/****************************************************************************** * * Copyright(c) 2009-2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * *****************************************************************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include "core.h" #include "wifi.h" #include "usb.h" #include "base.h" #include "ps.h" #define REALTEK_USB_VENQT_READ 0xC0 #define REALTEK_USB_VENQT_WRITE 0x40 #define REALTEK_USB_VENQT_CMD_REQ 0x05 #define REALTEK_USB_VENQT_CMD_IDX 0x00 #define REALTEK_USB_VENQT_MAX_BUF_SIZE 254 static void usbctrl_async_callback(struct urb *urb) { if (urb) { /* free dr */ kfree(urb->setup_packet); /* free databuf */ kfree(urb->transfer_buffer); } } static int _usbctrl_vendorreq_async_write(struct usb_device *udev, u8 request, u16 value, u16 index, void *pdata, u16 len) { int rc; unsigned int pipe; u8 reqtype; struct usb_ctrlrequest *dr; struct urb *urb; const u16 databuf_maxlen = REALTEK_USB_VENQT_MAX_BUF_SIZE; u8 *databuf; if (WARN_ON_ONCE(len > databuf_maxlen)) len = databuf_maxlen; pipe = usb_sndctrlpipe(udev, 0); /* write_out */ reqtype = REALTEK_USB_VENQT_WRITE; dr = kmalloc(sizeof(*dr), GFP_ATOMIC); if (!dr) return -ENOMEM; databuf = kmalloc(databuf_maxlen, GFP_ATOMIC); if (!databuf) { kfree(dr); return -ENOMEM; } urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { kfree(databuf); kfree(dr); return -ENOMEM; } dr->bRequestType = reqtype; dr->bRequest = request; dr->wValue = cpu_to_le16(value); dr->wIndex = cpu_to_le16(index); dr->wLength = cpu_to_le16(len); memcpy(databuf, pdata, len); usb_fill_control_urb(urb, udev, pipe, (unsigned char *)dr, databuf, len, usbctrl_async_callback, NULL); rc = usb_submit_urb(urb, GFP_ATOMIC); if (rc < 0) { kfree(databuf); kfree(dr); } usb_free_urb(urb); return rc; } static int _usbctrl_vendorreq_sync_read(struct usb_device *udev, u8 request, u16 value, u16 index, void *pdata, u16 len) { unsigned int pipe; int status; u8 reqtype; pipe = usb_rcvctrlpipe(udev, 0); /* read_in */ reqtype = REALTEK_USB_VENQT_READ; status = usb_control_msg(udev, pipe, request, reqtype, value, index, pdata, len, 0); /* max. timeout */ if (status < 0) pr_err("reg 0x%x, usbctrl_vendorreq TimeOut! status:0x%x value=0x%x\n", value, status, *(u32 *)pdata); return status; } static u32 _usb_read_sync(struct rtl_priv *rtlpriv, u32 addr, u16 len) { struct device *dev = rtlpriv->io.dev; struct usb_device *udev = to_usb_device(dev); u8 request; u16 wvalue; u16 index; __le32 *data; unsigned long flags; spin_lock_irqsave(&rtlpriv->locks.usb_lock, flags); if (++rtlpriv->usb_data_index >= RTL_USB_MAX_RX_COUNT) rtlpriv->usb_data_index = 0; data = &rtlpriv->usb_data[rtlpriv->usb_data_index]; spin_unlock_irqrestore(&rtlpriv->locks.usb_lock, flags); request = REALTEK_USB_VENQT_CMD_REQ; index = REALTEK_USB_VENQT_CMD_IDX; /* n/a */ wvalue = (u16)addr; _usbctrl_vendorreq_sync_read(udev, request, wvalue, index, data, len); return le32_to_cpu(*data); } static u8 _usb_read8_sync(struct rtl_priv *rtlpriv, u32 addr) { return (u8)_usb_read_sync(rtlpriv, addr, 1); } static u16 _usb_read16_sync(struct rtl_priv *rtlpriv, u32 addr) { return (u16)_usb_read_sync(rtlpriv, addr, 2); } static u32 _usb_read32_sync(struct rtl_priv *rtlpriv, u32 addr) { return _usb_read_sync(rtlpriv, addr, 4); } static void _usb_write_async(struct usb_device *udev, u32 addr, u32 val, u16 len) { u8 request; u16 wvalue; u16 index; u32 data; request = REALTEK_USB_VENQT_CMD_REQ; index = REALTEK_USB_VENQT_CMD_IDX; /* n/a */ wvalue = (u16)(addr&0x0000ffff); data = val; _usbctrl_vendorreq_async_write(udev, request, wvalue, index, &data, len); } static void _usb_write8_async(struct rtl_priv *rtlpriv, u32 addr, u8 val) { struct device *dev = rtlpriv->io.dev; _usb_write_async(to_usb_device(dev), addr, val, 1); } static void _usb_write16_async(struct rtl_priv *rtlpriv, u32 addr, u16 val) { struct device *dev = rtlpriv->io.dev; _usb_write_async(to_usb_device(dev), addr, val, 2); } static void _usb_write32_async(struct rtl_priv *rtlpriv, u32 addr, u32 val) { struct device *dev = rtlpriv->io.dev; _usb_write_async(to_usb_device(dev), addr, val, 4); } static void _rtl_usb_io_handler_init(struct device *dev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->io.dev = dev; mutex_init(&rtlpriv->io.bb_mutex); rtlpriv->io.write8_async = _usb_write8_async; rtlpriv->io.write16_async = _usb_write16_async; rtlpriv->io.write32_async = _usb_write32_async; rtlpriv->io.read8_sync = _usb_read8_sync; rtlpriv->io.read16_sync = _usb_read16_sync; rtlpriv->io.read32_sync = _usb_read32_sync; } static void _rtl_usb_io_handler_release(struct ieee80211_hw *hw) { struct rtl_priv __maybe_unused *rtlpriv = rtl_priv(hw); mutex_destroy(&rtlpriv->io.bb_mutex); } /** * * Default aggregation handler. Do nothing and just return the oldest skb. */ static struct sk_buff *_none_usb_tx_aggregate_hdl(struct ieee80211_hw *hw, struct sk_buff_head *list) { return skb_dequeue(list); } #define IS_HIGH_SPEED_USB(udev) \ ((USB_SPEED_HIGH == (udev)->speed) ? true : false) static int _rtl_usb_init_tx(struct ieee80211_hw *hw) { u32 i; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); rtlusb->max_bulk_out_size = IS_HIGH_SPEED_USB(rtlusb->udev) ? USB_HIGH_SPEED_BULK_SIZE : USB_FULL_SPEED_BULK_SIZE; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("USB Max Bulk-out Size=%d\n", rtlusb->max_bulk_out_size)); for (i = 0; i < __RTL_TXQ_NUM; i++) { u32 ep_num = rtlusb->ep_map.ep_mapping[i]; if (!ep_num) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Invalid endpoint map setting!\n")); return -EINVAL; } } rtlusb->usb_tx_post_hdl = rtlpriv->cfg->usb_interface_cfg->usb_tx_post_hdl; rtlusb->usb_tx_cleanup = rtlpriv->cfg->usb_interface_cfg->usb_tx_cleanup; rtlusb->usb_tx_aggregate_hdl = (rtlpriv->cfg->usb_interface_cfg->usb_tx_aggregate_hdl) ? rtlpriv->cfg->usb_interface_cfg->usb_tx_aggregate_hdl : &_none_usb_tx_aggregate_hdl; init_usb_anchor(&rtlusb->tx_submitted); for (i = 0; i < RTL_USB_MAX_EP_NUM; i++) { skb_queue_head_init(&rtlusb->tx_skb_queue[i]); init_usb_anchor(&rtlusb->tx_pending[i]); } return 0; } static int _rtl_usb_init_rx(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw); struct rtl_usb *rtlusb = rtl_usbdev(usb_priv); rtlusb->rx_max_size = rtlpriv->cfg->usb_interface_cfg->rx_max_size; rtlusb->rx_urb_num = rtlpriv->cfg->usb_interface_cfg->rx_urb_num; rtlusb->in_ep = rtlpriv->cfg->usb_interface_cfg->in_ep_num; rtlusb->usb_rx_hdl = rtlpriv->cfg->usb_interface_cfg->usb_rx_hdl; rtlusb->usb_rx_segregate_hdl = rtlpriv->cfg->usb_interface_cfg->usb_rx_segregate_hdl; pr_info("rx_max_size %d, rx_urb_num %d, in_ep %d\n", rtlusb->rx_max_size, rtlusb->rx_urb_num, rtlusb->in_ep); init_usb_anchor(&rtlusb->rx_submitted); return 0; } static int _rtl_usb_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw); struct rtl_usb *rtlusb = rtl_usbdev(usb_priv); int err; u8 epidx; struct usb_interface *usb_intf = rtlusb->intf; u8 epnums = usb_intf->cur_altsetting->desc.bNumEndpoints; rtlusb->out_ep_nums = rtlusb->in_ep_nums = 0; for (epidx = 0; epidx < epnums; epidx++) { struct usb_endpoint_descriptor *pep_desc; pep_desc = &usb_intf->cur_altsetting->endpoint[epidx].desc; if (usb_endpoint_dir_in(pep_desc)) rtlusb->in_ep_nums++; else if (usb_endpoint_dir_out(pep_desc)) rtlusb->out_ep_nums++; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("USB EP(0x%02x), MaxPacketSize=%d ,Interval=%d.\n", pep_desc->bEndpointAddress, pep_desc->wMaxPacketSize, pep_desc->bInterval)); } if (rtlusb->in_ep_nums < rtlpriv->cfg->usb_interface_cfg->in_ep_num) return -EINVAL ; /* usb endpoint mapping */ err = rtlpriv->cfg->usb_interface_cfg->usb_endpoint_mapping(hw); rtlusb->usb_mq_to_hwq = rtlpriv->cfg->usb_interface_cfg->usb_mq_to_hwq; _rtl_usb_init_tx(hw); _rtl_usb_init_rx(hw); return err; } static int _rtl_usb_init_sw(struct ieee80211_hw *hw) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); rtlhal->hw = hw; ppsc->inactiveps = false; ppsc->leisure_ps = false; ppsc->fwctrl_lps = false; ppsc->reg_fwctrl_lps = 3; ppsc->reg_max_lps_awakeintvl = 5; ppsc->fwctrl_psmode = FW_PS_DTIM_MODE; /* IBSS */ mac->beacon_interval = 100; /* AMPDU */ mac->min_space_cfg = 0; mac->max_mss_density = 0; /* set sane AMPDU defaults */ mac->current_ampdu_density = 7; mac->current_ampdu_factor = 3; /* QOS */ rtlusb->acm_method = eAcmWay2_SW; /* IRQ */ /* HIMR - turn all on */ rtlusb->irq_mask[0] = 0xFFFFFFFF; /* HIMR_EX - turn all on */ rtlusb->irq_mask[1] = 0xFFFFFFFF; rtlusb->disableHWSM = true; return 0; } #define __RADIO_TAP_SIZE_RSV 32 static void _rtl_rx_completed(struct urb *urb); static struct sk_buff *_rtl_prep_rx_urb(struct ieee80211_hw *hw, struct rtl_usb *rtlusb, struct urb *urb, gfp_t gfp_mask) { struct sk_buff *skb; struct rtl_priv *rtlpriv = rtl_priv(hw); skb = __dev_alloc_skb((rtlusb->rx_max_size + __RADIO_TAP_SIZE_RSV), gfp_mask); if (!skb) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("Failed to __dev_alloc_skb!!\n")) return ERR_PTR(-ENOMEM); } /* reserve some space for mac80211's radiotap */ skb_reserve(skb, __RADIO_TAP_SIZE_RSV); usb_fill_bulk_urb(urb, rtlusb->udev, usb_rcvbulkpipe(rtlusb->udev, rtlusb->in_ep), skb->data, min(skb_tailroom(skb), (int)rtlusb->rx_max_size), _rtl_rx_completed, skb); _rtl_install_trx_info(rtlusb, skb, rtlusb->in_ep); return skb; } #undef __RADIO_TAP_SIZE_RSV static void _rtl_usb_rx_process_agg(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 *rxdesc = skb->data; struct ieee80211_hdr *hdr; bool unicast = false; __le16 fc; struct ieee80211_rx_status rx_status = {0}; struct rtl_stats stats = { .signal = 0, .noise = -98, .rate = 0, }; skb_pull(skb, RTL_RX_DESC_SIZE); rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, rxdesc, skb); skb_pull(skb, (stats.rx_drvinfo_size + stats.rx_bufshift)); hdr = (struct ieee80211_hdr *)(skb->data); fc = hdr->frame_control; if (!stats.crc) { memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); if (is_broadcast_ether_addr(hdr->addr1)) { /*TODO*/; } else if (is_multicast_ether_addr(hdr->addr1)) { /*TODO*/ } else { unicast = true; rtlpriv->stats.rxbytesunicast += skb->len; } rtl_is_special_data(hw, skb, false); if (ieee80211_is_data(fc)) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX); if (unicast) rtlpriv->link_info.num_rx_inperiod++; } } } static void _rtl_usb_rx_process_noagg(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 *rxdesc = skb->data; struct ieee80211_hdr *hdr; bool unicast = false; __le16 fc; struct ieee80211_rx_status rx_status = {0}; struct rtl_stats stats = { .signal = 0, .noise = -98, .rate = 0, }; skb_pull(skb, RTL_RX_DESC_SIZE); rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, rxdesc, skb); skb_pull(skb, (stats.rx_drvinfo_size + stats.rx_bufshift)); hdr = (struct ieee80211_hdr *)(skb->data); fc = hdr->frame_control; if (!stats.crc) { memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); if (is_broadcast_ether_addr(hdr->addr1)) { /*TODO*/; } else if (is_multicast_ether_addr(hdr->addr1)) { /*TODO*/ } else { unicast = true; rtlpriv->stats.rxbytesunicast += skb->len; } rtl_is_special_data(hw, skb, false); if (ieee80211_is_data(fc)) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX); if (unicast) rtlpriv->link_info.num_rx_inperiod++; } if (likely(rtl_action_proc(hw, skb, false))) { struct sk_buff *uskb = NULL; u8 *pdata; uskb = dev_alloc_skb(skb->len + 128); if (uskb) { /* drop packet on allocation failure */ memcpy(IEEE80211_SKB_RXCB(uskb), &rx_status, sizeof(rx_status)); pdata = (u8 *)skb_put(uskb, skb->len); memcpy(pdata, skb->data, skb->len); ieee80211_rx_irqsafe(hw, uskb); } dev_kfree_skb_any(skb); } else { dev_kfree_skb_any(skb); } } } static void _rtl_rx_pre_process(struct ieee80211_hw *hw, struct sk_buff *skb) { struct sk_buff *_skb; struct sk_buff_head rx_queue; struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); skb_queue_head_init(&rx_queue); if (rtlusb->usb_rx_segregate_hdl) rtlusb->usb_rx_segregate_hdl(hw, skb, &rx_queue); WARN_ON(skb_queue_empty(&rx_queue)); while (!skb_queue_empty(&rx_queue)) { _skb = skb_dequeue(&rx_queue); _rtl_usb_rx_process_agg(hw, _skb); ieee80211_rx_irqsafe(hw, _skb); } } static void _rtl_rx_completed(struct urb *_urb) { struct sk_buff *skb = (struct sk_buff *)_urb->context; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl_usb *rtlusb = (struct rtl_usb *)info->rate_driver_data[0]; struct ieee80211_hw *hw = usb_get_intfdata(rtlusb->intf); struct rtl_priv *rtlpriv = rtl_priv(hw); int err = 0; if (unlikely(IS_USB_STOP(rtlusb))) goto free; if (likely(0 == _urb->status)) { /* If this code were moved to work queue, would CPU * utilization be improved? NOTE: We shall allocate another skb * and reuse the original one. */ skb_put(skb, _urb->actual_length); if (likely(!rtlusb->usb_rx_segregate_hdl)) { struct sk_buff *_skb; _rtl_usb_rx_process_noagg(hw, skb); _skb = _rtl_prep_rx_urb(hw, rtlusb, _urb, GFP_ATOMIC); if (IS_ERR(_skb)) { err = PTR_ERR(_skb); RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("Can't allocate skb for bulk IN!\n")); return; } skb = _skb; } else{ /* TO DO */ _rtl_rx_pre_process(hw, skb); pr_err("rx agg not supported\n"); } goto resubmit; } switch (_urb->status) { /* disconnect */ case -ENOENT: case -ECONNRESET: case -ENODEV: case -ESHUTDOWN: goto free; default: break; } resubmit: skb_reset_tail_pointer(skb); skb_trim(skb, 0); usb_anchor_urb(_urb, &rtlusb->rx_submitted); err = usb_submit_urb(_urb, GFP_ATOMIC); if (unlikely(err)) { usb_unanchor_urb(_urb); goto free; } return; free: dev_kfree_skb_irq(skb); } static int _rtl_usb_receive(struct ieee80211_hw *hw) { struct urb *urb; struct sk_buff *skb; int err; int i; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); WARN_ON(0 == rtlusb->rx_urb_num); /* 1600 == 1514 + max WLAN header + rtk info */ WARN_ON(rtlusb->rx_max_size < 1600); for (i = 0; i < rtlusb->rx_urb_num; i++) { err = -ENOMEM; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("Failed to alloc URB!!\n")) goto err_out; } skb = _rtl_prep_rx_urb(hw, rtlusb, urb, GFP_KERNEL); if (IS_ERR(skb)) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("Failed to prep_rx_urb!!\n")) err = PTR_ERR(skb); goto err_out; } usb_anchor_urb(urb, &rtlusb->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) goto err_out; usb_free_urb(urb); } return 0; err_out: usb_kill_anchored_urbs(&rtlusb->rx_submitted); return err; } static int rtl_usb_start(struct ieee80211_hw *hw) { int err; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); err = rtlpriv->cfg->ops->hw_init(hw); rtl_init_rx_config(hw); /* Enable software */ SET_USB_START(rtlusb); /* should after adapter start and interrupt enable. */ set_hal_start(rtlhal); /* Start bulk IN */ _rtl_usb_receive(hw); return err; } /** * * */ /*======================= tx =========================================*/ static void rtl_usb_cleanup(struct ieee80211_hw *hw) { u32 i; struct sk_buff *_skb; struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); struct ieee80211_tx_info *txinfo; SET_USB_STOP(rtlusb); /* clean up rx stuff. */ usb_kill_anchored_urbs(&rtlusb->rx_submitted); /* clean up tx stuff */ for (i = 0; i < RTL_USB_MAX_EP_NUM; i++) { while ((_skb = skb_dequeue(&rtlusb->tx_skb_queue[i]))) { rtlusb->usb_tx_cleanup(hw, _skb); txinfo = IEEE80211_SKB_CB(_skb); ieee80211_tx_info_clear_status(txinfo); txinfo->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(hw, _skb); } usb_kill_anchored_urbs(&rtlusb->tx_pending[i]); } usb_kill_anchored_urbs(&rtlusb->tx_submitted); } /** * * We may add some struct into struct rtl_usb later. Do deinit here. * */ static void rtl_usb_deinit(struct ieee80211_hw *hw) { rtl_usb_cleanup(hw); } static void rtl_usb_stop(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); /* should after adapter start and interrupt enable. */ set_hal_stop(rtlhal); /* Enable software */ SET_USB_STOP(rtlusb); rtl_usb_deinit(hw); rtlpriv->cfg->ops->hw_disable(hw); } static void _rtl_submit_tx_urb(struct ieee80211_hw *hw, struct urb *_urb) { int err; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); usb_anchor_urb(_urb, &rtlusb->tx_submitted); err = usb_submit_urb(_urb, GFP_ATOMIC); if (err < 0) { struct sk_buff *skb; RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("Failed to submit urb.\n")); usb_unanchor_urb(_urb); skb = (struct sk_buff *)_urb->context; kfree_skb(skb); } usb_free_urb(_urb); } static int _usb_tx_post(struct ieee80211_hw *hw, struct urb *urb, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); struct ieee80211_tx_info *txinfo; rtlusb->usb_tx_post_hdl(hw, urb, skb); skb_pull(skb, RTL_TX_HEADER_SIZE); txinfo = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(txinfo); txinfo->flags |= IEEE80211_TX_STAT_ACK; if (urb->status) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("Urb has error status 0x%X\n", urb->status)); goto out; } /* TODO: statistics */ out: ieee80211_tx_status_irqsafe(hw, skb); return urb->status; } static void _rtl_tx_complete(struct urb *urb) { struct sk_buff *skb = (struct sk_buff *)urb->context; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl_usb *rtlusb = (struct rtl_usb *)info->rate_driver_data[0]; struct ieee80211_hw *hw = usb_get_intfdata(rtlusb->intf); int err; if (unlikely(IS_USB_STOP(rtlusb))) return; err = _usb_tx_post(hw, urb, skb); if (err) { /* Ignore error and keep issuiing other urbs */ return; } } static struct urb *_rtl_usb_tx_urb_setup(struct ieee80211_hw *hw, struct sk_buff *skb, u32 ep_num) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); struct urb *_urb; WARN_ON(NULL == skb); _urb = usb_alloc_urb(0, GFP_ATOMIC); if (!_urb) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("Can't allocate URB for bulk out!\n")); kfree_skb(skb); return NULL; } _rtl_install_trx_info(rtlusb, skb, ep_num); usb_fill_bulk_urb(_urb, rtlusb->udev, usb_sndbulkpipe(rtlusb->udev, ep_num), skb->data, skb->len, _rtl_tx_complete, skb); _urb->transfer_flags |= URB_ZERO_PACKET; return _urb; } static void _rtl_usb_transmit(struct ieee80211_hw *hw, struct sk_buff *skb, enum rtl_txq qnum) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); u32 ep_num; struct urb *_urb = NULL; struct sk_buff *_skb = NULL; struct sk_buff_head *skb_list; struct usb_anchor *urb_list; WARN_ON(NULL == rtlusb->usb_tx_aggregate_hdl); if (unlikely(IS_USB_STOP(rtlusb))) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, ("USB device is stopping...\n")); kfree_skb(skb); return; } ep_num = rtlusb->ep_map.ep_mapping[qnum]; skb_list = &rtlusb->tx_skb_queue[ep_num]; _skb = skb; _urb = _rtl_usb_tx_urb_setup(hw, _skb, ep_num); if (unlikely(!_urb)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Can't allocate urb. Drop skb!\n")); kfree_skb(skb); return; } urb_list = &rtlusb->tx_pending[ep_num]; _rtl_submit_tx_urb(hw, _urb); } static void _rtl_usb_tx_preprocess(struct ieee80211_hw *hw, struct sk_buff *skb, u16 hw_queue) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl_tx_desc *pdesc = NULL; struct rtl_tcb_desc tcb_desc; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data); __le16 fc = hdr->frame_control; u8 *pda_addr = hdr->addr1; /* ssn */ u8 *qc = NULL; u8 tid = 0; u16 seq_number = 0; memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc)); if (ieee80211_is_auth(fc)) { RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, ("MAC80211_LINKING\n")); rtl_ips_nic_on(hw); } if (rtlpriv->psc.sw_ps_enabled) { if (ieee80211_is_data(fc) && !ieee80211_is_nullfunc(fc) && !ieee80211_has_pm(fc)) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); } rtl_action_proc(hw, skb, true); if (is_multicast_ether_addr(pda_addr)) rtlpriv->stats.txbytesmulticast += skb->len; else if (is_broadcast_ether_addr(pda_addr)) rtlpriv->stats.txbytesbroadcast += skb->len; else rtlpriv->stats.txbytesunicast += skb->len; if (ieee80211_is_data_qos(fc)) { qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK; seq_number = (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4; seq_number += 1; seq_number <<= 4; } rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc, info, skb, hw_queue, &tcb_desc); if (!ieee80211_has_morefrags(hdr->frame_control)) { if (qc) mac->tids[tid].seq_number = seq_number; } if (ieee80211_is_data(fc)) rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX); } static int rtl_usb_tx(struct ieee80211_hw *hw, struct sk_buff *skb, struct rtl_tcb_desc *dummy) { struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data); __le16 fc = hdr->frame_control; u16 hw_queue; if (unlikely(is_hal_stop(rtlhal))) goto err_free; hw_queue = rtlusb->usb_mq_to_hwq(fc, skb_get_queue_mapping(skb)); _rtl_usb_tx_preprocess(hw, skb, hw_queue); _rtl_usb_transmit(hw, skb, hw_queue); return NETDEV_TX_OK; err_free: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static bool rtl_usb_tx_chk_waitq_insert(struct ieee80211_hw *hw, struct sk_buff *skb) { return false; } static struct rtl_intf_ops rtl_usb_ops = { .adapter_start = rtl_usb_start, .adapter_stop = rtl_usb_stop, .adapter_tx = rtl_usb_tx, .waitq_insert = rtl_usb_tx_chk_waitq_insert, }; int __devinit rtl_usb_probe(struct usb_interface *intf, const struct usb_device_id *id, struct rtl_hal_cfg *rtl_hal_cfg) { int err; struct ieee80211_hw *hw = NULL; struct rtl_priv *rtlpriv = NULL; struct usb_device *udev; struct rtl_usb_priv *usb_priv; hw = ieee80211_alloc_hw(sizeof(struct rtl_priv) + sizeof(struct rtl_usb_priv), &rtl_ops); if (!hw) { RT_ASSERT(false, ("%s : ieee80211 alloc failed\n", __func__)); return -ENOMEM; } rtlpriv = hw->priv; rtlpriv->usb_data = kzalloc(RTL_USB_MAX_RX_COUNT * sizeof(u32), GFP_KERNEL); if (!rtlpriv->usb_data) return -ENOMEM; /* this spin lock must be initialized early */ spin_lock_init(&rtlpriv->locks.usb_lock); rtlpriv->usb_data_index = 0; SET_IEEE80211_DEV(hw, &intf->dev); udev = interface_to_usbdev(intf); usb_get_dev(udev); usb_priv = rtl_usbpriv(hw); memset(usb_priv, 0, sizeof(*usb_priv)); usb_priv->dev.intf = intf; usb_priv->dev.udev = udev; usb_set_intfdata(intf, hw); /* init cfg & intf_ops */ rtlpriv->rtlhal.interface = INTF_USB; rtlpriv->cfg = rtl_hal_cfg; rtlpriv->intf_ops = &rtl_usb_ops; rtl_dbgp_flag_init(hw); /* Init IO handler */ _rtl_usb_io_handler_init(&udev->dev, hw); rtlpriv->cfg->ops->read_chip_version(hw); /*like read eeprom and so on */ rtlpriv->cfg->ops->read_eeprom_info(hw); if (rtlpriv->cfg->ops->init_sw_vars(hw)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Can't init_sw_vars.\n")); goto error_out; } rtlpriv->cfg->ops->init_sw_leds(hw); err = _rtl_usb_init(hw); err = _rtl_usb_init_sw(hw); /* Init mac80211 sw */ err = rtl_init_core(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Can't allocate sw for mac80211.\n")); goto error_out; } /*init rfkill */ /* rtl_init_rfkill(hw); */ err = ieee80211_register_hw(hw); if (err) { RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, ("Can't register mac80211 hw.\n")); goto error_out; } else { rtlpriv->mac80211.mac80211_registered = 1; } set_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status); return 0; error_out: rtl_deinit_core(hw); _rtl_usb_io_handler_release(hw); ieee80211_free_hw(hw); usb_put_dev(udev); return -ENODEV; } EXPORT_SYMBOL(rtl_usb_probe); void rtl_usb_disconnect(struct usb_interface *intf) { struct ieee80211_hw *hw = usb_get_intfdata(intf); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); if (unlikely(!rtlpriv)) return; /*ieee80211_unregister_hw will call ops_stop */ if (rtlmac->mac80211_registered == 1) { ieee80211_unregister_hw(hw); rtlmac->mac80211_registered = 0; } else { rtl_deinit_deferred_work(hw); rtlpriv->intf_ops->adapter_stop(hw); } /*deinit rfkill */ /* rtl_deinit_rfkill(hw); */ rtl_usb_deinit(hw); rtl_deinit_core(hw); kfree(rtlpriv->usb_data); rtlpriv->cfg->ops->deinit_sw_leds(hw); rtlpriv->cfg->ops->deinit_sw_vars(hw); _rtl_usb_io_handler_release(hw); usb_put_dev(rtlusb->udev); usb_set_intfdata(intf, NULL); ieee80211_free_hw(hw); } EXPORT_SYMBOL(rtl_usb_disconnect); int rtl_usb_suspend(struct usb_interface *pusb_intf, pm_message_t message) { return 0; } EXPORT_SYMBOL(rtl_usb_suspend); int rtl_usb_resume(struct usb_interface *pusb_intf) { return 0; } EXPORT_SYMBOL(rtl_usb_resume);