/* * Implementation of the policy database. * * Author : Stephen Smalley, */ /* * Updated: Trusted Computer Solutions, Inc. * * Support for enhanced MLS infrastructure. * * Updated: Frank Mayer and Karl MacMillan * * Added conditional policy language extensions * * Updated: Hewlett-Packard * * Added support for the policy capability bitmap * * Copyright (C) 2007 Hewlett-Packard Development Company, L.P. * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * Copyright (C) 2003 - 2004 Tresys Technology, LLC * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. */ #include #include #include #include #include #include #include #include "security.h" #include "policydb.h" #include "conditional.h" #include "mls.h" #include "services.h" #define _DEBUG_HASHES #ifdef DEBUG_HASHES static const char *symtab_name[SYM_NUM] = { "common prefixes", "classes", "roles", "types", "users", "bools", "levels", "categories", }; #endif static unsigned int symtab_sizes[SYM_NUM] = { 2, 32, 16, 512, 128, 16, 16, 16, }; struct policydb_compat_info { int version; int sym_num; int ocon_num; }; /* These need to be updated if SYM_NUM or OCON_NUM changes */ static struct policydb_compat_info policydb_compat[] = { { .version = POLICYDB_VERSION_BASE, .sym_num = SYM_NUM - 3, .ocon_num = OCON_NUM - 1, }, { .version = POLICYDB_VERSION_BOOL, .sym_num = SYM_NUM - 2, .ocon_num = OCON_NUM - 1, }, { .version = POLICYDB_VERSION_IPV6, .sym_num = SYM_NUM - 2, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_NLCLASS, .sym_num = SYM_NUM - 2, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_MLS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_AVTAB, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_RANGETRANS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_POLCAP, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_PERMISSIVE, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_BOUNDARY, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_FILENAME_TRANS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_ROLETRANS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_NEW_OBJECT_DEFAULTS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_DEFAULT_TYPE, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, }; static struct policydb_compat_info *policydb_lookup_compat(int version) { int i; struct policydb_compat_info *info = NULL; for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) { if (policydb_compat[i].version == version) { info = &policydb_compat[i]; break; } } return info; } /* * Initialize the role table. */ static int roles_init(struct policydb *p) { char *key = NULL; int rc; struct role_datum *role; rc = -ENOMEM; role = kzalloc(sizeof(*role), GFP_KERNEL); if (!role) goto out; rc = -EINVAL; role->value = ++p->p_roles.nprim; if (role->value != OBJECT_R_VAL) goto out; rc = -ENOMEM; key = kstrdup(OBJECT_R, GFP_KERNEL); if (!key) goto out; rc = hashtab_insert(p->p_roles.table, key, role); if (rc) goto out; return 0; out: kfree(key); kfree(role); return rc; } static u32 filenametr_hash(struct hashtab *h, const void *k) { const struct filename_trans *ft = k; unsigned long hash; unsigned int byte_num; unsigned char focus; hash = ft->stype ^ ft->ttype ^ ft->tclass; byte_num = 0; while ((focus = ft->name[byte_num++])) hash = partial_name_hash(focus, hash); return hash & (h->size - 1); } static int filenametr_cmp(struct hashtab *h, const void *k1, const void *k2) { const struct filename_trans *ft1 = k1; const struct filename_trans *ft2 = k2; int v; v = ft1->stype - ft2->stype; if (v) return v; v = ft1->ttype - ft2->ttype; if (v) return v; v = ft1->tclass - ft2->tclass; if (v) return v; return strcmp(ft1->name, ft2->name); } static u32 rangetr_hash(struct hashtab *h, const void *k) { const struct range_trans *key = k; return (key->source_type + (key->target_type << 3) + (key->target_class << 5)) & (h->size - 1); } static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2) { const struct range_trans *key1 = k1, *key2 = k2; int v; v = key1->source_type - key2->source_type; if (v) return v; v = key1->target_type - key2->target_type; if (v) return v; v = key1->target_class - key2->target_class; return v; } /* * Initialize a policy database structure. */ static int policydb_init(struct policydb *p) { int i, rc; memset(p, 0, sizeof(*p)); for (i = 0; i < SYM_NUM; i++) { rc = symtab_init(&p->symtab[i], symtab_sizes[i]); if (rc) goto out; } rc = avtab_init(&p->te_avtab); if (rc) goto out; rc = roles_init(p); if (rc) goto out; rc = cond_policydb_init(p); if (rc) goto out; p->filename_trans = hashtab_create(filenametr_hash, filenametr_cmp, (1 << 10)); if (!p->filename_trans) goto out; p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256); if (!p->range_tr) goto out; ebitmap_init(&p->filename_trans_ttypes); ebitmap_init(&p->policycaps); ebitmap_init(&p->permissive_map); return 0; out: hashtab_destroy(p->filename_trans); hashtab_destroy(p->range_tr); for (i = 0; i < SYM_NUM; i++) hashtab_destroy(p->symtab[i].table); return rc; } /* * The following *_index functions are used to * define the val_to_name and val_to_struct arrays * in a policy database structure. The val_to_name * arrays are used when converting security context * structures into string representations. The * val_to_struct arrays are used when the attributes * of a class, role, or user are needed. */ static int common_index(void *key, void *datum, void *datap) { struct policydb *p; struct common_datum *comdatum; struct flex_array *fa; comdatum = datum; p = datap; if (!comdatum->value || comdatum->value > p->p_commons.nprim) return -EINVAL; fa = p->sym_val_to_name[SYM_COMMONS]; if (flex_array_put_ptr(fa, comdatum->value - 1, key, GFP_KERNEL | __GFP_ZERO)) BUG(); return 0; } static int class_index(void *key, void *datum, void *datap) { struct policydb *p; struct class_datum *cladatum; struct flex_array *fa; cladatum = datum; p = datap; if (!cladatum->value || cladatum->value > p->p_classes.nprim) return -EINVAL; fa = p->sym_val_to_name[SYM_CLASSES]; if (flex_array_put_ptr(fa, cladatum->value - 1, key, GFP_KERNEL | __GFP_ZERO)) BUG(); p->class_val_to_struct[cladatum->value - 1] = cladatum; return 0; } static int role_index(void *key, void *datum, void *datap) { struct policydb *p; struct role_datum *role; struct flex_array *fa; role = datum; p = datap; if (!role->value || role->value > p->p_roles.nprim || role->bounds > p->p_roles.nprim) return -EINVAL; fa = p->sym_val_to_name[SYM_ROLES]; if (flex_array_put_ptr(fa, role->value - 1, key, GFP_KERNEL | __GFP_ZERO)) BUG(); p->role_val_to_struct[role->value - 1] = role; return 0; } static int type_index(void *key, void *datum, void *datap) { struct policydb *p; struct type_datum *typdatum; struct flex_array *fa; typdatum = datum; p = datap; if (typdatum->primary) { if (!typdatum->value || typdatum->value > p->p_types.nprim || typdatum->bounds > p->p_types.nprim) return -EINVAL; fa = p->sym_val_to_name[SYM_TYPES]; if (flex_array_put_ptr(fa, typdatum->value - 1, key, GFP_KERNEL | __GFP_ZERO)) BUG(); fa = p->type_val_to_struct_array; if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum, GFP_KERNEL | __GFP_ZERO)) BUG(); } return 0; } static int user_index(void *key, void *datum, void *datap) { struct policydb *p; struct user_datum *usrdatum; struct flex_array *fa; usrdatum = datum; p = datap; if (!usrdatum->value || usrdatum->value > p->p_users.nprim || usrdatum->bounds > p->p_users.nprim) return -EINVAL; fa = p->sym_val_to_name[SYM_USERS]; if (flex_array_put_ptr(fa, usrdatum->value - 1, key, GFP_KERNEL | __GFP_ZERO)) BUG(); p->user_val_to_struct[usrdatum->value - 1] = usrdatum; return 0; } static int sens_index(void *key, void *datum, void *datap) { struct policydb *p; struct level_datum *levdatum; struct flex_array *fa; levdatum = datum; p = datap; if (!levdatum->isalias) { if (!levdatum->level->sens || levdatum->level->sens > p->p_levels.nprim) return -EINVAL; fa = p->sym_val_to_name[SYM_LEVELS]; if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key, GFP_KERNEL | __GFP_ZERO)) BUG(); } return 0; } static int cat_index(void *key, void *datum, void *datap) { struct policydb *p; struct cat_datum *catdatum; struct flex_array *fa; catdatum = datum; p = datap; if (!catdatum->isalias) { if (!catdatum->value || catdatum->value > p->p_cats.nprim) return -EINVAL; fa = p->sym_val_to_name[SYM_CATS]; if (flex_array_put_ptr(fa, catdatum->value - 1, key, GFP_KERNEL | __GFP_ZERO)) BUG(); } return 0; } static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_index, class_index, role_index, type_index, user_index, cond_index_bool, sens_index, cat_index, }; #ifdef DEBUG_HASHES static void hash_eval(struct hashtab *h, const char *hash_name) { struct hashtab_info info; hashtab_stat(h, &info); printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, " "longest chain length %d\n", hash_name, h->nel, info.slots_used, h->size, info.max_chain_len); } static void symtab_hash_eval(struct symtab *s) { int i; for (i = 0; i < SYM_NUM; i++) hash_eval(s[i].table, symtab_name[i]); } #else static inline void hash_eval(struct hashtab *h, char *hash_name) { } #endif /* * Define the other val_to_name and val_to_struct arrays * in a policy database structure. * * Caller must clean up on failure. */ static int policydb_index(struct policydb *p) { int i, rc; printk(KERN_DEBUG "SELinux: %d users, %d roles, %d types, %d bools", p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); if (p->mls_enabled) printk(", %d sens, %d cats", p->p_levels.nprim, p->p_cats.nprim); printk("\n"); printk(KERN_DEBUG "SELinux: %d classes, %d rules\n", p->p_classes.nprim, p->te_avtab.nel); #ifdef DEBUG_HASHES avtab_hash_eval(&p->te_avtab, "rules"); symtab_hash_eval(p->symtab); #endif rc = -ENOMEM; p->class_val_to_struct = kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL); if (!p->class_val_to_struct) goto out; rc = -ENOMEM; p->role_val_to_struct = kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)), GFP_KERNEL); if (!p->role_val_to_struct) goto out; rc = -ENOMEM; p->user_val_to_struct = kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)), GFP_KERNEL); if (!p->user_val_to_struct) goto out; /* Yes, I want the sizeof the pointer, not the structure */ rc = -ENOMEM; p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *), p->p_types.nprim, GFP_KERNEL | __GFP_ZERO); if (!p->type_val_to_struct_array) goto out; rc = flex_array_prealloc(p->type_val_to_struct_array, 0, p->p_types.nprim, GFP_KERNEL | __GFP_ZERO); if (rc) goto out; rc = cond_init_bool_indexes(p); if (rc) goto out; for (i = 0; i < SYM_NUM; i++) { rc = -ENOMEM; p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *), p->symtab[i].nprim, GFP_KERNEL | __GFP_ZERO); if (!p->sym_val_to_name[i]) goto out; rc = flex_array_prealloc(p->sym_val_to_name[i], 0, p->symtab[i].nprim, GFP_KERNEL | __GFP_ZERO); if (rc) goto out; rc = hashtab_map(p->symtab[i].table, index_f[i], p); if (rc) goto out; } rc = 0; out: return rc; } /* * The following *_destroy functions are used to * free any memory allocated for each kind of * symbol data in the policy database. */ static int perm_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int common_destroy(void *key, void *datum, void *p) { struct common_datum *comdatum; kfree(key); if (datum) { comdatum = datum; hashtab_map(comdatum->permissions.table, perm_destroy, NULL); hashtab_destroy(comdatum->permissions.table); } kfree(datum); return 0; } static int cls_destroy(void *key, void *datum, void *p) { struct class_datum *cladatum; struct constraint_node *constraint, *ctemp; struct constraint_expr *e, *etmp; kfree(key); if (datum) { cladatum = datum; hashtab_map(cladatum->permissions.table, perm_destroy, NULL); hashtab_destroy(cladatum->permissions.table); constraint = cladatum->constraints; while (constraint) { e = constraint->expr; while (e) { ebitmap_destroy(&e->names); etmp = e; e = e->next; kfree(etmp); } ctemp = constraint; constraint = constraint->next; kfree(ctemp); } constraint = cladatum->validatetrans; while (constraint) { e = constraint->expr; while (e) { ebitmap_destroy(&e->names); etmp = e; e = e->next; kfree(etmp); } ctemp = constraint; constraint = constraint->next; kfree(ctemp); } kfree(cladatum->comkey); } kfree(datum); return 0; } static int role_destroy(void *key, void *datum, void *p) { struct role_datum *role; kfree(key); if (datum) { role = datum; ebitmap_destroy(&role->dominates); ebitmap_destroy(&role->types); } kfree(datum); return 0; } static int type_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int user_destroy(void *key, void *datum, void *p) { struct user_datum *usrdatum; kfree(key); if (datum) { usrdatum = datum; ebitmap_destroy(&usrdatum->roles); ebitmap_destroy(&usrdatum->range.level[0].cat); ebitmap_destroy(&usrdatum->range.level[1].cat); ebitmap_destroy(&usrdatum->dfltlevel.cat); } kfree(datum); return 0; } static int sens_destroy(void *key, void *datum, void *p) { struct level_datum *levdatum; kfree(key); if (datum) { levdatum = datum; ebitmap_destroy(&levdatum->level->cat); kfree(levdatum->level); } kfree(datum); return 0; } static int cat_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_destroy, cls_destroy, role_destroy, type_destroy, user_destroy, cond_destroy_bool, sens_destroy, cat_destroy, }; static int filenametr_destroy(void *key, void *datum, void *p) { struct filename_trans *ft = key; kfree(ft->name); kfree(key); kfree(datum); cond_resched(); return 0; } static int range_tr_destroy(void *key, void *datum, void *p) { struct mls_range *rt = datum; kfree(key); ebitmap_destroy(&rt->level[0].cat); ebitmap_destroy(&rt->level[1].cat); kfree(datum); cond_resched(); return 0; } static void ocontext_destroy(struct ocontext *c, int i) { if (!c) return; context_destroy(&c->context[0]); context_destroy(&c->context[1]); if (i == OCON_ISID || i == OCON_FS || i == OCON_NETIF || i == OCON_FSUSE) kfree(c->u.name); kfree(c); } /* * Free any memory allocated by a policy database structure. */ void policydb_destroy(struct policydb *p) { struct ocontext *c, *ctmp; struct genfs *g, *gtmp; int i; struct role_allow *ra, *lra = NULL; struct role_trans *tr, *ltr = NULL; for (i = 0; i < SYM_NUM; i++) { cond_resched(); hashtab_map(p->symtab[i].table, destroy_f[i], NULL); hashtab_destroy(p->symtab[i].table); } for (i = 0; i < SYM_NUM; i++) { if (p->sym_val_to_name[i]) flex_array_free(p->sym_val_to_name[i]); } kfree(p->class_val_to_struct); kfree(p->role_val_to_struct); kfree(p->user_val_to_struct); if (p->type_val_to_struct_array) flex_array_free(p->type_val_to_struct_array); avtab_destroy(&p->te_avtab); for (i = 0; i < OCON_NUM; i++) { cond_resched(); c = p->ocontexts[i]; while (c) { ctmp = c; c = c->next; ocontext_destroy(ctmp, i); } p->ocontexts[i] = NULL; } g = p->genfs; while (g) { cond_resched(); kfree(g->fstype); c = g->head; while (c) { ctmp = c; c = c->next; ocontext_destroy(ctmp, OCON_FSUSE); } gtmp = g; g = g->next; kfree(gtmp); } p->genfs = NULL; cond_policydb_destroy(p); for (tr = p->role_tr; tr; tr = tr->next) { cond_resched(); kfree(ltr); ltr = tr; } kfree(ltr); for (ra = p->role_allow; ra; ra = ra->next) { cond_resched(); kfree(lra); lra = ra; } kfree(lra); hashtab_map(p->filename_trans, filenametr_destroy, NULL); hashtab_destroy(p->filename_trans); hashtab_map(p->range_tr, range_tr_destroy, NULL); hashtab_destroy(p->range_tr); if (p->type_attr_map_array) { for (i = 0; i < p->p_types.nprim; i++) { struct ebitmap *e; e = flex_array_get(p->type_attr_map_array, i); if (!e) continue; ebitmap_destroy(e); } flex_array_free(p->type_attr_map_array); } ebitmap_destroy(&p->filename_trans_ttypes); ebitmap_destroy(&p->policycaps); ebitmap_destroy(&p->permissive_map); return; } /* * Load the initial SIDs specified in a policy database * structure into a SID table. */ int policydb_load_isids(struct policydb *p, struct sidtab *s) { struct ocontext *head, *c; int rc; rc = sidtab_init(s); if (rc) { printk(KERN_ERR "SELinux: out of memory on SID table init\n"); goto out; } head = p->ocontexts[OCON_ISID]; for (c = head; c; c = c->next) { rc = -EINVAL; if (!c->context[0].user) { printk(KERN_ERR "SELinux: SID %s was never defined.\n", c->u.name); goto out; } rc = sidtab_insert(s, c->sid[0], &c->context[0]); if (rc) { printk(KERN_ERR "SELinux: unable to load initial SID %s.\n", c->u.name); goto out; } } rc = 0; out: return rc; } int policydb_class_isvalid(struct policydb *p, unsigned int class) { if (!class || class > p->p_classes.nprim) return 0; return 1; } int policydb_role_isvalid(struct policydb *p, unsigned int role) { if (!role || role > p->p_roles.nprim) return 0; return 1; } int policydb_type_isvalid(struct policydb *p, unsigned int type) { if (!type || type > p->p_types.nprim) return 0; return 1; } /* * Return 1 if the fields in the security context * structure `c' are valid. Return 0 otherwise. */ int policydb_context_isvalid(struct policydb *p, struct context *c) { struct role_datum *role; struct user_datum *usrdatum; if (!c->role || c->role > p->p_roles.nprim) return 0; if (!c->user || c->user > p->p_users.nprim) return 0; if (!c->type || c->type > p->p_types.nprim) return 0; if (c->role != OBJECT_R_VAL) { /* * Role must be authorized for the type. */ role = p->role_val_to_struct[c->role - 1]; if (!ebitmap_get_bit(&role->types, c->type - 1)) /* role may not be associated with type */ return 0; /* * User must be authorized for the role. */ usrdatum = p->user_val_to_struct[c->user - 1]; if (!usrdatum) return 0; if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1)) /* user may not be associated with role */ return 0; } if (!mls_context_isvalid(p, c)) return 0; return 1; } /* * Read a MLS range structure from a policydb binary * representation file. */ static int mls_read_range_helper(struct mls_range *r, void *fp) { __le32 buf[2]; u32 items; int rc; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; rc = -EINVAL; items = le32_to_cpu(buf[0]); if (items > ARRAY_SIZE(buf)) { printk(KERN_ERR "SELinux: mls: range overflow\n"); goto out; } rc = next_entry(buf, fp, sizeof(u32) * items); if (rc) { printk(KERN_ERR "SELinux: mls: truncated range\n"); goto out; } r->level[0].sens = le32_to_cpu(buf[0]); if (items > 1) r->level[1].sens = le32_to_cpu(buf[1]); else r->level[1].sens = r->level[0].sens; rc = ebitmap_read(&r->level[0].cat, fp); if (rc) { printk(KERN_ERR "SELinux: mls: error reading low categories\n"); goto out; } if (items > 1) { rc = ebitmap_read(&r->level[1].cat, fp); if (rc) { printk(KERN_ERR "SELinux: mls: error reading high categories\n"); goto bad_high; } } else { rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat); if (rc) { printk(KERN_ERR "SELinux: mls: out of memory\n"); goto bad_high; } } return 0; bad_high: ebitmap_destroy(&r->level[0].cat); out: return rc; } /* * Read and validate a security context structure * from a policydb binary representation file. */ static int context_read_and_validate(struct context *c, struct policydb *p, void *fp) { __le32 buf[3]; int rc; rc = next_entry(buf, fp, sizeof buf); if (rc) { printk(KERN_ERR "SELinux: context truncated\n"); goto out; } c->user = le32_to_cpu(buf[0]); c->role = le32_to_cpu(buf[1]); c->type = le32_to_cpu(buf[2]); if (p->policyvers >= POLICYDB_VERSION_MLS) { rc = mls_read_range_helper(&c->range, fp); if (rc) { printk(KERN_ERR "SELinux: error reading MLS range of context\n"); goto out; } } rc = -EINVAL; if (!policydb_context_isvalid(p, c)) { printk(KERN_ERR "SELinux: invalid security context\n"); context_destroy(c); goto out; } rc = 0; out: return rc; } /* * The following *_read functions are used to * read the symbol data from a policy database * binary representation file. */ static int perm_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct perm_datum *perdatum; int rc; __le32 buf[2]; u32 len; rc = -ENOMEM; perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL); if (!perdatum) goto bad; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); perdatum->value = le32_to_cpu(buf[1]); rc = -ENOMEM; key = kmalloc(len + 1, GFP_KERNEL); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; rc = hashtab_insert(h, key, perdatum); if (rc) goto bad; return 0; bad: perm_destroy(key, perdatum, NULL); return rc; } static int common_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct common_datum *comdatum; __le32 buf[4]; u32 len, nel; int i, rc; rc = -ENOMEM; comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL); if (!comdatum) goto bad; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); comdatum->value = le32_to_cpu(buf[1]); rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE); if (rc) goto bad; comdatum->permissions.nprim = le32_to_cpu(buf[2]); nel = le32_to_cpu(buf[3]); rc = -ENOMEM; key = kmalloc(len + 1, GFP_KERNEL); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; for (i = 0; i < nel; i++) { rc = perm_read(p, comdatum->permissions.table, fp); if (rc) goto bad; } rc = hashtab_insert(h, key, comdatum); if (rc) goto bad; return 0; bad: common_destroy(key, comdatum, NULL); return rc; } static int read_cons_helper(struct constraint_node **nodep, int ncons, int allowxtarget, void *fp) { struct constraint_node *c, *lc; struct constraint_expr *e, *le; __le32 buf[3]; u32 nexpr; int rc, i, j, depth; lc = NULL; for (i = 0; i < ncons; i++) { c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; if (lc) lc->next = c; else *nodep = c; rc = next_entry(buf, fp, (sizeof(u32) * 2)); if (rc) return rc; c->permissions = le32_to_cpu(buf[0]); nexpr = le32_to_cpu(buf[1]); le = NULL; depth = -1; for (j = 0; j < nexpr; j++) { e = kzalloc(sizeof(*e), GFP_KERNEL); if (!e) return -ENOMEM; if (le) le->next = e; else c->expr = e; rc = next_entry(buf, fp, (sizeof(u32) * 3)); if (rc) return rc; e->expr_type = le32_to_cpu(buf[0]); e->attr = le32_to_cpu(buf[1]); e->op = le32_to_cpu(buf[2]); switch (e->expr_type) { case CEXPR_NOT: if (depth < 0) return -EINVAL; break; case CEXPR_AND: case CEXPR_OR: if (depth < 1) return -EINVAL; depth--; break; case CEXPR_ATTR: if (depth == (CEXPR_MAXDEPTH - 1)) return -EINVAL; depth++; break; case CEXPR_NAMES: if (!allowxtarget && (e->attr & CEXPR_XTARGET)) return -EINVAL; if (depth == (CEXPR_MAXDEPTH - 1)) return -EINVAL; depth++; rc = ebitmap_read(&e->names, fp); if (rc) return rc; break; default: return -EINVAL; } le = e; } if (depth != 0) return -EINVAL; lc = c; } return 0; } static int class_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct class_datum *cladatum; __le32 buf[6]; u32 len, len2, ncons, nel; int i, rc; rc = -ENOMEM; cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL); if (!cladatum) goto bad; rc = next_entry(buf, fp, sizeof(u32)*6); if (rc) goto bad; len = le32_to_cpu(buf[0]); len2 = le32_to_cpu(buf[1]); cladatum->value = le32_to_cpu(buf[2]); rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE); if (rc) goto bad; cladatum->permissions.nprim = le32_to_cpu(buf[3]); nel = le32_to_cpu(buf[4]); ncons = le32_to_cpu(buf[5]); rc = -ENOMEM; key = kmalloc(len + 1, GFP_KERNEL); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; if (len2) { rc = -ENOMEM; cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL); if (!cladatum->comkey) goto bad; rc = next_entry(cladatum->comkey, fp, len2); if (rc) goto bad; cladatum->comkey[len2] = '\0'; rc = -EINVAL; cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey); if (!cladatum->comdatum) { printk(KERN_ERR "SELinux: unknown common %s\n", cladatum->comkey); goto bad; } } for (i = 0; i < nel; i++) { rc = perm_read(p, cladatum->permissions.table, fp); if (rc) goto bad; } rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp); if (rc) goto bad; if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) { /* grab the validatetrans rules */ rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; ncons = le32_to_cpu(buf[0]); rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp); if (rc) goto bad; } if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) { rc = next_entry(buf, fp, sizeof(u32) * 3); if (rc) goto bad; cladatum->default_user = le32_to_cpu(buf[0]); cladatum->default_role = le32_to_cpu(buf[1]); cladatum->default_range = le32_to_cpu(buf[2]); } if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) { rc = next_entry(buf, fp, sizeof(u32) * 1); if (rc) goto bad; cladatum->default_type = le32_to_cpu(buf[0]); } rc = hashtab_insert(h, key, cladatum); if (rc) goto bad; return 0; bad: cls_destroy(key, cladatum, NULL); return rc; } static int role_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct role_datum *role; int rc, to_read = 2; __le32 buf[3]; u32 len; rc = -ENOMEM; role = kzalloc(sizeof(*role), GFP_KERNEL); if (!role) goto bad; if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) to_read = 3; rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); if (rc) goto bad; len = le32_to_cpu(buf[0]); role->value = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) role->bounds = le32_to_cpu(buf[2]); rc = -ENOMEM; key = kmalloc(len + 1, GFP_KERNEL); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; rc = ebitmap_read(&role->dominates, fp); if (rc) goto bad; rc = ebitmap_read(&role->types, fp); if (rc) goto bad; if (strcmp(key, OBJECT_R) == 0) { rc = -EINVAL; if (role->value != OBJECT_R_VAL) { printk(KERN_ERR "SELinux: Role %s has wrong value %d\n", OBJECT_R, role->value); goto bad; } rc = 0; goto bad; } rc = hashtab_insert(h, key, role); if (rc) goto bad; return 0; bad: role_destroy(key, role, NULL); return rc; } static int type_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct type_datum *typdatum; int rc, to_read = 3; __le32 buf[4]; u32 len; rc = -ENOMEM; typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL); if (!typdatum) goto bad; if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) to_read = 4; rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); if (rc) goto bad; len = le32_to_cpu(buf[0]); typdatum->value = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) { u32 prop = le32_to_cpu(buf[2]); if (prop & TYPEDATUM_PROPERTY_PRIMARY) typdatum->primary = 1; if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE) typdatum->attribute = 1; typdatum->bounds = le32_to_cpu(buf[3]); } else { typdatum->primary = le32_to_cpu(buf[2]); } rc = -ENOMEM; key = kmalloc(len + 1, GFP_KERNEL); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; rc = hashtab_insert(h, key, typdatum); if (rc) goto bad; return 0; bad: type_destroy(key, typdatum, NULL); return rc; } /* * Read a MLS level structure from a policydb binary * representation file. */ static int mls_read_level(struct mls_level *lp, void *fp) { __le32 buf[1]; int rc; memset(lp, 0, sizeof(*lp)); rc = next_entry(buf, fp, sizeof buf); if (rc) { printk(KERN_ERR "SELinux: mls: truncated level\n"); return rc; } lp->sens = le32_to_cpu(buf[0]); rc = ebitmap_read(&lp->cat, fp); if (rc) { printk(KERN_ERR "SELinux: mls: error reading level categories\n"); return rc; } return 0; } static int user_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct user_datum *usrdatum; int rc, to_read = 2; __le32 buf[3]; u32 len; rc = -ENOMEM; usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL); if (!usrdatum) goto bad; if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) to_read = 3; rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); if (rc) goto bad; len = le32_to_cpu(buf[0]); usrdatum->value = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) usrdatum->bounds = le32_to_cpu(buf[2]); rc = -ENOMEM; key = kmalloc(len + 1, GFP_KERNEL); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; rc = ebitmap_read(&usrdatum->roles, fp); if (rc) goto bad; if (p->policyvers >= POLICYDB_VERSION_MLS) { rc = mls_read_range_helper(&usrdatum->range, fp); if (rc) goto bad; rc = mls_read_level(&usrdatum->dfltlevel, fp); if (rc) goto bad; } rc = hashtab_insert(h, key, usrdatum); if (rc) goto bad; return 0; bad: user_destroy(key, usrdatum, NULL); return rc; } static int sens_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct level_datum *levdatum; int rc; __le32 buf[2]; u32 len; rc = -ENOMEM; levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC); if (!levdatum) goto bad; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); levdatum->isalias = le32_to_cpu(buf[1]); rc = -ENOMEM; key = kmalloc(len + 1, GFP_ATOMIC); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; rc = -ENOMEM; levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC); if (!levdatum->level) goto bad; rc = mls_read_level(levdatum->level, fp); if (rc) goto bad; rc = hashtab_insert(h, key, levdatum); if (rc) goto bad; return 0; bad: sens_destroy(key, levdatum, NULL); return rc; } static int cat_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = NULL; struct cat_datum *catdatum; int rc; __le32 buf[3]; u32 len; rc = -ENOMEM; catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC); if (!catdatum) goto bad; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); catdatum->value = le32_to_cpu(buf[1]); catdatum->isalias = le32_to_cpu(buf[2]); rc = -ENOMEM; key = kmalloc(len + 1, GFP_ATOMIC); if (!key) goto bad; rc = next_entry(key, fp, len); if (rc) goto bad; key[len] = '\0'; rc = hashtab_insert(h, key, catdatum); if (rc) goto bad; return 0; bad: cat_destroy(key, catdatum, NULL); return rc; } static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) = { common_read, class_read, role_read, type_read, user_read, cond_read_bool, sens_read, cat_read, }; static int user_bounds_sanity_check(void *key, void *datum, void *datap) { struct user_datum *upper, *user; struct policydb *p = datap; int depth = 0; upper = user = datum; while (upper->bounds) { struct ebitmap_node *node; unsigned long bit; if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { printk(KERN_ERR "SELinux: user %s: " "too deep or looped boundary", (char *) key); return -EINVAL; } upper = p->user_val_to_struct[upper->bounds - 1]; ebitmap_for_each_positive_bit(&user->roles, node, bit) { if (ebitmap_get_bit(&upper->roles, bit)) continue; printk(KERN_ERR "SELinux: boundary violated policy: " "user=%s role=%s bounds=%s\n", sym_name(p, SYM_USERS, user->value - 1), sym_name(p, SYM_ROLES, bit), sym_name(p, SYM_USERS, upper->value - 1)); return -EINVAL; } } return 0; } static int role_bounds_sanity_check(void *key, void *datum, void *datap) { struct role_datum *upper, *role; struct policydb *p = datap; int depth = 0; upper = role = datum; while (upper->bounds) { struct ebitmap_node *node; unsigned long bit; if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { printk(KERN_ERR "SELinux: role %s: " "too deep or looped bounds\n", (char *) key); return -EINVAL; } upper = p->role_val_to_struct[upper->bounds - 1]; ebitmap_for_each_positive_bit(&role->types, node, bit) { if (ebitmap_get_bit(&upper->types, bit)) continue; printk(KERN_ERR "SELinux: boundary violated policy: " "role=%s type=%s bounds=%s\n", sym_name(p, SYM_ROLES, role->value - 1), sym_name(p, SYM_TYPES, bit), sym_name(p, SYM_ROLES, upper->value - 1)); return -EINVAL; } } return 0; } static int type_bounds_sanity_check(void *key, void *datum, void *datap) { struct type_datum *upper; struct policydb *p = datap; int depth = 0; upper = datum; while (upper->bounds) { if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { printk(KERN_ERR "SELinux: type %s: " "too deep or looped boundary\n", (char *) key); return -EINVAL; } upper = flex_array_get_ptr(p->type_val_to_struct_array, upper->bounds - 1); BUG_ON(!upper); if (upper->attribute) { printk(KERN_ERR "SELinux: type %s: " "bounded by attribute %s", (char *) key, sym_name(p, SYM_TYPES, upper->value - 1)); return -EINVAL; } } return 0; } static int policydb_bounds_sanity_check(struct policydb *p) { int rc; if (p->policyvers < POLICYDB_VERSION_BOUNDARY) return 0; rc = hashtab_map(p->p_users.table, user_bounds_sanity_check, p); if (rc) return rc; rc = hashtab_map(p->p_roles.table, role_bounds_sanity_check, p); if (rc) return rc; rc = hashtab_map(p->p_types.table, type_bounds_sanity_check, p); if (rc) return rc; return 0; } u16 string_to_security_class(struct policydb *p, const char *name) { struct class_datum *cladatum; cladatum = hashtab_search(p->p_classes.table, name); if (!cladatum) return 0; return cladatum->value; } u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name) { struct class_datum *cladatum; struct perm_datum *perdatum = NULL; struct common_datum *comdatum; if (!tclass || tclass > p->p_classes.nprim) return 0; cladatum = p->class_val_to_struct[tclass-1]; comdatum = cladatum->comdatum; if (comdatum) perdatum = hashtab_search(comdatum->permissions.table, name); if (!perdatum) perdatum = hashtab_search(cladatum->permissions.table, name); if (!perdatum) return 0; return 1U << (perdatum->value-1); } static int range_read(struct policydb *p, void *fp) { struct range_trans *rt = NULL; struct mls_range *r = NULL; int i, rc; __le32 buf[2]; u32 nel; if (p->policyvers < POLICYDB_VERSION_MLS) return 0; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; nel = le32_to_cpu(buf[0]); for (i = 0; i < nel; i++) { rc = -ENOMEM; rt = kzalloc(sizeof(*rt), GFP_KERNEL); if (!rt) goto out; rc = next_entry(buf, fp, (sizeof(u32) * 2)); if (rc) goto out; rt->source_type = le32_to_cpu(buf[0]); rt->target_type = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; rt->target_class = le32_to_cpu(buf[0]); } else rt->target_class = p->process_class; rc = -EINVAL; if (!policydb_type_isvalid(p, rt->source_type) || !policydb_type_isvalid(p, rt->target_type) || !policydb_class_isvalid(p, rt->target_class)) goto out; rc = -ENOMEM; r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) goto out; rc = mls_read_range_helper(r, fp); if (rc) goto out; rc = -EINVAL; if (!mls_range_isvalid(p, r)) { printk(KERN_WARNING "SELinux: rangetrans: invalid range\n"); goto out; } rc = hashtab_insert(p->range_tr, rt, r); if (rc) goto out; rt = NULL; r = NULL; } hash_eval(p->range_tr, "rangetr"); rc = 0; out: kfree(rt); kfree(r); return rc; } static int filename_trans_read(struct policydb *p, void *fp) { struct filename_trans *ft; struct filename_trans_datum *otype; char *name; u32 nel, len; __le32 buf[4]; int rc, i; if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS) return 0; rc = next_entry(buf, fp, sizeof(u32)); if (rc) return rc; nel = le32_to_cpu(buf[0]); for (i = 0; i < nel; i++) { ft = NULL; otype = NULL; name = NULL; rc = -ENOMEM; ft = kzalloc(sizeof(*ft), GFP_KERNEL); if (!ft) goto out; rc = -ENOMEM; otype = kmalloc(sizeof(*otype), GFP_KERNEL); if (!otype) goto out; /* length of the path component string */ rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = -ENOMEM; name = kmalloc(len + 1, GFP_KERNEL); if (!name) goto out; ft->name = name; /* path component string */ rc = next_entry(name, fp, len); if (rc) goto out; name[len] = 0; rc = next_entry(buf, fp, sizeof(u32) * 4); if (rc) goto out; ft->stype = le32_to_cpu(buf[0]); ft->ttype = le32_to_cpu(buf[1]); ft->tclass = le32_to_cpu(buf[2]); otype->otype = le32_to_cpu(buf[3]); rc = ebitmap_set_bit(&p->filename_trans_ttypes, ft->ttype, 1); if (rc) goto out; rc = hashtab_insert(p->filename_trans, ft, otype); if (rc) { /* * Do not return -EEXIST to the caller, or the system * will not boot. */ if (rc != -EEXIST) goto out; /* But free memory to avoid memory leak. */ kfree(ft); kfree(name); kfree(otype); } } hash_eval(p->filename_trans, "filenametr"); return 0; out: kfree(ft); kfree(name); kfree(otype); return rc; } static int genfs_read(struct policydb *p, void *fp) { int i, j, rc; u32 nel, nel2, len, len2; __le32 buf[1]; struct ocontext *l, *c; struct ocontext *newc = NULL; struct genfs *genfs_p, *genfs; struct genfs *newgenfs = NULL; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; nel = le32_to_cpu(buf[0]); for (i = 0; i < nel; i++) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = -ENOMEM; newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL); if (!newgenfs) goto out; rc = -ENOMEM; newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL); if (!newgenfs->fstype) goto out; rc = next_entry(newgenfs->fstype, fp, len); if (rc) goto out; newgenfs->fstype[len] = 0; for (genfs_p = NULL, genfs = p->genfs; genfs; genfs_p = genfs, genfs = genfs->next) { rc = -EINVAL; if (strcmp(newgenfs->fstype, genfs->fstype) == 0) { printk(KERN_ERR "SELinux: dup genfs fstype %s\n", newgenfs->fstype); goto out; } if (strcmp(newgenfs->fstype, genfs->fstype) < 0) break; } newgenfs->next = genfs; if (genfs_p) genfs_p->next = newgenfs; else p->genfs = newgenfs; genfs = newgenfs; newgenfs = NULL; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; nel2 = le32_to_cpu(buf[0]); for (j = 0; j < nel2; j++) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = -ENOMEM; newc = kzalloc(sizeof(*newc), GFP_KERNEL); if (!newc) goto out; rc = -ENOMEM; newc->u.name = kmalloc(len + 1, GFP_KERNEL); if (!newc->u.name) goto out; rc = next_entry(newc->u.name, fp, len); if (rc) goto out; newc->u.name[len] = 0; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; newc->v.sclass = le32_to_cpu(buf[0]); rc = context_read_and_validate(&newc->context[0], p, fp); if (rc) goto out; for (l = NULL, c = genfs->head; c; l = c, c = c->next) { rc = -EINVAL; if (!strcmp(newc->u.name, c->u.name) && (!c->v.sclass || !newc->v.sclass || newc->v.sclass == c->v.sclass)) { printk(KERN_ERR "SELinux: dup genfs entry (%s,%s)\n", genfs->fstype, c->u.name); goto out; } len = strlen(newc->u.name); len2 = strlen(c->u.name); if (len > len2) break; } newc->next = c; if (l) l->next = newc; else genfs->head = newc; newc = NULL; } } rc = 0; out: if (newgenfs) kfree(newgenfs->fstype); kfree(newgenfs); ocontext_destroy(newc, OCON_FSUSE); return rc; } static int ocontext_read(struct policydb *p, struct policydb_compat_info *info, void *fp) { int i, j, rc; u32 nel, len; __le32 buf[3]; struct ocontext *l, *c; u32 nodebuf[8]; for (i = 0; i < info->ocon_num; i++) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; nel = le32_to_cpu(buf[0]); l = NULL; for (j = 0; j < nel; j++) { rc = -ENOMEM; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) goto out; if (l) l->next = c; else p->ocontexts[i] = c; l = c; switch (i) { case OCON_ISID: rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; c->sid[0] = le32_to_cpu(buf[0]); rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_FS: case OCON_NETIF: rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = -ENOMEM; c->u.name = kmalloc(len + 1, GFP_KERNEL); if (!c->u.name) goto out; rc = next_entry(c->u.name, fp, len); if (rc) goto out; c->u.name[len] = 0; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; rc = context_read_and_validate(&c->context[1], p, fp); if (rc) goto out; break; case OCON_PORT: rc = next_entry(buf, fp, sizeof(u32)*3); if (rc) goto out; c->u.port.protocol = le32_to_cpu(buf[0]); c->u.port.low_port = le32_to_cpu(buf[1]); c->u.port.high_port = le32_to_cpu(buf[2]); rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_NODE: rc = next_entry(nodebuf, fp, sizeof(u32) * 2); if (rc) goto out; c->u.node.addr = nodebuf[0]; /* network order */ c->u.node.mask = nodebuf[1]; /* network order */ rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_FSUSE: rc = next_entry(buf, fp, sizeof(u32)*2); if (rc) goto out; rc = -EINVAL; c->v.behavior = le32_to_cpu(buf[0]); if (c->v.behavior > SECURITY_FS_USE_NONE) goto out; rc = -ENOMEM; len = le32_to_cpu(buf[1]); c->u.name = kmalloc(len + 1, GFP_KERNEL); if (!c->u.name) goto out; rc = next_entry(c->u.name, fp, len); if (rc) goto out; c->u.name[len] = 0; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_NODE6: { int k; rc = next_entry(nodebuf, fp, sizeof(u32) * 8); if (rc) goto out; for (k = 0; k < 4; k++) c->u.node6.addr[k] = nodebuf[k]; for (k = 0; k < 4; k++) c->u.node6.mask[k] = nodebuf[k+4]; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; } } } } rc = 0; out: return rc; } /* * Read the configuration data from a policy database binary * representation file into a policy database structure. */ int policydb_read(struct policydb *p, void *fp) { struct role_allow *ra, *lra; struct role_trans *tr, *ltr; int i, j, rc; __le32 buf[4]; u32 len, nprim, nel; char *policydb_str; struct policydb_compat_info *info; rc = policydb_init(p); if (rc) return rc; /* Read the magic number and string length. */ rc = next_entry(buf, fp, sizeof(u32) * 2); if (rc) goto bad; rc = -EINVAL; if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) { printk(KERN_ERR "SELinux: policydb magic number 0x%x does " "not match expected magic number 0x%x\n", le32_to_cpu(buf[0]), POLICYDB_MAGIC); goto bad; } rc = -EINVAL; len = le32_to_cpu(buf[1]); if (len != strlen(POLICYDB_STRING)) { printk(KERN_ERR "SELinux: policydb string length %d does not " "match expected length %Zu\n", len, strlen(POLICYDB_STRING)); goto bad; } rc = -ENOMEM; policydb_str = kmalloc(len + 1, GFP_KERNEL); if (!policydb_str) { printk(KERN_ERR "SELinux: unable to allocate memory for policydb " "string of length %d\n", len); goto bad; } rc = next_entry(policydb_str, fp, len); if (rc) { printk(KERN_ERR "SELinux: truncated policydb string identifier\n"); kfree(policydb_str); goto bad; } rc = -EINVAL; policydb_str[len] = '\0'; if (strcmp(policydb_str, POLICYDB_STRING)) { printk(KERN_ERR "SELinux: policydb string %s does not match " "my string %s\n", policydb_str, POLICYDB_STRING); kfree(policydb_str); goto bad; } /* Done with policydb_str. */ kfree(policydb_str); policydb_str = NULL; /* Read the version and table sizes. */ rc = next_entry(buf, fp, sizeof(u32)*4); if (rc) goto bad; rc = -EINVAL; p->policyvers = le32_to_cpu(buf[0]); if (p->policyvers < POLICYDB_VERSION_MIN || p->policyvers > POLICYDB_VERSION_MAX) { printk(KERN_ERR "SELinux: policydb version %d does not match " "my version range %d-%d\n", le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); goto bad; } if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) { p->mls_enabled = 1; rc = -EINVAL; if (p->policyvers < POLICYDB_VERSION_MLS) { printk(KERN_ERR "SELinux: security policydb version %d " "(MLS) not backwards compatible\n", p->policyvers); goto bad; } } p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN); p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN); if (p->policyvers >= POLICYDB_VERSION_POLCAP) { rc = ebitmap_read(&p->policycaps, fp); if (rc) goto bad; } if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) { rc = ebitmap_read(&p->permissive_map, fp); if (rc) goto bad; } rc = -EINVAL; info = policydb_lookup_compat(p->policyvers); if (!info) { printk(KERN_ERR "SELinux: unable to find policy compat info " "for version %d\n", p->policyvers); goto bad; } rc = -EINVAL; if (le32_to_cpu(buf[2]) != info->sym_num || le32_to_cpu(buf[3]) != info->ocon_num) { printk(KERN_ERR "SELinux: policydb table sizes (%d,%d) do " "not match mine (%d,%d)\n", le32_to_cpu(buf[2]), le32_to_cpu(buf[3]), info->sym_num, info->ocon_num); goto bad; } for (i = 0; i < info->sym_num; i++) { rc = next_entry(buf, fp, sizeof(u32)*2); if (rc) goto bad; nprim = le32_to_cpu(buf[0]); nel = le32_to_cpu(buf[1]); for (j = 0; j < nel; j++) { rc = read_f[i](p, p->symtab[i].table, fp); if (rc) goto bad; } p->symtab[i].nprim = nprim; } rc = -EINVAL; p->process_class = string_to_security_class(p, "process"); if (!p->process_class) goto bad; rc = avtab_read(&p->te_avtab, fp, p); if (rc) goto bad; if (p->policyvers >= POLICYDB_VERSION_BOOL) { rc = cond_read_list(p, fp); if (rc) goto bad; } rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; nel = le32_to_cpu(buf[0]); ltr = NULL; for (i = 0; i < nel; i++) { rc = -ENOMEM; tr = kzalloc(sizeof(*tr), GFP_KERNEL); if (!tr) goto bad; if (ltr) ltr->next = tr; else p->role_tr = tr; rc = next_entry(buf, fp, sizeof(u32)*3); if (rc) goto bad; rc = -EINVAL; tr->role = le32_to_cpu(buf[0]); tr->type = le32_to_cpu(buf[1]); tr->new_role = le32_to_cpu(buf[2]); if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; tr->tclass = le32_to_cpu(buf[0]); } else tr->tclass = p->process_class; if (!policydb_role_isvalid(p, tr->role) || !policydb_type_isvalid(p, tr->type) || !policydb_class_isvalid(p, tr->tclass) || !policydb_role_isvalid(p, tr->new_role)) goto bad; ltr = tr; } rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; nel = le32_to_cpu(buf[0]); lra = NULL; for (i = 0; i < nel; i++) { rc = -ENOMEM; ra = kzalloc(sizeof(*ra), GFP_KERNEL); if (!ra) goto bad; if (lra) lra->next = ra; else p->role_allow = ra; rc = next_entry(buf, fp, sizeof(u32)*2); if (rc) goto bad; rc = -EINVAL; ra->role = le32_to_cpu(buf[0]); ra->new_role = le32_to_cpu(buf[1]); if (!policydb_role_isvalid(p, ra->role) || !policydb_role_isvalid(p, ra->new_role)) goto bad; lra = ra; } rc = filename_trans_read(p, fp); if (rc) goto bad; rc = policydb_index(p); if (rc) goto bad; rc = -EINVAL; p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition"); p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition"); if (!p->process_trans_perms) goto bad; rc = ocontext_read(p, info, fp); if (rc) goto bad; rc = genfs_read(p, fp); if (rc) goto bad; rc = range_read(p, fp); if (rc) goto bad; rc = -ENOMEM; p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap), p->p_types.nprim, GFP_KERNEL | __GFP_ZERO); if (!p->type_attr_map_array) goto bad; /* preallocate so we don't have to worry about the put ever failing */ rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim, GFP_KERNEL | __GFP_ZERO); if (rc) goto bad; for (i = 0; i < p->p_types.nprim; i++) { struct ebitmap *e = flex_array_get(p->type_attr_map_array, i); BUG_ON(!e); ebitmap_init(e); if (p->policyvers >= POLICYDB_VERSION_AVTAB) { rc = ebitmap_read(e, fp); if (rc) goto bad; } /* add the type itself as the degenerate case */ rc = ebitmap_set_bit(e, i, 1); if (rc) goto bad; } rc = policydb_bounds_sanity_check(p); if (rc) goto bad; rc = 0; out: return rc; bad: policydb_destroy(p); goto out; } /* * Write a MLS level structure to a policydb binary * representation file. */ static int mls_write_level(struct mls_level *l, void *fp) { __le32 buf[1]; int rc; buf[0] = cpu_to_le32(l->sens); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = ebitmap_write(&l->cat, fp); if (rc) return rc; return 0; } /* * Write a MLS range structure to a policydb binary * representation file. */ static int mls_write_range_helper(struct mls_range *r, void *fp) { __le32 buf[3]; size_t items; int rc, eq; eq = mls_level_eq(&r->level[1], &r->level[0]); if (eq) items = 2; else items = 3; buf[0] = cpu_to_le32(items-1); buf[1] = cpu_to_le32(r->level[0].sens); if (!eq) buf[2] = cpu_to_le32(r->level[1].sens); BUG_ON(items > (sizeof(buf)/sizeof(buf[0]))); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = ebitmap_write(&r->level[0].cat, fp); if (rc) return rc; if (!eq) { rc = ebitmap_write(&r->level[1].cat, fp); if (rc) return rc; } return 0; } static int sens_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct level_datum *levdatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; __le32 buf[2]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(levdatum->isalias); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = mls_write_level(levdatum->level, fp); if (rc) return rc; return 0; } static int cat_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct cat_datum *catdatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; __le32 buf[3]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(catdatum->value); buf[2] = cpu_to_le32(catdatum->isalias); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; return 0; } static int role_trans_write(struct policydb *p, void *fp) { struct role_trans *r = p->role_tr; struct role_trans *tr; u32 buf[3]; size_t nel; int rc; nel = 0; for (tr = r; tr; tr = tr->next) nel++; buf[0] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (tr = r; tr; tr = tr->next) { buf[0] = cpu_to_le32(tr->role); buf[1] = cpu_to_le32(tr->type); buf[2] = cpu_to_le32(tr->new_role); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) { buf[0] = cpu_to_le32(tr->tclass); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; } } return 0; } static int role_allow_write(struct role_allow *r, void *fp) { struct role_allow *ra; u32 buf[2]; size_t nel; int rc; nel = 0; for (ra = r; ra; ra = ra->next) nel++; buf[0] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (ra = r; ra; ra = ra->next) { buf[0] = cpu_to_le32(ra->role); buf[1] = cpu_to_le32(ra->new_role); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; } return 0; } /* * Write a security context structure * to a policydb binary representation file. */ static int context_write(struct policydb *p, struct context *c, void *fp) { int rc; __le32 buf[3]; buf[0] = cpu_to_le32(c->user); buf[1] = cpu_to_le32(c->role); buf[2] = cpu_to_le32(c->type); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; rc = mls_write_range_helper(&c->range, fp); if (rc) return rc; return 0; } /* * The following *_write functions are used to * write the symbol data to a policy database * binary representation file. */ static int perm_write(void *vkey, void *datum, void *fp) { char *key = vkey; struct perm_datum *perdatum = datum; __le32 buf[2]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(perdatum->value); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; return 0; } static int common_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct common_datum *comdatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; __le32 buf[4]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(comdatum->value); buf[2] = cpu_to_le32(comdatum->permissions.nprim); buf[3] = cpu_to_le32(comdatum->permissions.table->nel); rc = put_entry(buf, sizeof(u32), 4, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = hashtab_map(comdatum->permissions.table, perm_write, fp); if (rc) return rc; return 0; } static int write_cons_helper(struct policydb *p, struct constraint_node *node, void *fp) { struct constraint_node *c; struct constraint_expr *e; __le32 buf[3]; u32 nel; int rc; for (c = node; c; c = c->next) { nel = 0; for (e = c->expr; e; e = e->next) nel++; buf[0] = cpu_to_le32(c->permissions); buf[1] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; for (e = c->expr; e; e = e->next) { buf[0] = cpu_to_le32(e->expr_type); buf[1] = cpu_to_le32(e->attr); buf[2] = cpu_to_le32(e->op); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; switch (e->expr_type) { case CEXPR_NAMES: rc = ebitmap_write(&e->names, fp); if (rc) return rc; break; default: break; } } } return 0; } static int class_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct class_datum *cladatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; struct policydb *p = pd->p; struct constraint_node *c; __le32 buf[6]; u32 ncons; size_t len, len2; int rc; len = strlen(key); if (cladatum->comkey) len2 = strlen(cladatum->comkey); else len2 = 0; ncons = 0; for (c = cladatum->constraints; c; c = c->next) ncons++; buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(len2); buf[2] = cpu_to_le32(cladatum->value); buf[3] = cpu_to_le32(cladatum->permissions.nprim); if (cladatum->permissions.table) buf[4] = cpu_to_le32(cladatum->permissions.table->nel); else buf[4] = 0; buf[5] = cpu_to_le32(ncons); rc = put_entry(buf, sizeof(u32), 6, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; if (cladatum->comkey) { rc = put_entry(cladatum->comkey, 1, len2, fp); if (rc) return rc; } rc = hashtab_map(cladatum->permissions.table, perm_write, fp); if (rc) return rc; rc = write_cons_helper(p, cladatum->constraints, fp); if (rc) return rc; /* write out the validatetrans rule */ ncons = 0; for (c = cladatum->validatetrans; c; c = c->next) ncons++; buf[0] = cpu_to_le32(ncons); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = write_cons_helper(p, cladatum->validatetrans, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) { buf[0] = cpu_to_le32(cladatum->default_user); buf[1] = cpu_to_le32(cladatum->default_role); buf[2] = cpu_to_le32(cladatum->default_range); rc = put_entry(buf, sizeof(uint32_t), 3, fp); if (rc) return rc; } if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) { buf[0] = cpu_to_le32(cladatum->default_type); rc = put_entry(buf, sizeof(uint32_t), 1, fp); if (rc) return rc; } return 0; } static int role_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct role_datum *role = datum; struct policy_data *pd = ptr; void *fp = pd->fp; struct policydb *p = pd->p; __le32 buf[3]; size_t items, len; int rc; len = strlen(key); items = 0; buf[items++] = cpu_to_le32(len); buf[items++] = cpu_to_le32(role->value); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) buf[items++] = cpu_to_le32(role->bounds); BUG_ON(items > (sizeof(buf)/sizeof(buf[0]))); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = ebitmap_write(&role->dominates, fp); if (rc) return rc; rc = ebitmap_write(&role->types, fp); if (rc) return rc; return 0; } static int type_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct type_datum *typdatum = datum; struct policy_data *pd = ptr; struct policydb *p = pd->p; void *fp = pd->fp; __le32 buf[4]; int rc; size_t items, len; len = strlen(key); items = 0; buf[items++] = cpu_to_le32(len); buf[items++] = cpu_to_le32(typdatum->value); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) { u32 properties = 0; if (typdatum->primary) properties |= TYPEDATUM_PROPERTY_PRIMARY; if (typdatum->attribute) properties |= TYPEDATUM_PROPERTY_ATTRIBUTE; buf[items++] = cpu_to_le32(properties); buf[items++] = cpu_to_le32(typdatum->bounds); } else { buf[items++] = cpu_to_le32(typdatum->primary); } BUG_ON(items > (sizeof(buf) / sizeof(buf[0]))); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; return 0; } static int user_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct user_datum *usrdatum = datum; struct policy_data *pd = ptr; struct policydb *p = pd->p; void *fp = pd->fp; __le32 buf[3]; size_t items, len; int rc; len = strlen(key); items = 0; buf[items++] = cpu_to_le32(len); buf[items++] = cpu_to_le32(usrdatum->value); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) buf[items++] = cpu_to_le32(usrdatum->bounds); BUG_ON(items > (sizeof(buf) / sizeof(buf[0]))); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = ebitmap_write(&usrdatum->roles, fp); if (rc) return rc; rc = mls_write_range_helper(&usrdatum->range, fp); if (rc) return rc; rc = mls_write_level(&usrdatum->dfltlevel, fp); if (rc) return rc; return 0; } static int (*write_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_write, class_write, role_write, type_write, user_write, cond_write_bool, sens_write, cat_write, }; static int ocontext_write(struct policydb *p, struct policydb_compat_info *info, void *fp) { unsigned int i, j, rc; size_t nel, len; __le32 buf[3]; u32 nodebuf[8]; struct ocontext *c; for (i = 0; i < info->ocon_num; i++) { nel = 0; for (c = p->ocontexts[i]; c; c = c->next) nel++; buf[0] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (c = p->ocontexts[i]; c; c = c->next) { switch (i) { case OCON_ISID: buf[0] = cpu_to_le32(c->sid[0]); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_FS: case OCON_NETIF: len = strlen(c->u.name); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(c->u.name, 1, len, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; rc = context_write(p, &c->context[1], fp); if (rc) return rc; break; case OCON_PORT: buf[0] = cpu_to_le32(c->u.port.protocol); buf[1] = cpu_to_le32(c->u.port.low_port); buf[2] = cpu_to_le32(c->u.port.high_port); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_NODE: nodebuf[0] = c->u.node.addr; /* network order */ nodebuf[1] = c->u.node.mask; /* network order */ rc = put_entry(nodebuf, sizeof(u32), 2, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_FSUSE: buf[0] = cpu_to_le32(c->v.behavior); len = strlen(c->u.name); buf[1] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(c->u.name, 1, len, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_NODE6: for (j = 0; j < 4; j++) nodebuf[j] = c->u.node6.addr[j]; /* network order */ for (j = 0; j < 4; j++) nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */ rc = put_entry(nodebuf, sizeof(u32), 8, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; } } } return 0; } static int genfs_write(struct policydb *p, void *fp) { struct genfs *genfs; struct ocontext *c; size_t len; __le32 buf[1]; int rc; len = 0; for (genfs = p->genfs; genfs; genfs = genfs->next) len++; buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (genfs = p->genfs; genfs; genfs = genfs->next) { len = strlen(genfs->fstype); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(genfs->fstype, 1, len, fp); if (rc) return rc; len = 0; for (c = genfs->head; c; c = c->next) len++; buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (c = genfs->head; c; c = c->next) { len = strlen(c->u.name); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(c->u.name, 1, len, fp); if (rc) return rc; buf[0] = cpu_to_le32(c->v.sclass); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; } } return 0; } static int hashtab_cnt(void *key, void *data, void *ptr) { int *cnt = ptr; *cnt = *cnt + 1; return 0; } static int range_write_helper(void *key, void *data, void *ptr) { __le32 buf[2]; struct range_trans *rt = key; struct mls_range *r = data; struct policy_data *pd = ptr; void *fp = pd->fp; struct policydb *p = pd->p; int rc; buf[0] = cpu_to_le32(rt->source_type); buf[1] = cpu_to_le32(rt->target_type); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) { buf[0] = cpu_to_le32(rt->target_class); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; } rc = mls_write_range_helper(r, fp); if (rc) return rc; return 0; } static int range_write(struct policydb *p, void *fp) { size_t nel; __le32 buf[1]; int rc; struct policy_data pd; pd.p = p; pd.fp = fp; /* count the number of entries in the hashtab */ nel = 0; rc = hashtab_map(p->range_tr, hashtab_cnt, &nel); if (rc) return rc; buf[0] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; /* actually write all of the entries */ rc = hashtab_map(p->range_tr, range_write_helper, &pd); if (rc) return rc; return 0; } static int filename_write_helper(void *key, void *data, void *ptr) { __le32 buf[4]; struct filename_trans *ft = key; struct filename_trans_datum *otype = data; void *fp = ptr; int rc; u32 len; len = strlen(ft->name); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(ft->name, sizeof(char), len, fp); if (rc) return rc; buf[0] = cpu_to_le32(ft->stype); buf[1] = cpu_to_le32(ft->ttype); buf[2] = cpu_to_le32(ft->tclass); buf[3] = cpu_to_le32(otype->otype); rc = put_entry(buf, sizeof(u32), 4, fp); if (rc) return rc; return 0; } static int filename_trans_write(struct policydb *p, void *fp) { u32 nel; __le32 buf[1]; int rc; if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS) return 0; nel = 0; rc = hashtab_map(p->filename_trans, hashtab_cnt, &nel); if (rc) return rc; buf[0] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = hashtab_map(p->filename_trans, filename_write_helper, fp); if (rc) return rc; return 0; } /* * Write the configuration data in a policy database * structure to a policy database binary representation * file. */ int policydb_write(struct policydb *p, void *fp) { unsigned int i, num_syms; int rc; __le32 buf[4]; u32 config; size_t len; struct policydb_compat_info *info; /* * refuse to write policy older than compressed avtab * to simplify the writer. There are other tests dropped * since we assume this throughout the writer code. Be * careful if you ever try to remove this restriction */ if (p->policyvers < POLICYDB_VERSION_AVTAB) { printk(KERN_ERR "SELinux: refusing to write policy version %d." " Because it is less than version %d\n", p->policyvers, POLICYDB_VERSION_AVTAB); return -EINVAL; } config = 0; if (p->mls_enabled) config |= POLICYDB_CONFIG_MLS; if (p->reject_unknown) config |= REJECT_UNKNOWN; if (p->allow_unknown) config |= ALLOW_UNKNOWN; /* Write the magic number and string identifiers. */ buf[0] = cpu_to_le32(POLICYDB_MAGIC); len = strlen(POLICYDB_STRING); buf[1] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(POLICYDB_STRING, 1, len, fp); if (rc) return rc; /* Write the version, config, and table sizes. */ info = policydb_lookup_compat(p->policyvers); if (!info) { printk(KERN_ERR "SELinux: compatibility lookup failed for policy " "version %d", p->policyvers); return -EINVAL; } buf[0] = cpu_to_le32(p->policyvers); buf[1] = cpu_to_le32(config); buf[2] = cpu_to_le32(info->sym_num); buf[3] = cpu_to_le32(info->ocon_num); rc = put_entry(buf, sizeof(u32), 4, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_POLCAP) { rc = ebitmap_write(&p->policycaps, fp); if (rc) return rc; } if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) { rc = ebitmap_write(&p->permissive_map, fp); if (rc) return rc; } num_syms = info->sym_num; for (i = 0; i < num_syms; i++) { struct policy_data pd; pd.fp = fp; pd.p = p; buf[0] = cpu_to_le32(p->symtab[i].nprim); buf[1] = cpu_to_le32(p->symtab[i].table->nel); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = hashtab_map(p->symtab[i].table, write_f[i], &pd); if (rc) return rc; } rc = avtab_write(p, &p->te_avtab, fp); if (rc) return rc; rc = cond_write_list(p, p->cond_list, fp); if (rc) return rc; rc = role_trans_write(p, fp); if (rc) return rc; rc = role_allow_write(p->role_allow, fp); if (rc) return rc; rc = filename_trans_write(p, fp); if (rc) return rc; rc = ocontext_write(p, info, fp); if (rc) return rc; rc = genfs_write(p, fp); if (rc) return rc; rc = range_write(p, fp); if (rc) return rc; for (i = 0; i < p->p_types.nprim; i++) { struct ebitmap *e = flex_array_get(p->type_attr_map_array, i); BUG_ON(!e); rc = ebitmap_write(e, fp); if (rc) return rc; } return 0; }