init__(self): self.app_print_copyright(APP_CR_HOLDERS) self.argv = self.parse_argv() # Set up signal handlers signal.signal(signal.SIGINT, self.sig_handler) # Configure logging self.app_init_logging(self.argv) # List of all transceivers self.trx_list = TRXList() # Init shared clock generator self.clck_gen = CLCKGen([]) # This method will be called on each TDMA frame self.clck_gen.clck_handler = self.clck_handler # Power measurement emulation # Noise: -120 .. -105 # BTS: -75 .. -50 self.fake_pm = FakePM(-120, -105, -75, -50) self.fake_pm.trx_list = self.trx_list # Init TRX instance for BTS self.append_trx(self.argv.bts_addr, self.argv.bts_base_port, name = "BTS") # Init TRX instance for BB self.append_trx(self.argv.bb_addr, self.argv.bb_base_port, name = "MS", child_mgt = False) # Additional transceivers (optional) if self.argv.trx_list is not None: for trx_def in self.argv.trx_list: (name, addr, port, idx) = trx_def self.append_child_trx(addr, port, name = name, child_idx = idx) # Burst forwarding between transceivers self.burst_fwd = BurstForwarder(self.trx_list.trx_list) log.info("Init complete") def append_trx(self, remote_addr, base_port, **kwargs): trx = FakeTRX(self.argv.trx_bind_addr, remote_addr, base_port, clck_gen = self.clck_gen, pwr_meas = self.fake_pm, **kwargs) self.trx_list.add_trx(trx) def append_child_trx(self, remote_addr, base_port, **kwargs): child_idx = kwargs.get("child_idx", 0) if child_idx == 0: # Index 0 indicates parent transceiver self.append_trx(remote_addr, base_port, **kwargs) return # Find 'parent' transceiver for a new child trx_parent = self.trx_list.find_trx(remote_addr, base_port) if trx_parent is None: raise IndexError("Couldn't find parent transceiver " "for '%s:%d/%d'" % (remote_addr, base_port, child_idx)) # Allocate a new child trx_child = FakeTRX(self.argv.trx_bind_addr, remote_addr, base_port, pwr_meas = self.fake_pm, **kwargs) self.trx_list.add_trx(trx_child) # Link a new 'child' with its 'parent' trx_parent.child_trx_list.add_trx(trx_child) def run(self): # Compose list of to be monitored sockets sock_list = [] for trx in self.trx_list.trx_list: sock_list.append(trx.ctrl_if.sock) sock_list.append(trx.data_if.sock) # Enter main loop while True: # Wait until we get any data on any socket r_event, _, _ = select.select(sock_list, [], []) # Iterate over all transceivers for trx in self.trx_list.trx_list: # DATA interface if trx.data_if.sock in r_event: trx.recv_data_msg() # CTRL interface if trx.ctrl_if.sock in r_event: trx.ctrl_if.handle_rx() # This method will be called by the clock thread def clck_handler(self, fn): # We assume that this list is immutable at run-time for trx in self.trx_list.trx_list: trx.clck_tick(self.burst_fwd, fn) def shutdown(self): log.info("Shutting down...") # Stop clock generator self.clck_gen.stop() # Parses a TRX definition of the following # format: REMOTE_ADDR:BIND_PORT[/TRX_NUM] # e.g. [2001:0db8:85a3:0000:0000:8a2e:0370:7334]:5700/5 # e.g. 127.0.0.1:5700 or 127.0.0.1:5700/1 # e.g. foo@127.0.0.1:5700 or bar@127.0.0.1:5700/1 @staticmethod def trx_def(val): try: result = re.match(r"(.+@)?(.+):([0-9]+)(/[0-9]+)?", val) (name, addr, port, idx) = result.groups() except: raise argparse.ArgumentTypeError("Invalid TRX definition: %s" % val) if idx is not None: idx = int(idx[1:]) else: idx = 0 # Cut '@' from TRX name if name is not None: name = name[:-1] return (name, addr, int(port), idx) def parse_argv(self): parser = argparse.ArgumentParser(prog = "fake_trx", description = "Virtual Um-interface (fake transceiver)") # Register common logging options self.app_reg_logging_options(parser) trx_group = parser.add_argument_group("TRX interface") trx_group.add_argument("-b", "--trx-bind-addr", dest = "trx_bind_addr", type = str, default = "0.0.0.0", help = "Set FakeTRX bind address (default %(default)s)") trx_group.add_argument("-R", "--bts-addr", dest = "bts_addr", type = str, default = "127.0.0.1", help = "Set BTS remote address (default %(default)s)") trx_group.add_argument("-r", "--bb-addr", dest = "bb_addr", type = str, default = "127.0.0.1", help = "Set BB remote address (default %(default)s)") trx_group.add_argument("-P", "--bts-base-port", dest = "bts_base_port", type = int, default = 5700, help = "Set BTS base port number (default %(default)s)") trx_group.add_argument("-p", "--bb-base-port", dest = "bb_base_port", type = int, default = 6700, help = "Set BB base port number (default %(default)s)") mtrx_group = parser.add_argument_group("Additional transceivers") mtrx_group.add_argument("--trx", metavar = "REMOTE_ADDR:BASE_PORT[/TRX_NUM]", dest = "trx_list", type = self.trx_def, action = "append", help = "Add a transceiver for BTS or MS (e.g. 127.0.0.1:5703)") argv = parser.parse_args() # Make sure there is no overlap between ports if argv.bts_base_port == argv.bb_base_port: parser.error("BTS and BB base ports shall be different") return argv def sig_handler(self, signum, frame): log.info("Signal %d received" % signum) if signum == signal.SIGINT: self.shutdown() sys.exit(0) if __name__ == '__main__': app = Application() app.run()