// SPDX-License-Identifier: GPL-2.0-only /*: * Hibernate support specific for ARM64 * * Derived from work on ARM hibernation support by: * * Ubuntu project, hibernation support for mach-dove * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) * Copyright (C) 2006 Rafael J. Wysocki */ #define pr_fmt(x) "hibernate: " x #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Hibernate core relies on this value being 0 on resume, and marks it * __nosavedata assuming it will keep the resume kernel's '0' value. This * doesn't happen with either KASLR. * * defined as "__visible int in_suspend __nosavedata" in * kernel/power/hibernate.c */ extern int in_suspend; /* Do we need to reset el2? */ #define el2_reset_needed() (is_hyp_nvhe()) /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ extern char __hyp_stub_vectors[]; /* * The logical cpu number we should resume on, initialised to a non-cpu * number. */ static int sleep_cpu = -EINVAL; /* * Values that may not change over hibernate/resume. We put the build number * and date in here so that we guarantee not to resume with a different * kernel. */ struct arch_hibernate_hdr_invariants { char uts_version[__NEW_UTS_LEN + 1]; }; /* These values need to be know across a hibernate/restore. */ static struct arch_hibernate_hdr { struct arch_hibernate_hdr_invariants invariants; /* These are needed to find the relocated kernel if built with kaslr */ phys_addr_t ttbr1_el1; void (*reenter_kernel)(void); /* * We need to know where the __hyp_stub_vectors are after restore to * re-configure el2. */ phys_addr_t __hyp_stub_vectors; u64 sleep_cpu_mpidr; } resume_hdr; static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) { memset(i, 0, sizeof(*i)); memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); } int pfn_is_nosave(unsigned long pfn) { unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || crash_is_nosave(pfn); } void notrace save_processor_state(void) { } void notrace restore_processor_state(void) { } int arch_hibernation_header_save(void *addr, unsigned int max_size) { struct arch_hibernate_hdr *hdr = addr; if (max_size < sizeof(*hdr)) return -EOVERFLOW; arch_hdr_invariants(&hdr->invariants); hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); hdr->reenter_kernel = _cpu_resume; /* We can't use __hyp_get_vectors() because kvm may still be loaded */ if (el2_reset_needed()) hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); else hdr->__hyp_stub_vectors = 0; /* Save the mpidr of the cpu we called cpu_suspend() on... */ if (sleep_cpu < 0) { pr_err("Failing to hibernate on an unknown CPU.\n"); return -ENODEV; } hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, hdr->sleep_cpu_mpidr); return 0; } EXPORT_SYMBOL(arch_hibernation_header_save); int arch_hibernation_header_restore(void *addr) { int ret; struct arch_hibernate_hdr_invariants invariants; struct arch_hibernate_hdr *hdr = addr; arch_hdr_invariants(&invariants); if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { pr_crit("Hibernate image not generated by this kernel!\n"); return -EINVAL; } sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, hdr->sleep_cpu_mpidr); if (sleep_cpu < 0) { pr_crit("Hibernated on a CPU not known to this kernel!\n"); sleep_cpu = -EINVAL; return -EINVAL; } ret = bringup_hibernate_cpu(sleep_cpu); if (ret) { sleep_cpu = -EINVAL; return ret; } resume_hdr = *hdr; return 0; } EXPORT_SYMBOL(arch_hibernation_header_restore); static void *hibernate_page_alloc(void *arg) { return (void *)get_safe_page((__force gfp_t)(unsigned long)arg); } /* * Copies length bytes, starting at src_start into an new page, * perform cache maintenance, then maps it at the specified address low * address as executable. * * This is used by hibernate to copy the code it needs to execute when * overwriting the kernel text. This function generates a new set of page * tables, which it loads into ttbr0. * * Length is provided as we probably only want 4K of data, even on a 64K * page system. */ static int create_safe_exec_page(void *src_start, size_t length, phys_addr_t *phys_dst_addr) { struct trans_pgd_info trans_info = { .trans_alloc_page = hibernate_page_alloc, .trans_alloc_arg = (__force void *)GFP_ATOMIC, }; void *page = (void *)get_safe_page(GFP_ATOMIC); phys_addr_t trans_ttbr0; unsigned long t0sz; int rc; if (!page) return -ENOMEM; memcpy(page, src_start, length); caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length); rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page); if (rc) return rc; cpu_install_ttbr0(trans_ttbr0, t0sz); *phys_dst_addr = virt_to_phys(page); return 0; } #ifdef CONFIG_ARM64_MTE static DEFINE_XARRAY(mte_pages); static int save_tags(struct page *page, unsigned long pfn) { void *tag_storage, *ret; tag_storage = mte_allocate_tag_storage(); if (!tag_storage) return -ENOMEM; mte_save_page_tags(page_address(page), tag_storage); ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL); if (WARN(xa_is_err(ret), "Failed to store MTE tags")) { mte_free_tag_storage(tag_storage); return xa_err(ret); } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) { mte_free_tag_storage(ret); } return 0; } static void swsusp_mte_free_storage(void) { XA_STATE(xa_state, &mte_pages, 0); void *tags; xa_lock(&mte_pages); xas_for_each(&xa_state, tags, ULONG_MAX) { mte_free_tag_storage(tags); } xa_unlock(&mte_pages); xa_destroy(&mte_pages); } static int swsusp_mte_save_tags(void) { struct zone *zone; unsigned long pfn, max_zone_pfn; int ret = 0; int n = 0; if (!system_supports_mte()) return 0; for_each_populated_zone(zone) { max_zone_pfn = zone_end_pfn(zone); for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { struct page *page = pfn_to_online_page(pfn); struct folio *folio; if (!page) continue; folio = page_folio(page); if (folio_test_hugetlb(folio) && !folio_test_hugetlb_mte_tagged(folio)) continue; if (!page_mte_tagged(page)) continue; ret = save_tags(page, pfn); if (ret) { swsusp_mte_free_storage(); goto out; } n++; } } pr_info("Saved %d MTE pages\n", n); out: return ret; } static void swsusp_mte_restore_tags(void) { XA_STATE(xa_state, &mte_pages, 0); int n = 0; void *tags; xa_lock(&mte_pages); xas_for_each(&xa_state, tags, ULONG_MAX) { unsigned long pfn = xa_state.xa_index; struct page *page = pfn_to_online_page(pfn); mte_restore_page_tags(page_address(page), tags); mte_free_tag_storage(tags); n++; } xa_unlock(&mte_pages); pr_info("Restored %d MTE pages\n", n); xa_destroy(&mte_pages); } #else /* CONFIG_ARM64_MTE */ static int swsusp_mte_save_tags(void) { return 0; } static void swsusp_mte_restore_tags(void) { } #endif /* CONFIG_ARM64_MTE */ int swsusp_arch_suspend(void) { int ret = 0; unsigned long flags; struct sleep_stack_data state; if (cpus_are_stuck_in_kernel()) { pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); return -EBUSY; } flags = local_daif_save(); if (__cpu_suspend_enter(&state)) { /* make the crash dump kernel image visible/saveable */ crash_prepare_suspend(); ret = swsusp_mte_save_tags(); if (ret) return ret; sleep_cpu = smp_processor_id(); ret = swsusp_save(); } else { /* Clean kernel core startup/idle code to PoC*/ dcache_clean_inval_poc((unsigned long)__mmuoff_data_start, (unsigned long)__mmuoff_data_end); dcache_clean_inval_poc((unsigned long)__idmap_text_start, (unsigned long)__idmap_text_end); /* Clean kvm setup code to PoC? */ if (el2_reset_needed()) { dcache_clean_inval_poc( (unsigned long)__hyp_idmap_text_start, (unsigned long)__hyp_idmap_text_end); dcache_clean_inval_poc((unsigned long)__hyp_text_start, (unsigned long)__hyp_text_end); } swsusp_mte_restore_tags(); /* make the crash dump kernel image protected again */ crash_post_resume(); /* * Tell the hibernation core that we've just restored * the memory */ in_suspend = 0; sleep_cpu = -EINVAL; __cpu_suspend_exit(); /* * Just in case the boot kernel did turn the SSBD * mitigation off behind our back, let's set the state * to what we expect it to be. */ spectre_v4_enable_mitigation(NULL); } local_daif_restore(flags); return ret; } /* * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). * * Memory allocated by get_safe_page() will be dealt with by the hibernate code, * we don't need to free it here. */ int swsusp_arch_resume(void) { int rc; void *zero_page; size_t exit_size; pgd_t *tmp_pg_dir; phys_addr_t el2_vectors; void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, void *, phys_addr_t, phys_addr_t); struct trans_pgd_info trans_info = { .trans_alloc_page = hibernate_page_alloc, .trans_alloc_arg = (__force void *)GFP_ATOMIC, }; /* * Restoring the memory image will overwrite the ttbr1 page tables. * Create a second copy of just the linear map, and use this when * restoring. */ rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET, PAGE_END); if (rc) return rc; /* * We need a zero page that is zero before & after resume in order * to break before make on the ttbr1 page tables. */ zero_page = (void *)get_safe_page(GFP_ATOMIC); if (!zero_page) { pr_err("Failed to allocate zero page.\n"); return -ENOMEM; } if (el2_reset_needed()) { rc = trans_pgd_copy_el2_vectors(&trans_info, &el2_vectors); if (rc) { pr_err("Failed to setup el2 vectors\n"); return rc; } } exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; /* * Copy swsusp_arch_suspend_exit() to a safe page. This will generate * a new set of ttbr0 page tables and load them. */ rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, (phys_addr_t *)&hibernate_exit); if (rc) { pr_err("Failed to create safe executable page for hibernate_exit code.\n"); return rc; } /* * KASLR will cause the el2 vectors to be in a different location in * the resumed kernel. Load hibernate's temporary copy into el2. * * We can skip this step if we booted at EL1, or are running with VHE. */ if (el2_reset_needed()) __hyp_set_vectors(el2_vectors); hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, resume_hdr.reenter_kernel, restore_pblist, resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); return 0; } int hibernate_resume_nonboot_cpu_disable(void) { if (sleep_cpu < 0) { pr_err("Failing to resume from hibernate on an unknown CPU.\n"); return -ENODEV; } return freeze_secondary_cpus(sleep_cpu); }