/* SPDX-License-Identifier: GPL-2.0-only */ /* * Low-level CPU initialisation * Based on arch/arm/kernel/head.S * * Copyright (C) 1994-2002 Russell King * Copyright (C) 2003-2012 ARM Ltd. * Authors: Catalin Marinas * Will Deacon */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "efi-header.S" #if (PAGE_OFFSET & 0x1fffff) != 0 #error PAGE_OFFSET must be at least 2MB aligned #endif /* * Kernel startup entry point. * --------------------------- * * The requirements are: * MMU = off, D-cache = off, I-cache = on or off, * x0 = physical address to the FDT blob. * * Note that the callee-saved registers are used for storing variables * that are useful before the MMU is enabled. The allocations are described * in the entry routines. */ __HEAD /* * DO NOT MODIFY. Image header expected by Linux boot-loaders. */ efi_signature_nop // special NOP to identity as PE/COFF executable b primary_entry // branch to kernel start, magic .quad 0 // Image load offset from start of RAM, little-endian le64sym _kernel_size_le // Effective size of kernel image, little-endian le64sym _kernel_flags_le // Informative flags, little-endian .quad 0 // reserved .quad 0 // reserved .quad 0 // reserved .ascii ARM64_IMAGE_MAGIC // Magic number .long .Lpe_header_offset // Offset to the PE header. __EFI_PE_HEADER .section ".idmap.text","a" /* * The following callee saved general purpose registers are used on the * primary lowlevel boot path: * * Register Scope Purpose * x19 primary_entry() .. start_kernel() whether we entered with the MMU on * x20 primary_entry() .. __primary_switch() CPU boot mode * x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0 */ SYM_CODE_START(primary_entry) bl record_mmu_state bl preserve_boot_args adrp x1, early_init_stack mov sp, x1 mov x29, xzr adrp x0, init_idmap_pg_dir mov x1, xzr bl __pi_create_init_idmap /* * If the page tables have been populated with non-cacheable * accesses (MMU disabled), invalidate those tables again to * remove any speculatively loaded cache lines. */ cbnz x19, 0f dmb sy mov x1, x0 // end of used region adrp x0, init_idmap_pg_dir adr_l x2, dcache_inval_poc blr x2 b 1f /* * If we entered with the MMU and caches on, clean the ID mapped part * of the primary boot code to the PoC so we can safely execute it with * the MMU off. */ 0: adrp x0, __idmap_text_start adr_l x1, __idmap_text_end adr_l x2, dcache_clean_poc blr x2 1: mov x0, x19 bl init_kernel_el // w0=cpu_boot_mode mov x20, x0 /* * The following calls CPU setup code, see arch/arm64/mm/proc.S for * details. * On return, the CPU will be ready for the MMU to be turned on and * the TCR will have been set. */ bl __cpu_setup // initialise processor b __primary_switch SYM_CODE_END(primary_entry) __INIT SYM_CODE_START_LOCAL(record_mmu_state) mrs x19, CurrentEL cmp x19, #CurrentEL_EL2 mrs x19, sctlr_el1 b.ne 0f mrs x19, sctlr_el2 0: CPU_LE( tbnz x19, #SCTLR_ELx_EE_SHIFT, 1f ) CPU_BE( tbz x19, #SCTLR_ELx_EE_SHIFT, 1f ) tst x19, #SCTLR_ELx_C // Z := (C == 0) and x19, x19, #SCTLR_ELx_M // isolate M bit csel x19, xzr, x19, eq // clear x19 if Z ret /* * Set the correct endianness early so all memory accesses issued * before init_kernel_el() occur in the correct byte order. Note that * this means the MMU must be disabled, or the active ID map will end * up getting interpreted with the wrong byte order. */ 1: eor x19, x19, #SCTLR_ELx_EE bic x19, x19, #SCTLR_ELx_M b.ne 2f pre_disable_mmu_workaround msr sctlr_el2, x19 b 3f 2: pre_disable_mmu_workaround msr sctlr_el1, x19 3: isb mov x19, xzr ret SYM_CODE_END(record_mmu_state) /* * Preserve the arguments passed by the bootloader in x0 .. x3 */ SYM_CODE_START_LOCAL(preserve_boot_args) mov x21, x0 // x21=FDT adr_l x0, boot_args // record the contents of stp x21, x1, [x0] // x0 .. x3 at kernel entry stp x2, x3, [x0, #16] cbnz x19, 0f // skip cache invalidation if MMU is on dmb sy // needed before dc ivac with // MMU off add x1, x0, #0x20 // 4 x 8 bytes b dcache_inval_poc // tail call 0: str_l x19, mmu_enabled_at_boot, x0 ret SYM_CODE_END(preserve_boot_args) /* * Initialize CPU registers with task-specific and cpu-specific context. * * Create a final frame record at task_pt_regs(current)->stackframe, so * that the unwinder can identify the final frame record of any task by * its location in the task stack. We reserve the entire pt_regs space * for consistency with user tasks and kthreads. */ .macro init_cpu_task tsk, tmp1, tmp2 msr sp_el0, \tsk ldr \tmp1, [\tsk, #TSK_STACK] add sp, \tmp1, #THREAD_SIZE sub sp, sp, #PT_REGS_SIZE stp xzr, xzr, [sp, #S_STACKFRAME] mov \tmp1, #FRAME_META_TYPE_FINAL str \tmp1, [sp, #S_STACKFRAME_TYPE] add x29, sp, #S_STACKFRAME scs_load_current adr_l \tmp1, __per_cpu_offset ldr w\tmp2, [\tsk, #TSK_TI_CPU] ldr \tmp1, [\tmp1, \tmp2, lsl #3] set_this_cpu_offset \tmp1 .endm /* * The following fragment of code is executed with the MMU enabled. * * x0 = __pa(KERNEL_START) */ SYM_FUNC_START_LOCAL(__primary_switched) adr_l x4, init_task init_cpu_task x4, x5, x6 adr_l x8, vectors // load VBAR_EL1 with virtual msr vbar_el1, x8 // vector table address isb stp x29, x30, [sp, #-16]! mov x29, sp str_l x21, __fdt_pointer, x5 // Save FDT pointer adrp x4, _text // Save the offset between sub x4, x4, x0 // the kernel virtual and str_l x4, kimage_voffset, x5 // physical mappings mov x0, x20 bl set_cpu_boot_mode_flag #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) bl kasan_early_init #endif mov x0, x20 bl finalise_el2 // Prefer VHE if possible ldp x29, x30, [sp], #16 bl start_kernel ASM_BUG() SYM_FUNC_END(__primary_switched) /* * end early head section, begin head code that is also used for * hotplug and needs to have the same protections as the text region */ .section ".idmap.text","a" /* * Starting from EL2 or EL1, configure the CPU to execute at the highest * reachable EL supported by the kernel in a chosen default state. If dropping * from EL2 to EL1, configure EL2 before configuring EL1. * * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET. * * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if * booted in EL1 or EL2 respectively, with the top 32 bits containing * potential context flags. These flags are *not* stored in __boot_cpu_mode. * * x0: whether we are being called from the primary boot path with the MMU on */ SYM_FUNC_START(init_kernel_el) mrs x1, CurrentEL cmp x1, #CurrentEL_EL2 b.eq init_el2 SYM_INNER_LABEL(init_el1, SYM_L_LOCAL) mov_q x0, INIT_SCTLR_EL1_MMU_OFF pre_disable_mmu_workaround msr sctlr_el1, x0 isb mov_q x0, INIT_PSTATE_EL1 msr spsr_el1, x0 msr elr_el1, lr mov w0, #BOOT_CPU_MODE_EL1 eret SYM_INNER_LABEL(init_el2, SYM_L_LOCAL) msr elr_el2, lr // clean all HYP code to the PoC if we booted at EL2 with the MMU on cbz x0, 0f adrp x0, __hyp_idmap_text_start adr_l x1, __hyp_text_end adr_l x2, dcache_clean_poc blr x2 mov_q x0, INIT_SCTLR_EL2_MMU_OFF pre_disable_mmu_workaround msr sctlr_el2, x0 isb 0: mov_q x0, HCR_HOST_NVHE_FLAGS /* * Compliant CPUs advertise their VHE-onlyness with * ID_AA64MMFR4_EL1.E2H0 < 0. HCR_EL2.E2H can be * RES1 in that case. Publish the E2H bit early so that * it can be picked up by the init_el2_state macro. * * Fruity CPUs seem to have HCR_EL2.E2H set to RAO/WI, but * don't advertise it (they predate this relaxation). */ mrs_s x1, SYS_ID_AA64MMFR4_EL1 tbz x1, #(ID_AA64MMFR4_EL1_E2H0_SHIFT + ID_AA64MMFR4_EL1_E2H0_WIDTH - 1), 1f orr x0, x0, #HCR_E2H 1: msr hcr_el2, x0 isb init_el2_state /* Hypervisor stub */ adr_l x0, __hyp_stub_vectors msr vbar_el2, x0 isb mov_q x1, INIT_SCTLR_EL1_MMU_OFF mrs x0, hcr_el2 and x0, x0, #HCR_E2H cbz x0, 2f /* Set a sane SCTLR_EL1, the VHE way */ msr_s SYS_SCTLR_EL12, x1 mov x2, #BOOT_CPU_FLAG_E2H b 3f 2: msr sctlr_el1, x1 mov x2, xzr 3: __init_el2_nvhe_prepare_eret mov w0, #BOOT_CPU_MODE_EL2 orr x0, x0, x2 eret SYM_FUNC_END(init_kernel_el) /* * This provides a "holding pen" for platforms to hold all secondary * cores are held until we're ready for them to initialise. */ SYM_FUNC_START(secondary_holding_pen) mov x0, xzr bl init_kernel_el // w0=cpu_boot_mode mrs x2, mpidr_el1 mov_q x1, MPIDR_HWID_BITMASK and x2, x2, x1 adr_l x3, secondary_holding_pen_release pen: ldr x4, [x3] cmp x4, x2 b.eq secondary_startup wfe b pen SYM_FUNC_END(secondary_holding_pen) /* * Secondary entry point that jumps straight into the kernel. Only to * be used where CPUs are brought online dynamically by the kernel. */ SYM_FUNC_START(secondary_entry) mov x0, xzr bl init_kernel_el // w0=cpu_boot_mode b secondary_startup SYM_FUNC_END(secondary_entry) SYM_FUNC_START_LOCAL(secondary_startup) /* * Common entry point for secondary CPUs. */ mov x20, x0 // preserve boot mode #ifdef CONFIG_ARM64_VA_BITS_52 alternative_if ARM64_HAS_VA52 bl __cpu_secondary_check52bitva alternative_else_nop_endif #endif bl __cpu_setup // initialise processor adrp x1, swapper_pg_dir adrp x2, idmap_pg_dir bl __enable_mmu ldr x8, =__secondary_switched br x8 SYM_FUNC_END(secondary_startup) .text SYM_FUNC_START_LOCAL(__secondary_switched) mov x0, x20 bl set_cpu_boot_mode_flag mov x0, x20 bl finalise_el2 str_l xzr, __early_cpu_boot_status, x3 adr_l x5, vectors msr vbar_el1, x5 isb adr_l x0, secondary_data ldr x2, [x0, #CPU_BOOT_TASK] cbz x2, __secondary_too_slow init_cpu_task x2, x1, x3 #ifdef CONFIG_ARM64_PTR_AUTH ptrauth_keys_init_cpu x2, x3, x4, x5 #endif bl secondary_start_kernel ASM_BUG() SYM_FUNC_END(__secondary_switched) SYM_FUNC_START_LOCAL(__secondary_too_slow) wfe wfi b __secondary_too_slow SYM_FUNC_END(__secondary_too_slow) /* * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed * in w0. See arch/arm64/include/asm/virt.h for more info. */ SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag) adr_l x1, __boot_cpu_mode cmp w0, #BOOT_CPU_MODE_EL2 b.ne 1f add x1, x1, #4 1: str w0, [x1] // Save CPU boot mode ret SYM_FUNC_END(set_cpu_boot_mode_flag) /* * The booting CPU updates the failed status @__early_cpu_boot_status, * with MMU turned off. * * update_early_cpu_boot_status tmp, status * - Corrupts tmp1, tmp2 * - Writes 'status' to __early_cpu_boot_status and makes sure * it is committed to memory. */ .macro update_early_cpu_boot_status status, tmp1, tmp2 mov \tmp2, #\status adr_l \tmp1, __early_cpu_boot_status str \tmp2, [\tmp1] dmb sy dc ivac, \tmp1 // Invalidate potentially stale cache line .endm /* * Enable the MMU. * * x0 = SCTLR_EL1 value for turning on the MMU. * x1 = TTBR1_EL1 value * x2 = ID map root table address * * Returns to the caller via x30/lr. This requires the caller to be covered * by the .idmap.text section. * * Checks if the selected granule size is supported by the CPU. * If it isn't, park the CPU */ .section ".idmap.text","a" SYM_FUNC_START(__enable_mmu) mrs x3, ID_AA64MMFR0_EL1 ubfx x3, x3, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4 cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN b.lt __no_granule_support cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX b.gt __no_granule_support phys_to_ttbr x2, x2 msr ttbr0_el1, x2 // load TTBR0 load_ttbr1 x1, x1, x3 set_sctlr_el1 x0 ret SYM_FUNC_END(__enable_mmu) #ifdef CONFIG_ARM64_VA_BITS_52 SYM_FUNC_START(__cpu_secondary_check52bitva) #ifndef CONFIG_ARM64_LPA2 mrs_s x0, SYS_ID_AA64MMFR2_EL1 and x0, x0, ID_AA64MMFR2_EL1_VARange_MASK cbnz x0, 2f #else mrs x0, id_aa64mmfr0_el1 sbfx x0, x0, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4 cmp x0, #ID_AA64MMFR0_EL1_TGRAN_LPA2 b.ge 2f #endif update_early_cpu_boot_status \ CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1 1: wfe wfi b 1b 2: ret SYM_FUNC_END(__cpu_secondary_check52bitva) #endif SYM_FUNC_START_LOCAL(__no_granule_support) /* Indicate that this CPU can't boot and is stuck in the kernel */ update_early_cpu_boot_status \ CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2 1: wfe wfi b 1b SYM_FUNC_END(__no_granule_support) SYM_FUNC_START_LOCAL(__primary_switch) adrp x1, reserved_pg_dir adrp x2, init_idmap_pg_dir bl __enable_mmu adrp x1, early_init_stack mov sp, x1 mov x29, xzr mov x0, x20 // pass the full boot status mov x1, x21 // pass the FDT bl __pi_early_map_kernel // Map and relocate the kernel ldr x8, =__primary_switched adrp x0, KERNEL_START // __pa(KERNEL_START) br x8 SYM_FUNC_END(__primary_switch)