"""Utility code related to the integration of the 'construct' declarative parser.""" import typing import codecs import ipaddress import gsm0338 # pylint: disable=import-error,no-name-in-module from construct.lib.containers import Container, ListContainer from construct.core import EnumIntegerString from construct import Adapter, Prefixed, Int8ub, GreedyBytes, Default, Flag, Byte, Construct, Enum from construct import BitsInteger, BitStruct, Bytes, StreamError, stream_read_entire, stream_write from construct import SizeofError, IntegerError, swapbytes from construct.core import evaluate from construct.lib import integertypes from osmocom.utils import b2h, h2b, swap_nibbles, int_bytes_required # (C) 2021-2022 by Harald Welte # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . class HexAdapter(Adapter): """convert a bytes() type to a string of hex nibbles.""" def _decode(self, obj, context, path): return b2h(obj) def _encode(self, obj, context, path): return h2b(obj) class Utf8Adapter(Adapter): """convert a bytes() type that contains utf8 encoded text to human readable text.""" def _decode(self, obj, context, path): # In case the string contains only 0xff bytes we interpret it as an empty string if obj == b'\xff' * len(obj): return "" return codecs.decode(obj, "utf-8") def _encode(self, obj, context, path): return codecs.encode(obj, "utf-8") class GsmOrUcs2Adapter(Adapter): """Try to encode into a GSM 03.38 string; if that fails, fall back to UCS-2 as described in TS 102 221 Annex A.""" def _decode(self, obj, context, path): # In case the string contains only 0xff bytes we interpret it as an empty string if obj == b'\xff' * len(obj): return "" # one of the magic bytes of TS 102 221 Annex A if obj[0] in [0x80, 0x81, 0x82]: ad = Ucs2Adapter(GreedyBytes) else: ad = GsmString(GreedyBytes) return ad._decode(obj, context, path) def _encode(self, obj, context, path): # first try GSM 03.38; then fall back to TS 102 221 Annex A UCS-2 try: ad = GsmString(GreedyBytes) return ad._encode(obj, context, path) except: ad = Ucs2Adapter(GreedyBytes) return ad._encode(obj, context, path) class Ucs2Adapter(Adapter): """convert a bytes() type that contains UCS2 encoded characters encoded as defined in TS 102 221 Annex A to normal python string representation (and back).""" def _decode(self, obj, context, path): # In case the string contains only 0xff bytes we interpret it as an empty string if obj == b'\xff' * len(obj): return "" if obj[0] == 0x80: # TS 102 221 Annex A Variant 1 return codecs.decode(obj[1:], 'utf_16_be') elif obj[0] == 0x81: # TS 102 221 Annex A Variant 2 out = "" # second byte contains a value indicating the number of characters num_of_chars = obj[1] # the third byte contains an 8 bit number which defines bits 15 to 8 of a 16 bit base # pointer, where bit 16 is set to zero, and bits 7 to 1 are also set to zero. These # sixteen bits constitute a base pointer to a "half-page" in the UCS2 code space base_ptr = obj[2] << 7 for ch in obj[3:3+num_of_chars]: # if bit 8 of the byte is set to zero, the remaining 7 bits of the byte contain a # GSM Default Alphabet character, whereas if bit 8 of the byte is set to one, then # the remaining seven bits are an offset value added to the 16 bit base pointer # defined earlier, and the resultant 16 bit value is a UCS2 code point if ch & 0x80: codepoint = (ch & 0x7f) + base_ptr out += codecs.decode(codepoint.to_bytes(2, byteorder='big'), 'utf_16_be') else: out += codecs.decode(bytes([ch]), 'gsm03.38') return out elif obj[0] == 0x82: # TS 102 221 Annex A Variant 3 out = "" # second byte contains a value indicating the number of characters num_of_chars = obj[1] # third and fourth bytes contain a 16 bit number which defines the complete 16 bit base # pointer to a half-page in the UCS2 code space, for use with some or all of the # remaining bytes in the string base_ptr = obj[2] << 8 | obj[3] for ch in obj[4:4+num_of_chars]: # if bit 8 of the byte is set to zero, the remaining 7 bits of the byte contain a # GSM Default Alphabet character, whereas if bit 8 of the byte is set to one, the # remaining seven bits are an offset value added to the base pointer defined in # bytes three and four, and the resultant 16 bit value is a UCS2 code point, else: # # GSM default alphabet if ch & 0x80: codepoint = (ch & 0x7f) + base_ptr out += codecs.decode(codepoint.to_bytes(2, byteorder='big'), 'utf_16_be') else: out += codecs.decode(bytes([ch]), 'gsm03.38') return out else: raise ValueError('First byte of TS 102 221 UCS-2 must be 0x80, 0x81 or 0x82') def _encode(self, obj, context, path): def encodable_in_gsm338(instr: str) -> bool: """Determine if given input string is encode-ale in gsm03.38.""" try: # TODO: figure out if/how we can constrain to default alphabet. The gsm0338 # library seems to include the spanish lock/shift table codecs.encode(instr, 'gsm03.38') except ValueError: return False return True def codepoints_not_in_gsm338(instr: str) -> typing.List[int]: """Return an integer list of UCS2 codepoints for all characters of 'inster' which are not representable in the GSM 03.38 default alphabet.""" codepoint_list = [] for c in instr: if encodable_in_gsm338(c): continue c_codepoint = int.from_bytes(codecs.encode(c, 'utf_16_be'), byteorder='big') codepoint_list.append(c_codepoint) return codepoint_list def diff_between_min_and_max_of_list(inlst: typing.List) -> int: return max(inlst) - min(inlst) def encodable_in_variant2(instr: str) -> bool: codepoint_prefix = None for c in instr: if encodable_in_gsm338(c): continue c_codepoint = int.from_bytes(codecs.encode(c, 'utf_16_be'), byteorder='big') if c_codepoint >= 0x8000: return False c_prefix = c_codepoint >> 7 if codepoint_prefix is None: codepoint_prefix = c_prefix else: if c_prefix != codepoint_prefix: return False return True def encodable_in_variant3(instr: str) -> bool: codepoint_list = codepoints_not_in_gsm338(instr) # compute delta between max and min; check if it's encodable in 7 bits if diff_between_min_and_max_of_list(codepoint_list) >= 0x80: return False return True def _encode_variant1(instr: str) -> bytes: """Encode according to TS 102 221 Annex A Variant 1""" return b'\x80' + codecs.encode(instr, 'utf_16_be') def _encode_variant2(instr: str) -> bytes: """Encode according to TS 102 221 Annex A Variant 2""" codepoint_prefix = None # second byte contains a value indicating the number of characters hdr = b'\x81' + len(instr).to_bytes(1, byteorder='big') chars = b'' for c in instr: try: enc = codecs.encode(c, 'gsm03.38') except ValueError: c_codepoint = int.from_bytes(codecs.encode(c, 'utf_16_be'), byteorder='big') c_prefix = c_codepoint >> 7 if codepoint_prefix is None: codepoint_prefix = c_prefix assert codepoint_prefix == c_prefix enc = (0x80 + (c_codepoint & 0x7f)).to_bytes(1, byteorder='big') chars += enc if codepoint_prefix is None: codepoint_prefix = 0 return hdr + codepoint_prefix.to_bytes(1, byteorder='big') + chars def _encode_variant3(instr: str) -> bytes: """Encode according to TS 102 221 Annex A Variant 3""" # second byte contains a value indicating the number of characters hdr = b'\x82' + len(instr).to_bytes(1, byteorder='big') chars = b'' codepoint_list = codepoints_not_in_gsm338(instr) codepoint_base = min(codepoint_list) for c in instr: try: # if bit 8 of the byte is set to zero, the remaining 7 bits of the byte contain a GSM # Default # Alphabet character enc = codecs.encode(c, 'gsm03.38') except ValueError: # if bit 8 of the byte is set to one, the remaining seven bits are an offset # value added to the base pointer defined in bytes three and four, and the # resultant 16 bit value is a UCS2 code point c_codepoint = int.from_bytes(codecs.encode(c, 'utf_16_be'), byteorder='big') c_codepoint_delta = c_codepoint - codepoint_base assert c_codepoint_delta < 0x80 enc = (0x80 + c_codepoint_delta).to_bytes(1, byteorder='big') chars += enc # third and fourth bytes contain a 16 bit number which defines the complete 16 bit base # pointer to a half-page in the UCS2 code space return hdr + codepoint_base.to_bytes(2, byteorder='big') + chars if encodable_in_variant2(obj): return _encode_variant2(obj) elif encodable_in_variant3(obj): return _encode_variant3(obj) else: return _encode_variant1(obj) class BcdAdapter(Adapter): """convert a bytes() type to a string of BCD nibbles.""" def _decode(self, obj, context, path): return swap_nibbles(b2h(obj)) def _encode(self, obj, context, path): return h2b(swap_nibbles(obj)) class PaddedBcdAdapter(BcdAdapter): """Representatin of a BCD string of potentially odd number of BCD digits, which then need to be padded at the end with an 'f' nibble.""" def _decode(self, obj, context, path): r = super()._decode(obj, context, path) if r[-1] == 'f': return r[:-1] else: return r def _encode(self, obj, context, path): if len(obj) & 0x01: obj += 'f' return super()._encode(obj, context, path) class PlmnAdapter(BcdAdapter): """convert a bytes(3) type to BCD string like 262-02 or 262-002.""" def _decode(self, obj, context, path): bcd = super()._decode(obj, context, path) if bcd[3] == 'f': return '-'.join([bcd[:3], bcd[4:]]) else: return '-'.join([bcd[:3], bcd[3:]]) def _encode(self, obj, context, path): l = obj.split('-') if len(l[1]) == 2: bcd = l[0] + 'f' + l[1] else: bcd = l[0] + l[1] return super()._encode(bcd, context, path) class InvertAdapter(Adapter): """inverse logic (false->true, true->false).""" @staticmethod def _invert_bool_in_obj(obj): for k,v in obj.items(): # skip all private entries if k.startswith('_'): continue if v is False: obj[k] = True elif v is True: obj[k] = False return obj def _decode(self, obj, context, path): return self._invert_bool_in_obj(obj) def _encode(self, obj, context, path): return self._invert_bool_in_obj(obj) class DnsAdapter(Adapter): """Convert between DNS label format (length-prefixed labels) and string format.""" def _decode(self, obj, context, path): labels = [] remainder = bytes(obj) while True: label_len = remainder[0] label = remainder[1:1+label_len].decode('ascii') labels.append(label) remainder = remainder[1+label_len:] if not len(remainder): break return '.'.join(labels) def _encode(self, obj, context, path): labels = obj.split('.') out = b'' for label in labels: out += bytes([len(label)]) out += label.encode('ascii') return out class Rpad(Adapter): """ Encoder appends padding bytes (b'\\xff') or characters up to target size. Decoder removes trailing padding bytes/characters. Parameters: subcon: Subconstruct as defined by construct library pattern: set padding pattern (default: b'\\xff') num_per_byte: number of 'elements' per byte. E.g. for hex nibbles: 2 """ def __init__(self, subcon, pattern=b'\xff', num_per_byte=1): super().__init__(subcon) self.pattern = pattern self.num_per_byte = num_per_byte def _decode(self, obj, context, path): return obj.rstrip(self.pattern) def _encode(self, obj, context, path): target_size = self.sizeof(**context) * self.num_per_byte if len(obj) > target_size: raise SizeofError("Input ({}) exceeds target size ({})".format( len(obj), target_size)) return obj + self.pattern * (target_size - len(obj)) class MultiplyAdapter(Adapter): """ Decoder multiplies by multiplicator Encoder divides by multiplicator Parameters: subcon: Subconstruct as defined by construct library multiplier: Multiplier to apply to raw encoded value """ def __init__(self, subcon, multiplicator): super().__init__(subcon) self.multiplicator = multiplicator def _decode(self, obj, context, path): return obj * 8 def _encode(self, obj, context, path): return obj // 8 class GsmStringAdapter(Adapter): """Convert GSM 03.38 encoded bytes to a string.""" def __init__(self, subcon, codec='gsm03.38', err='strict'): super().__init__(subcon) self.codec = codec self.err = err def _decode(self, obj, context, path): return obj.decode(self.codec) def _encode(self, obj, context, path): return obj.encode(self.codec, self.err) class Ipv4Adapter(Adapter): """ Encoder converts from 4 bytes to string representation (A.B.C.D). Decoder converts from string representation (A.B.C.D) to four bytes. """ def _decode(self, obj, context, path): ia = ipaddress.IPv4Address(obj) return ia.compressed def _encode(self, obj, context, path): ia = ipaddress.IPv4Address(obj) return ia.packed class Ipv6Adapter(Adapter): """ Encoder converts from 16 bytes to string representation. Decoder converts from string representation to 16 bytes. """ def _decode(self, obj, context, path): ia = ipaddress.IPv6Address(obj) return ia.compressed def _encode(self, obj, context, path): ia = ipaddress.IPv6Address(obj) return ia.packed class StripTrailerAdapter(Adapter): """ Encoder removes all trailing bytes matching the default_value Decoder pads input data up to total_length with default_value This is used in constellations like "FlagsEnum(StripTrailerAdapter(GreedyBytes, 3), ..." where you have a bit-mask that may have 1, 2 or 3 bytes, depending on whether or not any of the LSBs are actually set. """ def __init__(self, subcon, total_length:int, default_value=b'\x00', min_len=1): super().__init__(subcon) assert len(default_value) == 1 self.total_length = total_length self.default_value = default_value self.min_len = min_len def _decode(self, obj, context, path): assert isinstance(obj, bytes) # pad with suppressed/missing bytes if len(obj) < self.total_length: obj += self.default_value * (self.total_length - len(obj)) return int.from_bytes(obj, 'big') def _encode(self, obj, context, path): assert isinstance(obj, int) obj = obj.to_bytes(self.total_length, 'big') # remove trailing bytes if they are zero while len(obj) > self.min_len and obj[-1] == self.default_value[0]: obj = obj[:-1] return obj def filter_dict(d, exclude_prefix='_'): """filter the input dict to ensure no keys starting with 'exclude_prefix' remain.""" if not isinstance(d, dict): return d res = {} for (key, value) in d.items(): if key.startswith(exclude_prefix): continue if isinstance(value, dict): res[key] = filter_dict(value) else: res[key] = value return res def normalize_construct(c, exclude_prefix: str = '_'): """Convert a construct specific type to a related base type, mostly useful so we can serialize it.""" # we need to include the filter_dict as we otherwise get elements like this # in the dict: '_io': <_io.BytesIO object at 0x7fdb64e05860> which we cannot json-serialize c = filter_dict(c, exclude_prefix) if isinstance(c, (Container, dict)): r = {k: normalize_construct(v) for (k, v) in c.items()} elif isinstance(c, ListContainer): r = [normalize_construct(x) for x in c] elif isinstance(c, list): r = [normalize_construct(x) for x in c] elif isinstance(c, EnumIntegerString): r = str(c) else: r = c return r def parse_construct(c, raw_bin_data: bytes, length: typing.Optional[int] = None, exclude_prefix: str = '_', context: dict = {}): """Helper function to wrap around normalize_construct() and filter_dict().""" if not length: length = len(raw_bin_data) try: parsed = c.parse(raw_bin_data, total_len=length, **context) except StreamError as e: # if the input is all-ff, this means the content is undefined. Let's avoid passing StreamError # exceptions in those situations (which might occur if a length field 0xff is 255 but then there's # actually less bytes in the remainder of the file. if all(v == 0xff for v in raw_bin_data): return None else: raise e return normalize_construct(parsed, exclude_prefix) def build_construct(c, decoded_data, context: dict = {}): """Helper function to handle total_len.""" context.setdefault('total_len', None) return c.build(decoded_data, **context) # here we collect some shared / common definitions of data types LV = Prefixed(Int8ub, HexAdapter(GreedyBytes)) # Default value for Reserved for Future Use (RFU) bits/bytes # See TS 31.101 Sec. "3.4 Coding Conventions" __RFU_VALUE = 0 # Field that packs Reserved for Future Use (RFU) bit FlagRFU = Default(Flag, __RFU_VALUE) # Field that packs Reserved for Future Use (RFU) byte ByteRFU = Default(Byte, __RFU_VALUE) # Field that packs all remaining Reserved for Future Use (RFU) bytes GreedyBytesRFU = Default(GreedyBytes, b'') def BitsRFU(n=1): ''' Field that packs Reserved for Future Use (RFU) bit(s) as defined in TS 31.101 Sec. "3.4 Coding Conventions" Use this for (currently) unused/reserved bits whose contents should be initialized automatically but should not be cleared in the future or when restoring read data (unlike padding). Parameters: n (Integer): Number of bits (default: 1) ''' return Default(BitsInteger(n), __RFU_VALUE) def BytesRFU(n=1): ''' Field that packs Reserved for Future Use (RFU) byte(s) as defined in TS 31.101 Sec. "3.4 Coding Conventions" Use this for (currently) unused/reserved bytes whose contents should be initialized automatically but should not be cleared in the future or when restoring read data (unlike padding). Parameters: n (Integer): Number of bytes (default: 1) ''' return Default(Bytes(n), __RFU_VALUE) def GsmString(n): ''' GSM 03.38 encoded byte string of fixed length n. Encoder appends padding bytes (b'\\xff') to maintain length. Decoder removes those trailing bytes. Exceptions are raised for invalid characters and length excess. Parameters: n (Integer): Fixed length of the encoded byte string ''' return GsmStringAdapter(Rpad(Bytes(n), pattern=b'\xff'), codec='gsm03.38') def GsmOrUcs2String(n): ''' GSM 03.38 or UCS-2 (TS 102 221 Annex A) encoded byte string of fixed length n. Encoder appends padding bytes (b'\\xff') to maintain length. Decoder removes those trailing bytes. Exceptions are raised for invalid characters and length excess. Parameters: n (Integer): Fixed length of the encoded byte string ''' return GsmOrUcs2Adapter(Rpad(Bytes(n), pattern=b'\xff')) class GreedyInteger(Construct): """A variable-length integer implementation, think of combining GrredyBytes with BytesInteger.""" def __init__(self, signed=False, swapped=False, minlen=0): super().__init__() self.signed = signed self.swapped = swapped self.minlen = minlen def _parse(self, stream, context, path): data = stream_read_entire(stream, path) if evaluate(self.swapped, context): data = swapbytes(data) try: return int.from_bytes(data, byteorder='big', signed=self.signed) except ValueError as e: raise IntegerError(str(e), path=path) def _build(self, obj, stream, context, path): if not isinstance(obj, integertypes): raise IntegerError(f"value {obj} is not an integer", path=path) length = int_bytes_required(obj, self.minlen, self.signed) try: data = obj.to_bytes(length, byteorder='big', signed=self.signed) except ValueError as e: raise IntegerError(str(e), path=path) from e if evaluate(self.swapped, context): data = swapbytes(data) stream_write(stream, data, length, path) return obj class Asn1DerInteger(Construct): """A signed integer value using ASN.1 DER encoding rules (see also ITU-T X.690 8.3)""" def _parse(self, stream, context, path): data = stream_read_entire(stream, path) return int.from_bytes(data, byteorder='big', signed=True) def _build(self, obj, stream, context, path): if not isinstance(obj, integertypes): raise IntegerError(f"value {obj} is not an integer", path=path) val = obj.to_bytes(int_bytes_required(obj, signed=True), byteorder='big', signed=True) stream_write(stream, val, len(val), path) return obj # merged definitions of 24.008 + 23.040 TypeOfNumber = Enum(BitsInteger(3), unknown=0, international=1, national=2, network_specific=3, short_code=4, alphanumeric=5, abbreviated=6, reserved_for_extension=7) NumberingPlan = Enum(BitsInteger(4), unknown=0, isdn_e164=1, data_x121=3, telex_f69=4, sc_specific_5=5, sc_specific_6=6, national=8, private=9, ermes=10, reserved_cts=11, reserved_for_extension=15) TonNpi = BitStruct('ext'/Flag, 'type_of_number'/TypeOfNumber, 'numbering_plan_id'/NumberingPlan) # see 'struct osmo_rat_type' in osmocom/gsm/gsm_utils.h OsmoRatType = Enum(Int8ub, unknown=0, geran=1, utran=2, eutran=3)