// SPDX-License-Identifier: GPL-2.0-only /* * Based on arch/arm/kernel/setup.c * * Copyright (C) 1995-2001 Russell King * Copyright (C) 2012 ARM Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int num_standard_resources; static struct resource *standard_resources; phys_addr_t __fdt_pointer __initdata; u64 mmu_enabled_at_boot __initdata; /* * Standard memory resources */ static struct resource mem_res[] = { { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_SYSTEM_RAM }, { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_SYSTEM_RAM } }; #define kernel_code mem_res[0] #define kernel_data mem_res[1] /* * The recorded values of x0 .. x3 upon kernel entry. */ u64 __cacheline_aligned boot_args[4]; void __init smp_setup_processor_id(void) { u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; set_cpu_logical_map(0, mpidr); pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n", (unsigned long)mpidr, read_cpuid_id()); } bool arch_match_cpu_phys_id(int cpu, u64 phys_id) { return phys_id == cpu_logical_map(cpu); } struct mpidr_hash mpidr_hash; /** * smp_build_mpidr_hash - Pre-compute shifts required at each affinity * level in order to build a linear index from an * MPIDR value. Resulting algorithm is a collision * free hash carried out through shifting and ORing */ static void __init smp_build_mpidr_hash(void) { u32 i, affinity, fs[4], bits[4], ls; u64 mask = 0; /* * Pre-scan the list of MPIDRS and filter out bits that do * not contribute to affinity levels, ie they never toggle. */ for_each_possible_cpu(i) mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); pr_debug("mask of set bits %#llx\n", mask); /* * Find and stash the last and first bit set at all affinity levels to * check how many bits are required to represent them. */ for (i = 0; i < 4; i++) { affinity = MPIDR_AFFINITY_LEVEL(mask, i); /* * Find the MSB bit and LSB bits position * to determine how many bits are required * to express the affinity level. */ ls = fls(affinity); fs[i] = affinity ? ffs(affinity) - 1 : 0; bits[i] = ls - fs[i]; } /* * An index can be created from the MPIDR_EL1 by isolating the * significant bits at each affinity level and by shifting * them in order to compress the 32 bits values space to a * compressed set of values. This is equivalent to hashing * the MPIDR_EL1 through shifting and ORing. It is a collision free * hash though not minimal since some levels might contain a number * of CPUs that is not an exact power of 2 and their bit * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. */ mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - (bits[1] + bits[0]); mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + fs[3] - (bits[2] + bits[1] + bits[0]); mpidr_hash.mask = mask; mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", mpidr_hash.shift_aff[0], mpidr_hash.shift_aff[1], mpidr_hash.shift_aff[2], mpidr_hash.shift_aff[3], mpidr_hash.mask, mpidr_hash.bits); /* * 4x is an arbitrary value used to warn on a hash table much bigger * than expected on most systems. */ if (mpidr_hash_size() > 4 * num_possible_cpus()) pr_warn("Large number of MPIDR hash buckets detected\n"); } static void __init setup_machine_fdt(phys_addr_t dt_phys) { int size; void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL); const char *name; if (dt_virt) memblock_reserve(dt_phys, size); /* * dt_virt is a fixmap address, hence __pa(dt_virt) can't be used. * Pass dt_phys directly. */ if (!early_init_dt_scan(dt_virt, dt_phys)) { pr_crit("\n" "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n" "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n" "\nPlease check your bootloader.", &dt_phys, dt_virt); /* * Note that in this _really_ early stage we cannot even BUG() * or oops, so the least terrible thing to do is cpu_relax(), * or else we could end-up printing non-initialized data, etc. */ while (true) cpu_relax(); } /* Early fixups are done, map the FDT as read-only now */ fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO); name = of_flat_dt_get_machine_name(); if (!name) return; pr_info("Machine model: %s\n", name); dump_stack_set_arch_desc("%s (DT)", name); } static void __init request_standard_resources(void) { struct memblock_region *region; struct resource *res; unsigned long i = 0; size_t res_size; kernel_code.start = __pa_symbol(_stext); kernel_code.end = __pa_symbol(__init_begin - 1); kernel_data.start = __pa_symbol(_sdata); kernel_data.end = __pa_symbol(_end - 1); insert_resource(&iomem_resource, &kernel_code); insert_resource(&iomem_resource, &kernel_data); num_standard_resources = memblock.memory.cnt; res_size = num_standard_resources * sizeof(*standard_resources); standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES); if (!standard_resources) panic("%s: Failed to allocate %zu bytes\n", __func__, res_size); for_each_mem_region(region) { res = &standard_resources[i++]; if (memblock_is_nomap(region)) { res->name = "reserved"; res->flags = IORESOURCE_MEM; res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region)); res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1; } else { res->name = "System RAM"; res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; } insert_resource(&iomem_resource, res); } } static int __init reserve_memblock_reserved_regions(void) { u64 i, j; for (i = 0; i < num_standard_resources; ++i) { struct resource *mem = &standard_resources[i]; phys_addr_t r_start, r_end, mem_size = resource_size(mem); if (!memblock_is_region_reserved(mem->start, mem_size)) continue; for_each_reserved_mem_range(j, &r_start, &r_end) { resource_size_t start, end; start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start); end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end); if (start > mem->end || end < mem->start) continue; reserve_region_with_split(mem, start, end, "reserved"); } } return 0; } arch_initcall(reserve_memblock_reserved_regions); u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; u64 cpu_logical_map(unsigned int cpu) { return __cpu_logical_map[cpu]; } void __init __no_sanitize_address setup_arch(char **cmdline_p) { setup_initial_init_mm(_stext, _etext, _edata, _end); *cmdline_p = boot_command_line; kaslr_init(); early_fixmap_init(); early_ioremap_init(); setup_machine_fdt(__fdt_pointer); /* * Initialise the static keys early as they may be enabled by the * cpufeature code and early parameters. */ jump_label_init(); parse_early_param(); dynamic_scs_init(); /* * The primary CPU enters the kernel with all DAIF exceptions masked. * * We must unmask Debug and SError before preemption or scheduling is * possible to ensure that these are consistently unmasked across * threads, and we want to unmask SError as soon as possible after * initializing earlycon so that we can report any SErrors immediately. * * IRQ and FIQ will be unmasked after the root irqchip has been * detected and initialized. */ local_daif_restore(DAIF_PROCCTX_NOIRQ); /* * TTBR0 is only used for the identity mapping at this stage. Make it * point to zero page to avoid speculatively fetching new entries. */ cpu_uninstall_idmap(); xen_early_init(); efi_init(); if (!efi_enabled(EFI_BOOT)) { if ((u64)_text % MIN_KIMG_ALIGN) pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!"); WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND, FW_BUG "Booted with MMU enabled!"); } arm64_memblock_init(); paging_init(); acpi_table_upgrade(); /* Parse the ACPI tables for possible boot-time configuration */ acpi_boot_table_init(); if (acpi_disabled) unflatten_device_tree(); bootmem_init(); kasan_init(); request_standard_resources(); early_ioremap_reset(); if (acpi_disabled) psci_dt_init(); else psci_acpi_init(); arm64_rsi_init(); init_bootcpu_ops(); smp_init_cpus(); smp_build_mpidr_hash(); #ifdef CONFIG_ARM64_SW_TTBR0_PAN /* * Make sure init_thread_info.ttbr0 always generates translation * faults in case uaccess_enable() is inadvertently called by the init * thread. */ init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir)); #endif if (boot_args[1] || boot_args[2] || boot_args[3]) { pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n" "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n" "This indicates a broken bootloader or old kernel\n", boot_args[1], boot_args[2], boot_args[3]); } } static inline bool cpu_can_disable(unsigned int cpu) { #ifdef CONFIG_HOTPLUG_CPU const struct cpu_operations *ops = get_cpu_ops(cpu); if (ops && ops->cpu_can_disable) return ops->cpu_can_disable(cpu); #endif return false; } bool arch_cpu_is_hotpluggable(int num) { return cpu_can_disable(num); } static void dump_kernel_offset(void) { const unsigned long offset = kaslr_offset(); if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) { pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n", offset, KIMAGE_VADDR); pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET); } else { pr_emerg("Kernel Offset: disabled\n"); } } static int arm64_panic_block_dump(struct notifier_block *self, unsigned long v, void *p) { dump_kernel_offset(); dump_cpu_features(); dump_mem_limit(); return 0; } static struct notifier_block arm64_panic_block = { .notifier_call = arm64_panic_block_dump }; static int __init register_arm64_panic_block(void) { atomic_notifier_chain_register(&panic_notifier_list, &arm64_panic_block); return 0; } device_initcall(register_arm64_panic_block); static int __init check_mmu_enabled_at_boot(void) { if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot) panic("Non-EFI boot detected with MMU and caches enabled"); return 0; } device_initcall_sync(check_mmu_enabled_at_boot);