// // Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions // // Copyright (C) 2016 Linaro Ltd // Copyright (C) 2019-2024 Google LLC // // Authors: Ard Biesheuvel // Eric Biggers // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License version 2 as // published by the Free Software Foundation. // // Derived from the x86 version: // // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions // // Copyright (c) 2013, Intel Corporation // // Authors: // Erdinc Ozturk // Vinodh Gopal // James Guilford // Tim Chen // // This software is available to you under a choice of one of two // licenses. You may choose to be licensed under the terms of the GNU // General Public License (GPL) Version 2, available from the file // COPYING in the main directory of this source tree, or the // OpenIB.org BSD license below: // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // * Neither the name of the Intel Corporation nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // // THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Reference paper titled "Fast CRC Computation for Generic // Polynomials Using PCLMULQDQ Instruction" // URL: http://www.intel.com/content/dam/www/public/us/en/documents // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf // #include #include .text .arch armv8-a+crypto init_crc .req w0 buf .req x1 len .req x2 fold_consts_ptr .req x5 fold_consts .req v10 t3 .req v17 t4 .req v18 t5 .req v19 t6 .req v20 t7 .req v21 t8 .req v22 perm .req v27 .macro pmull16x64_p64, a16, b64, c64 pmull2 \c64\().1q, \a16\().2d, \b64\().2d pmull \b64\().1q, \a16\().1d, \b64\().1d .endm /* * Pairwise long polynomial multiplication of two 16-bit values * * { w0, w1 }, { y0, y1 } * * by two 64-bit values * * { x0, x1, x2, x3, x4, x5, x6, x7 }, { z0, z1, z2, z3, z4, z5, z6, z7 } * * where each vector element is a byte, ordered from least to most * significant. * * This can be implemented using 8x8 long polynomial multiplication, by * reorganizing the input so that each pairwise 8x8 multiplication * produces one of the terms from the decomposition below, and * combining the results of each rank and shifting them into place. * * Rank * 0 w0*x0 ^ | y0*z0 ^ * 1 (w0*x1 ^ w1*x0) << 8 ^ | (y0*z1 ^ y1*z0) << 8 ^ * 2 (w0*x2 ^ w1*x1) << 16 ^ | (y0*z2 ^ y1*z1) << 16 ^ * 3 (w0*x3 ^ w1*x2) << 24 ^ | (y0*z3 ^ y1*z2) << 24 ^ * 4 (w0*x4 ^ w1*x3) << 32 ^ | (y0*z4 ^ y1*z3) << 32 ^ * 5 (w0*x5 ^ w1*x4) << 40 ^ | (y0*z5 ^ y1*z4) << 40 ^ * 6 (w0*x6 ^ w1*x5) << 48 ^ | (y0*z6 ^ y1*z5) << 48 ^ * 7 (w0*x7 ^ w1*x6) << 56 ^ | (y0*z7 ^ y1*z6) << 56 ^ * 8 w1*x7 << 64 | y1*z7 << 64 * * The inputs can be reorganized into * * { w0, w0, w0, w0, y0, y0, y0, y0 }, { w1, w1, w1, w1, y1, y1, y1, y1 } * { x0, x2, x4, x6, z0, z2, z4, z6 }, { x1, x3, x5, x7, z1, z3, z5, z7 } * * and after performing 8x8->16 bit long polynomial multiplication of * each of the halves of the first vector with those of the second one, * we obtain the following four vectors of 16-bit elements: * * a := { w0*x0, w0*x2, w0*x4, w0*x6 }, { y0*z0, y0*z2, y0*z4, y0*z6 } * b := { w0*x1, w0*x3, w0*x5, w0*x7 }, { y0*z1, y0*z3, y0*z5, y0*z7 } * c := { w1*x0, w1*x2, w1*x4, w1*x6 }, { y1*z0, y1*z2, y1*z4, y1*z6 } * d := { w1*x1, w1*x3, w1*x5, w1*x7 }, { y1*z1, y1*z3, y1*z5, y1*z7 } * * Results b and c can be XORed together, as the vector elements have * matching ranks. Then, the final XOR (*) can be pulled forward, and * applied between the halves of each of the remaining three vectors, * which are then shifted into place, and combined to produce two * 80-bit results. * * (*) NOTE: the 16x64 bit polynomial multiply below is not equivalent * to the 64x64 bit one above, but XOR'ing the outputs together will * produce the expected result, and this is sufficient in the context of * this algorithm. */ .macro pmull16x64_p8, a16, b64, c64 ext t7.16b, \b64\().16b, \b64\().16b, #1 tbl t5.16b, {\a16\().16b}, perm.16b uzp1 t7.16b, \b64\().16b, t7.16b bl __pmull_p8_16x64 ext \b64\().16b, t4.16b, t4.16b, #15 eor \c64\().16b, t8.16b, t5.16b .endm SYM_FUNC_START_LOCAL(__pmull_p8_16x64) ext t6.16b, t5.16b, t5.16b, #8 pmull t3.8h, t7.8b, t5.8b pmull t4.8h, t7.8b, t6.8b pmull2 t5.8h, t7.16b, t5.16b pmull2 t6.8h, t7.16b, t6.16b ext t8.16b, t3.16b, t3.16b, #8 eor t4.16b, t4.16b, t6.16b ext t7.16b, t5.16b, t5.16b, #8 ext t6.16b, t4.16b, t4.16b, #8 eor t8.8b, t8.8b, t3.8b eor t5.8b, t5.8b, t7.8b eor t4.8b, t4.8b, t6.8b ext t5.16b, t5.16b, t5.16b, #14 ret SYM_FUNC_END(__pmull_p8_16x64) // Fold reg1, reg2 into the next 32 data bytes, storing the result back // into reg1, reg2. .macro fold_32_bytes, p, reg1, reg2 ldp q11, q12, [buf], #0x20 pmull16x64_\p fold_consts, \reg1, v8 CPU_LE( rev64 v11.16b, v11.16b ) CPU_LE( rev64 v12.16b, v12.16b ) pmull16x64_\p fold_consts, \reg2, v9 CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 ) CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) eor \reg1\().16b, \reg1\().16b, v8.16b eor \reg2\().16b, \reg2\().16b, v9.16b eor \reg1\().16b, \reg1\().16b, v11.16b eor \reg2\().16b, \reg2\().16b, v12.16b .endm // Fold src_reg into dst_reg, optionally loading the next fold constants .macro fold_16_bytes, p, src_reg, dst_reg, load_next_consts pmull16x64_\p fold_consts, \src_reg, v8 .ifnb \load_next_consts ld1 {fold_consts.2d}, [fold_consts_ptr], #16 .endif eor \dst_reg\().16b, \dst_reg\().16b, v8.16b eor \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b .endm .macro crc_t10dif_pmull, p // For sizes less than 256 bytes, we can't fold 128 bytes at a time. cmp len, #256 b.lt .Lless_than_256_bytes_\@ adr_l fold_consts_ptr, .Lfold_across_128_bytes_consts // Load the first 128 data bytes. Byte swapping is necessary to make // the bit order match the polynomial coefficient order. ldp q0, q1, [buf] ldp q2, q3, [buf, #0x20] ldp q4, q5, [buf, #0x40] ldp q6, q7, [buf, #0x60] add buf, buf, #0x80 CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( rev64 v1.16b, v1.16b ) CPU_LE( rev64 v2.16b, v2.16b ) CPU_LE( rev64 v3.16b, v3.16b ) CPU_LE( rev64 v4.16b, v4.16b ) CPU_LE( rev64 v5.16b, v5.16b ) CPU_LE( rev64 v6.16b, v6.16b ) CPU_LE( rev64 v7.16b, v7.16b ) CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 ) CPU_LE( ext v3.16b, v3.16b, v3.16b, #8 ) CPU_LE( ext v4.16b, v4.16b, v4.16b, #8 ) CPU_LE( ext v5.16b, v5.16b, v5.16b, #8 ) CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) // XOR the first 16 data *bits* with the initial CRC value. movi v8.16b, #0 mov v8.h[7], init_crc eor v0.16b, v0.16b, v8.16b // Load the constants for folding across 128 bytes. ld1 {fold_consts.2d}, [fold_consts_ptr] // Subtract 128 for the 128 data bytes just consumed. Subtract another // 128 to simplify the termination condition of the following loop. sub len, len, #256 // While >= 128 data bytes remain (not counting v0-v7), fold the 128 // bytes v0-v7 into them, storing the result back into v0-v7. .Lfold_128_bytes_loop_\@: fold_32_bytes \p, v0, v1 fold_32_bytes \p, v2, v3 fold_32_bytes \p, v4, v5 fold_32_bytes \p, v6, v7 subs len, len, #128 b.ge .Lfold_128_bytes_loop_\@ // Now fold the 112 bytes in v0-v6 into the 16 bytes in v7. // Fold across 64 bytes. add fold_consts_ptr, fold_consts_ptr, #16 ld1 {fold_consts.2d}, [fold_consts_ptr], #16 fold_16_bytes \p, v0, v4 fold_16_bytes \p, v1, v5 fold_16_bytes \p, v2, v6 fold_16_bytes \p, v3, v7, 1 // Fold across 32 bytes. fold_16_bytes \p, v4, v6 fold_16_bytes \p, v5, v7, 1 // Fold across 16 bytes. fold_16_bytes \p, v6, v7 // Add 128 to get the correct number of data bytes remaining in 0...127 // (not counting v7), following the previous extra subtraction by 128. // Then subtract 16 to simplify the termination condition of the // following loop. adds len, len, #(128-16) // While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7 // into them, storing the result back into v7. b.lt .Lfold_16_bytes_loop_done_\@ .Lfold_16_bytes_loop_\@: pmull16x64_\p fold_consts, v7, v8 eor v7.16b, v7.16b, v8.16b ldr q0, [buf], #16 CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) eor v7.16b, v7.16b, v0.16b subs len, len, #16 b.ge .Lfold_16_bytes_loop_\@ .Lfold_16_bytes_loop_done_\@: // Add 16 to get the correct number of data bytes remaining in 0...15 // (not counting v7), following the previous extra subtraction by 16. adds len, len, #16 b.eq .Lreduce_final_16_bytes_\@ .Lhandle_partial_segment_\@: // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first // 16 bytes are in v7 and the rest are the remaining data in 'buf'. To // do this without needing a fold constant for each possible 'len', // redivide the bytes into a first chunk of 'len' bytes and a second // chunk of 16 bytes, then fold the first chunk into the second. // v0 = last 16 original data bytes add buf, buf, len ldr q0, [buf, #-16] CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) // v1 = high order part of second chunk: v7 left-shifted by 'len' bytes. adr_l x4, .Lbyteshift_table + 16 sub x4, x4, len ld1 {v2.16b}, [x4] tbl v1.16b, {v7.16b}, v2.16b // v3 = first chunk: v7 right-shifted by '16-len' bytes. movi v3.16b, #0x80 eor v2.16b, v2.16b, v3.16b tbl v3.16b, {v7.16b}, v2.16b // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes. sshr v2.16b, v2.16b, #7 // v2 = second chunk: 'len' bytes from v0 (low-order bytes), // then '16-len' bytes from v1 (high-order bytes). bsl v2.16b, v1.16b, v0.16b // Fold the first chunk into the second chunk, storing the result in v7. pmull16x64_\p fold_consts, v3, v0 eor v7.16b, v3.16b, v0.16b eor v7.16b, v7.16b, v2.16b b .Lreduce_final_16_bytes_\@ .Lless_than_256_bytes_\@: // Checksumming a buffer of length 16...255 bytes adr_l fold_consts_ptr, .Lfold_across_16_bytes_consts // Load the first 16 data bytes. ldr q7, [buf], #0x10 CPU_LE( rev64 v7.16b, v7.16b ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) // XOR the first 16 data *bits* with the initial CRC value. movi v0.16b, #0 mov v0.h[7], init_crc eor v7.16b, v7.16b, v0.16b // Load the fold-across-16-bytes constants. ld1 {fold_consts.2d}, [fold_consts_ptr], #16 cmp len, #16 b.eq .Lreduce_final_16_bytes_\@ // len == 16 subs len, len, #32 b.ge .Lfold_16_bytes_loop_\@ // 32 <= len <= 255 add len, len, #16 b .Lhandle_partial_segment_\@ // 17 <= len <= 31 .Lreduce_final_16_bytes_\@: .endm // // u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len); // // Assumes len >= 16. // SYM_FUNC_START(crc_t10dif_pmull_p8) frame_push 1 // Compose { 0,0,0,0, 8,8,8,8, 1,1,1,1, 9,9,9,9 } movi perm.4h, #8, lsl #8 orr perm.2s, #1, lsl #16 orr perm.2s, #1, lsl #24 zip1 perm.16b, perm.16b, perm.16b zip1 perm.16b, perm.16b, perm.16b crc_t10dif_pmull p8 CPU_LE( rev64 v7.16b, v7.16b ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) str q7, [x3] frame_pop ret SYM_FUNC_END(crc_t10dif_pmull_p8) .align 5 // // u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len); // // Assumes len >= 16. // SYM_FUNC_START(crc_t10dif_pmull_p64) crc_t10dif_pmull p64 // Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC. movi v2.16b, #0 // init zero register // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. ld1 {fold_consts.2d}, [fold_consts_ptr], #16 // Fold the high 64 bits into the low 64 bits, while also multiplying by // x^64. This produces a 128-bit value congruent to x^64 * M(x) and // whose low 48 bits are 0. ext v0.16b, v2.16b, v7.16b, #8 pmull2 v7.1q, v7.2d, fold_consts.2d // high bits * x^48 * (x^80 mod G(x)) eor v0.16b, v0.16b, v7.16b // + low bits * x^64 // Fold the high 32 bits into the low 96 bits. This produces a 96-bit // value congruent to x^64 * M(x) and whose low 48 bits are 0. ext v1.16b, v0.16b, v2.16b, #12 // extract high 32 bits mov v0.s[3], v2.s[0] // zero high 32 bits pmull v1.1q, v1.1d, fold_consts.1d // high 32 bits * x^48 * (x^48 mod G(x)) eor v0.16b, v0.16b, v1.16b // + low bits // Load G(x) and floor(x^48 / G(x)). ld1 {fold_consts.2d}, [fold_consts_ptr] // Use Barrett reduction to compute the final CRC value. pmull2 v1.1q, v0.2d, fold_consts.2d // high 32 bits * floor(x^48 / G(x)) ushr v1.2d, v1.2d, #32 // /= x^32 pmull v1.1q, v1.1d, fold_consts.1d // *= G(x) ushr v0.2d, v0.2d, #48 eor v0.16b, v0.16b, v1.16b // + low 16 nonzero bits // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0. umov w0, v0.h[0] ret SYM_FUNC_END(crc_t10dif_pmull_p64) .section ".rodata", "a" .align 4 // Fold constants precomputed from the polynomial 0x18bb7 // G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 .Lfold_across_128_bytes_consts: .quad 0x0000000000006123 // x^(8*128) mod G(x) .quad 0x0000000000002295 // x^(8*128+64) mod G(x) // .Lfold_across_64_bytes_consts: .quad 0x0000000000001069 // x^(4*128) mod G(x) .quad 0x000000000000dd31 // x^(4*128+64) mod G(x) // .Lfold_across_32_bytes_consts: .quad 0x000000000000857d // x^(2*128) mod G(x) .quad 0x0000000000007acc // x^(2*128+64) mod G(x) .Lfold_across_16_bytes_consts: .quad 0x000000000000a010 // x^(1*128) mod G(x) .quad 0x0000000000001faa // x^(1*128+64) mod G(x) // .Lfinal_fold_consts: .quad 0x1368000000000000 // x^48 * (x^48 mod G(x)) .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x)) // .Lbarrett_reduction_consts: .quad 0x0000000000018bb7 // G(x) .quad 0x00000001f65a57f8 // floor(x^48 / G(x)) // For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - // len] is the index vector to shift left by 'len' bytes, and is also {0x80, // ..., 0x80} XOR the index vector to shift right by '16 - len' bytes. .Lbyteshift_table: .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0