/* SPDX-License-Identifier: GPL-2.0-only */ /* * Based on arch/arm/include/asm/memory.h * * Copyright (C) 2000-2002 Russell King * Copyright (C) 2012 ARM Ltd. * * Note: this file should not be included by non-asm/.h files */ #ifndef __ASM_MEMORY_H #define __ASM_MEMORY_H #include #include #include /* * Size of the PCI I/O space. This must remain a power of two so that * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. */ #define PCI_IO_SIZE SZ_16M /* * VMEMMAP_SIZE - allows the whole linear region to be covered by * a struct page array * * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE * needs to cover the memory region from the beginning of the 52-bit * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to * keep a constant PAGE_OFFSET and "fallback" to using the higher end * of the VMEMMAP where 52-bit support is not available in hardware. */ #define VMEMMAP_RANGE (_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) #define VMEMMAP_SIZE ((VMEMMAP_RANGE >> PAGE_SHIFT) * sizeof(struct page)) /* * PAGE_OFFSET - the virtual address of the start of the linear map, at the * start of the TTBR1 address space. * PAGE_END - the end of the linear map, where all other kernel mappings begin. * KIMAGE_VADDR - the virtual address of the start of the kernel image. * VA_BITS - the maximum number of bits for virtual addresses. */ #define VA_BITS (CONFIG_ARM64_VA_BITS) #define _PAGE_OFFSET(va) (-(UL(1) << (va))) #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) #define KIMAGE_VADDR (MODULES_END) #define MODULES_END (MODULES_VADDR + MODULES_VSIZE) #define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) #define MODULES_VSIZE (SZ_2G) #define VMEMMAP_START (VMEMMAP_END - VMEMMAP_SIZE) #define VMEMMAP_END (-UL(SZ_1G)) #define PCI_IO_START (VMEMMAP_END + SZ_8M) #define PCI_IO_END (PCI_IO_START + PCI_IO_SIZE) #define FIXADDR_TOP (-UL(SZ_8M)) #if VA_BITS > 48 #ifdef CONFIG_ARM64_16K_PAGES #define VA_BITS_MIN (47) #else #define VA_BITS_MIN (48) #endif #else #define VA_BITS_MIN (VA_BITS) #endif #define _PAGE_END(va) (-(UL(1) << ((va) - 1))) #define KERNEL_START _text #define KERNEL_END _end /* * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the * kernel virtual address space for storing the shadow memory respectively. * * The mapping between a virtual memory address and its corresponding shadow * memory address is defined based on the formula: * * shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET * * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of * the shadow memory region. * * Based on this mapping, we define two constants: * * KASAN_SHADOW_START: the start of the shadow memory region; * KASAN_SHADOW_END: the end of the shadow memory region. * * KASAN_SHADOW_END is defined first as the shadow address that corresponds to * the upper bound of possible virtual kernel memory addresses UL(1) << 64 * according to the mapping formula. * * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow * memory start must map to the lowest possible kernel virtual memory address * and thus it depends on the actual bitness of the address space. * * As KASAN inserts redzones between stack variables, this increases the stack * memory usage significantly. Thus, we double the (minimum) stack size. */ #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET) #define _KASAN_SHADOW_START(va) (KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT))) #define KASAN_SHADOW_START _KASAN_SHADOW_START(vabits_actual) #define PAGE_END KASAN_SHADOW_START #define KASAN_THREAD_SHIFT 1 #else #define KASAN_THREAD_SHIFT 0 #define PAGE_END (_PAGE_END(VA_BITS_MIN)) #endif /* CONFIG_KASAN */ #define PHYSMEM_END __pa(PAGE_END - 1) #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) /* * VMAP'd stacks are allocated at page granularity, so we must ensure that such * stacks are a multiple of page size. */ #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) #define THREAD_SHIFT PAGE_SHIFT #else #define THREAD_SHIFT MIN_THREAD_SHIFT #endif #if THREAD_SHIFT >= PAGE_SHIFT #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) #endif #define THREAD_SIZE (UL(1) << THREAD_SHIFT) /* * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry * assembly. */ #ifdef CONFIG_VMAP_STACK #define THREAD_ALIGN (2 * THREAD_SIZE) #else #define THREAD_ALIGN THREAD_SIZE #endif #define IRQ_STACK_SIZE THREAD_SIZE #define OVERFLOW_STACK_SIZE SZ_4K /* * With the minimum frame size of [x29, x30], exactly half the combined * sizes of the hyp and overflow stacks is the maximum size needed to * save the unwinded stacktrace; plus an additional entry to delimit the * end. */ #define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long)) /* * Alignment of kernel segments (e.g. .text, .data). * * 4 KB granule: 16 level 3 entries, with contiguous bit * 16 KB granule: 4 level 3 entries, without contiguous bit * 64 KB granule: 1 level 3 entry */ #define SEGMENT_ALIGN SZ_64K /* * Memory types available. * * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note * that protection_map[] only contains MT_NORMAL attributes. */ #define MT_NORMAL 0 #define MT_NORMAL_TAGGED 1 #define MT_NORMAL_NC 2 #define MT_DEVICE_nGnRnE 3 #define MT_DEVICE_nGnRE 4 /* * Memory types for Stage-2 translation */ #define MT_S2_NORMAL 0xf #define MT_S2_NORMAL_NC 0x5 #define MT_S2_DEVICE_nGnRE 0x1 /* * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 * Stage-2 enforces Normal-WB and Device-nGnRE */ #define MT_S2_FWB_NORMAL 6 #define MT_S2_FWB_NORMAL_NC 5 #define MT_S2_FWB_DEVICE_nGnRE 1 #ifdef CONFIG_ARM64_4K_PAGES #define IOREMAP_MAX_ORDER (PUD_SHIFT) #else #define IOREMAP_MAX_ORDER (PMD_SHIFT) #endif /* * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated * until link time. */ #define RESERVED_SWAPPER_OFFSET (PAGE_SIZE) /* * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated * until link time. */ #define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE) #ifndef __ASSEMBLY__ #include #include #include #include #include #include #include #include static inline u64 __pure read_tcr(void) { u64 tcr; // read_sysreg() uses asm volatile, so avoid it here asm("mrs %0, tcr_el1" : "=r"(tcr)); return tcr; } #if VA_BITS > 48 // For reasons of #include hell, we can't use TCR_T1SZ_OFFSET/TCR_T1SZ_MASK here #define vabits_actual (64 - ((read_tcr() >> 16) & 63)) #else #define vabits_actual ((u64)VA_BITS) #endif extern s64 memstart_addr; /* PHYS_OFFSET - the physical address of the start of memory. */ #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) /* the offset between the kernel virtual and physical mappings */ extern u64 kimage_voffset; static inline unsigned long kaslr_offset(void) { return (u64)&_text - KIMAGE_VADDR; } #ifdef CONFIG_RANDOMIZE_BASE void kaslr_init(void); static inline bool kaslr_enabled(void) { extern bool __kaslr_is_enabled; return __kaslr_is_enabled; } #else static inline void kaslr_init(void) { } static inline bool kaslr_enabled(void) { return false; } #endif /* * Allow all memory at the discovery stage. We will clip it later. */ #define MIN_MEMBLOCK_ADDR 0 #define MAX_MEMBLOCK_ADDR U64_MAX /* * PFNs are used to describe any physical page; this means * PFN 0 == physical address 0. * * This is the PFN of the first RAM page in the kernel * direct-mapped view. We assume this is the first page * of RAM in the mem_map as well. */ #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) /* * When dealing with data aborts, watchpoints, or instruction traps we may end * up with a tagged userland pointer. Clear the tag to get a sane pointer to * pass on to access_ok(), for instance. */ #define __untagged_addr(addr) \ ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) #define untagged_addr(addr) ({ \ u64 __addr = (__force u64)(addr); \ __addr &= __untagged_addr(__addr); \ (__force __typeof__(addr))__addr; \ }) #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) #define __tag_shifted(tag) ((u64)(tag) << 56) #define __tag_reset(addr) __untagged_addr(addr) #define __tag_get(addr) (__u8)((u64)(addr) >> 56) #else #define __tag_shifted(tag) 0UL #define __tag_reset(addr) (addr) #define __tag_get(addr) 0 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ static inline const void *__tag_set(const void *addr, u8 tag) { u64 __addr = (u64)addr & ~__tag_shifted(0xff); return (const void *)(__addr | __tag_shifted(tag)); } #ifdef CONFIG_KASAN_HW_TAGS #define arch_enable_tag_checks_sync() mte_enable_kernel_sync() #define arch_enable_tag_checks_async() mte_enable_kernel_async() #define arch_enable_tag_checks_asymm() mte_enable_kernel_asymm() #define arch_suppress_tag_checks_start() mte_enable_tco() #define arch_suppress_tag_checks_stop() mte_disable_tco() #define arch_force_async_tag_fault() mte_check_tfsr_exit() #define arch_get_random_tag() mte_get_random_tag() #define arch_get_mem_tag(addr) mte_get_mem_tag(addr) #define arch_set_mem_tag_range(addr, size, tag, init) \ mte_set_mem_tag_range((addr), (size), (tag), (init)) #endif /* CONFIG_KASAN_HW_TAGS */ /* * Physical vs virtual RAM address space conversion. These are * private definitions which should NOT be used outside memory.h * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. */ /* * Check whether an arbitrary address is within the linear map, which * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the * kernel's TTBR1 address range. */ #define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET)) #define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET) #define __kimg_to_phys(addr) ((addr) - kimage_voffset) #define __virt_to_phys_nodebug(x) ({ \ phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ }) #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) #ifdef CONFIG_DEBUG_VIRTUAL extern phys_addr_t __virt_to_phys(unsigned long x); extern phys_addr_t __phys_addr_symbol(unsigned long x); #else #define __virt_to_phys(x) __virt_to_phys_nodebug(x) #define __phys_addr_symbol(x) __pa_symbol_nodebug(x) #endif /* CONFIG_DEBUG_VIRTUAL */ #define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) /* * Note: Drivers should NOT use these. They are the wrong * translation for translating DMA addresses. Use the driver * DMA support - see dma-mapping.h. */ #define virt_to_phys virt_to_phys static inline phys_addr_t virt_to_phys(const volatile void *x) { return __virt_to_phys((unsigned long)(x)); } #define phys_to_virt phys_to_virt static inline void *phys_to_virt(phys_addr_t x) { return (void *)(__phys_to_virt(x)); } /* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */ #include static inline unsigned long virt_to_pfn(const void *kaddr) { return __phys_to_pfn(virt_to_phys(kaddr)); } /* * Drivers should NOT use these either. */ #define __pa(x) __virt_to_phys((unsigned long)(x)) #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) /* * virt_to_page(x) convert a _valid_ virtual address to struct page * * virt_addr_valid(x) indicates whether a virtual address is valid */ #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) #if defined(CONFIG_DEBUG_VIRTUAL) #define page_to_virt(x) ({ \ __typeof__(x) __page = x; \ void *__addr = __va(page_to_phys(__page)); \ (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ }) #define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) #else #define page_to_virt(x) ({ \ __typeof__(x) __page = x; \ u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ }) #define virt_to_page(x) ({ \ u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ (struct page *)__addr; \ }) #endif /* CONFIG_DEBUG_VIRTUAL */ #define virt_addr_valid(addr) ({ \ __typeof__(addr) __addr = __tag_reset(addr); \ __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \ }) void dump_mem_limit(void); #endif /* !ASSEMBLY */ /* * Given that the GIC architecture permits ITS implementations that can only be * configured with a LPI table address once, GICv3 systems with many CPUs may * end up reserving a lot of different regions after a kexec for their LPI * tables (one per CPU), as we are forced to reuse the same memory after kexec * (and thus reserve it persistently with EFI beforehand) */ #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) #endif /* * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into * multiple parts. As a result, the number of memory regions is large. */ #ifdef CONFIG_EFI #define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8) #endif #endif /* __ASM_MEMORY_H */