// SPDX-License-Identifier: GPL-2.0-only /* * ARMv8 single-step debug support and mdscr context switching. * * Copyright (C) 2012 ARM Limited * * Author: Will Deacon */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Determine debug architecture. */ u8 debug_monitors_arch(void) { return cpuid_feature_extract_unsigned_field(read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1), ID_AA64DFR0_EL1_DebugVer_SHIFT); } /* * MDSCR access routines. */ static void mdscr_write(u32 mdscr) { unsigned long flags; flags = local_daif_save(); write_sysreg(mdscr, mdscr_el1); local_daif_restore(flags); } NOKPROBE_SYMBOL(mdscr_write); static u32 mdscr_read(void) { return read_sysreg(mdscr_el1); } NOKPROBE_SYMBOL(mdscr_read); /* * Allow root to disable self-hosted debug from userspace. * This is useful if you want to connect an external JTAG debugger. */ static bool debug_enabled = true; static int create_debug_debugfs_entry(void) { debugfs_create_bool("debug_enabled", 0644, NULL, &debug_enabled); return 0; } fs_initcall(create_debug_debugfs_entry); static int __init early_debug_disable(char *buf) { debug_enabled = false; return 0; } early_param("nodebugmon", early_debug_disable); /* * Keep track of debug users on each core. * The ref counts are per-cpu so we use a local_t type. */ static DEFINE_PER_CPU(int, mde_ref_count); static DEFINE_PER_CPU(int, kde_ref_count); void enable_debug_monitors(enum dbg_active_el el) { u32 mdscr, enable = 0; WARN_ON(preemptible()); if (this_cpu_inc_return(mde_ref_count) == 1) enable = DBG_MDSCR_MDE; if (el == DBG_ACTIVE_EL1 && this_cpu_inc_return(kde_ref_count) == 1) enable |= DBG_MDSCR_KDE; if (enable && debug_enabled) { mdscr = mdscr_read(); mdscr |= enable; mdscr_write(mdscr); } } NOKPROBE_SYMBOL(enable_debug_monitors); void disable_debug_monitors(enum dbg_active_el el) { u32 mdscr, disable = 0; WARN_ON(preemptible()); if (this_cpu_dec_return(mde_ref_count) == 0) disable = ~DBG_MDSCR_MDE; if (el == DBG_ACTIVE_EL1 && this_cpu_dec_return(kde_ref_count) == 0) disable &= ~DBG_MDSCR_KDE; if (disable) { mdscr = mdscr_read(); mdscr &= disable; mdscr_write(mdscr); } } NOKPROBE_SYMBOL(disable_debug_monitors); /* * OS lock clearing. */ static int clear_os_lock(unsigned int cpu) { write_sysreg(0, osdlr_el1); write_sysreg(0, oslar_el1); isb(); return 0; } static int __init debug_monitors_init(void) { return cpuhp_setup_state(CPUHP_AP_ARM64_DEBUG_MONITORS_STARTING, "arm64/debug_monitors:starting", clear_os_lock, NULL); } postcore_initcall(debug_monitors_init); /* * Single step API and exception handling. */ static void set_user_regs_spsr_ss(struct user_pt_regs *regs) { regs->pstate |= DBG_SPSR_SS; } NOKPROBE_SYMBOL(set_user_regs_spsr_ss); static void clear_user_regs_spsr_ss(struct user_pt_regs *regs) { regs->pstate &= ~DBG_SPSR_SS; } NOKPROBE_SYMBOL(clear_user_regs_spsr_ss); #define set_regs_spsr_ss(r) set_user_regs_spsr_ss(&(r)->user_regs) #define clear_regs_spsr_ss(r) clear_user_regs_spsr_ss(&(r)->user_regs) static DEFINE_SPINLOCK(debug_hook_lock); static LIST_HEAD(user_step_hook); static LIST_HEAD(kernel_step_hook); static void register_debug_hook(struct list_head *node, struct list_head *list) { spin_lock(&debug_hook_lock); list_add_rcu(node, list); spin_unlock(&debug_hook_lock); } static void unregister_debug_hook(struct list_head *node) { spin_lock(&debug_hook_lock); list_del_rcu(node); spin_unlock(&debug_hook_lock); synchronize_rcu(); } void register_user_step_hook(struct step_hook *hook) { register_debug_hook(&hook->node, &user_step_hook); } void unregister_user_step_hook(struct step_hook *hook) { unregister_debug_hook(&hook->node); } void register_kernel_step_hook(struct step_hook *hook) { register_debug_hook(&hook->node, &kernel_step_hook); } void unregister_kernel_step_hook(struct step_hook *hook) { unregister_debug_hook(&hook->node); } /* * Call registered single step handlers * There is no Syndrome info to check for determining the handler. * So we call all the registered handlers, until the right handler is * found which returns zero. */ static int call_step_hook(struct pt_regs *regs, unsigned long esr) { struct step_hook *hook; struct list_head *list; int retval = DBG_HOOK_ERROR; list = user_mode(regs) ? &user_step_hook : &kernel_step_hook; /* * Since single-step exception disables interrupt, this function is * entirely not preemptible, and we can use rcu list safely here. */ list_for_each_entry_rcu(hook, list, node) { retval = hook->fn(regs, esr); if (retval == DBG_HOOK_HANDLED) break; } return retval; } NOKPROBE_SYMBOL(call_step_hook); static void send_user_sigtrap(int si_code) { struct pt_regs *regs = current_pt_regs(); if (WARN_ON(!user_mode(regs))) return; if (interrupts_enabled(regs)) local_irq_enable(); arm64_force_sig_fault(SIGTRAP, si_code, instruction_pointer(regs), "User debug trap"); } static int single_step_handler(unsigned long unused, unsigned long esr, struct pt_regs *regs) { bool handler_found = false; /* * If we are stepping a pending breakpoint, call the hw_breakpoint * handler first. */ if (!reinstall_suspended_bps(regs)) return 0; if (!handler_found && call_step_hook(regs, esr) == DBG_HOOK_HANDLED) handler_found = true; if (!handler_found && user_mode(regs)) { send_user_sigtrap(TRAP_TRACE); /* * ptrace will disable single step unless explicitly * asked to re-enable it. For other clients, it makes * sense to leave it enabled (i.e. rewind the controls * to the active-not-pending state). */ user_rewind_single_step(current); } else if (!handler_found) { pr_warn("Unexpected kernel single-step exception at EL1\n"); /* * Re-enable stepping since we know that we will be * returning to regs. */ set_regs_spsr_ss(regs); } return 0; } NOKPROBE_SYMBOL(single_step_handler); static LIST_HEAD(user_break_hook); static LIST_HEAD(kernel_break_hook); void register_user_break_hook(struct break_hook *hook) { register_debug_hook(&hook->node, &user_break_hook); } void unregister_user_break_hook(struct break_hook *hook) { unregister_debug_hook(&hook->node); } void register_kernel_break_hook(struct break_hook *hook) { register_debug_hook(&hook->node, &kernel_break_hook); } void unregister_kernel_break_hook(struct break_hook *hook) { unregister_debug_hook(&hook->node); } static int call_break_hook(struct pt_regs *regs, unsigned long esr) { struct break_hook *hook; struct list_head *list; list = user_mode(regs) ? &user_break_hook : &kernel_break_hook; /* * Since brk exception disables interrupt, this function is * entirely not preemptible, and we can use rcu list safely here. */ list_for_each_entry_rcu(hook, list, node) { if ((esr_brk_comment(esr) & ~hook->mask) == hook->imm) return hook->fn(regs, esr); } return DBG_HOOK_ERROR; } NOKPROBE_SYMBOL(call_break_hook); static int brk_handler(unsigned long unused, unsigned long esr, struct pt_regs *regs) { if (call_break_hook(regs, esr) == DBG_HOOK_HANDLED) return 0; if (user_mode(regs)) { send_user_sigtrap(TRAP_BRKPT); } else { pr_warn("Unexpected kernel BRK exception at EL1\n"); return -EFAULT; } return 0; } NOKPROBE_SYMBOL(brk_handler); int aarch32_break_handler(struct pt_regs *regs) { u32 arm_instr; u16 thumb_instr; bool bp = false; void __user *pc = (void __user *)instruction_pointer(regs); if (!compat_user_mode(regs)) return -EFAULT; if (compat_thumb_mode(regs)) { /* get 16-bit Thumb instruction */ __le16 instr; get_user(instr, (__le16 __user *)pc); thumb_instr = le16_to_cpu(instr); if (thumb_instr == AARCH32_BREAK_THUMB2_LO) { /* get second half of 32-bit Thumb-2 instruction */ get_user(instr, (__le16 __user *)(pc + 2)); thumb_instr = le16_to_cpu(instr); bp = thumb_instr == AARCH32_BREAK_THUMB2_HI; } else { bp = thumb_instr == AARCH32_BREAK_THUMB; } } else { /* 32-bit ARM instruction */ __le32 instr; get_user(instr, (__le32 __user *)pc); arm_instr = le32_to_cpu(instr); bp = (arm_instr & ~0xf0000000) == AARCH32_BREAK_ARM; } if (!bp) return -EFAULT; send_user_sigtrap(TRAP_BRKPT); return 0; } NOKPROBE_SYMBOL(aarch32_break_handler); void __init debug_traps_init(void) { hook_debug_fault_code(DBG_ESR_EVT_HWSS, single_step_handler, SIGTRAP, TRAP_TRACE, "single-step handler"); hook_debug_fault_code(DBG_ESR_EVT_BRK, brk_handler, SIGTRAP, TRAP_BRKPT, "BRK handler"); } /* Re-enable single step for syscall restarting. */ void user_rewind_single_step(struct task_struct *task) { /* * If single step is active for this thread, then set SPSR.SS * to 1 to avoid returning to the active-pending state. */ if (test_tsk_thread_flag(task, TIF_SINGLESTEP)) set_regs_spsr_ss(task_pt_regs(task)); } NOKPROBE_SYMBOL(user_rewind_single_step); void user_fastforward_single_step(struct task_struct *task) { if (test_tsk_thread_flag(task, TIF_SINGLESTEP)) clear_regs_spsr_ss(task_pt_regs(task)); } void user_regs_reset_single_step(struct user_pt_regs *regs, struct task_struct *task) { if (test_tsk_thread_flag(task, TIF_SINGLESTEP)) set_user_regs_spsr_ss(regs); else clear_user_regs_spsr_ss(regs); } /* Kernel API */ void kernel_enable_single_step(struct pt_regs *regs) { WARN_ON(!irqs_disabled()); set_regs_spsr_ss(regs); mdscr_write(mdscr_read() | DBG_MDSCR_SS); enable_debug_monitors(DBG_ACTIVE_EL1); } NOKPROBE_SYMBOL(kernel_enable_single_step); void kernel_disable_single_step(void) { WARN_ON(!irqs_disabled()); mdscr_write(mdscr_read() & ~DBG_MDSCR_SS); disable_debug_monitors(DBG_ACTIVE_EL1); } NOKPROBE_SYMBOL(kernel_disable_single_step); int kernel_active_single_step(void) { WARN_ON(!irqs_disabled()); return mdscr_read() & DBG_MDSCR_SS; } NOKPROBE_SYMBOL(kernel_active_single_step); void kernel_rewind_single_step(struct pt_regs *regs) { set_regs_spsr_ss(regs); } void kernel_fastforward_single_step(struct pt_regs *regs) { clear_regs_spsr_ss(regs); } /* ptrace API */ void user_enable_single_step(struct task_struct *task) { struct thread_info *ti = task_thread_info(task); if (!test_and_set_ti_thread_flag(ti, TIF_SINGLESTEP)) set_regs_spsr_ss(task_pt_regs(task)); } NOKPROBE_SYMBOL(user_enable_single_step); void user_disable_single_step(struct task_struct *task) { clear_ti_thread_flag(task_thread_info(task), TIF_SINGLESTEP); } NOKPROBE_SYMBOL(user_disable_single_step);