// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012-2015 - ARM Ltd * Author: Marc Zyngier */ #include #include #include #include #include #include #include #define vtr_to_max_lr_idx(v) ((v) & 0xf) #define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1) #define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5)) static u64 __gic_v3_get_lr(unsigned int lr) { switch (lr & 0xf) { case 0: return read_gicreg(ICH_LR0_EL2); case 1: return read_gicreg(ICH_LR1_EL2); case 2: return read_gicreg(ICH_LR2_EL2); case 3: return read_gicreg(ICH_LR3_EL2); case 4: return read_gicreg(ICH_LR4_EL2); case 5: return read_gicreg(ICH_LR5_EL2); case 6: return read_gicreg(ICH_LR6_EL2); case 7: return read_gicreg(ICH_LR7_EL2); case 8: return read_gicreg(ICH_LR8_EL2); case 9: return read_gicreg(ICH_LR9_EL2); case 10: return read_gicreg(ICH_LR10_EL2); case 11: return read_gicreg(ICH_LR11_EL2); case 12: return read_gicreg(ICH_LR12_EL2); case 13: return read_gicreg(ICH_LR13_EL2); case 14: return read_gicreg(ICH_LR14_EL2); case 15: return read_gicreg(ICH_LR15_EL2); } unreachable(); } static void __gic_v3_set_lr(u64 val, int lr) { switch (lr & 0xf) { case 0: write_gicreg(val, ICH_LR0_EL2); break; case 1: write_gicreg(val, ICH_LR1_EL2); break; case 2: write_gicreg(val, ICH_LR2_EL2); break; case 3: write_gicreg(val, ICH_LR3_EL2); break; case 4: write_gicreg(val, ICH_LR4_EL2); break; case 5: write_gicreg(val, ICH_LR5_EL2); break; case 6: write_gicreg(val, ICH_LR6_EL2); break; case 7: write_gicreg(val, ICH_LR7_EL2); break; case 8: write_gicreg(val, ICH_LR8_EL2); break; case 9: write_gicreg(val, ICH_LR9_EL2); break; case 10: write_gicreg(val, ICH_LR10_EL2); break; case 11: write_gicreg(val, ICH_LR11_EL2); break; case 12: write_gicreg(val, ICH_LR12_EL2); break; case 13: write_gicreg(val, ICH_LR13_EL2); break; case 14: write_gicreg(val, ICH_LR14_EL2); break; case 15: write_gicreg(val, ICH_LR15_EL2); break; } } static void __vgic_v3_write_ap0rn(u32 val, int n) { switch (n) { case 0: write_gicreg(val, ICH_AP0R0_EL2); break; case 1: write_gicreg(val, ICH_AP0R1_EL2); break; case 2: write_gicreg(val, ICH_AP0R2_EL2); break; case 3: write_gicreg(val, ICH_AP0R3_EL2); break; } } static void __vgic_v3_write_ap1rn(u32 val, int n) { switch (n) { case 0: write_gicreg(val, ICH_AP1R0_EL2); break; case 1: write_gicreg(val, ICH_AP1R1_EL2); break; case 2: write_gicreg(val, ICH_AP1R2_EL2); break; case 3: write_gicreg(val, ICH_AP1R3_EL2); break; } } static u32 __vgic_v3_read_ap0rn(int n) { u32 val; switch (n) { case 0: val = read_gicreg(ICH_AP0R0_EL2); break; case 1: val = read_gicreg(ICH_AP0R1_EL2); break; case 2: val = read_gicreg(ICH_AP0R2_EL2); break; case 3: val = read_gicreg(ICH_AP0R3_EL2); break; default: unreachable(); } return val; } static u32 __vgic_v3_read_ap1rn(int n) { u32 val; switch (n) { case 0: val = read_gicreg(ICH_AP1R0_EL2); break; case 1: val = read_gicreg(ICH_AP1R1_EL2); break; case 2: val = read_gicreg(ICH_AP1R2_EL2); break; case 3: val = read_gicreg(ICH_AP1R3_EL2); break; default: unreachable(); } return val; } void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if) { u64 used_lrs = cpu_if->used_lrs; /* * Make sure stores to the GIC via the memory mapped interface * are now visible to the system register interface when reading the * LRs, and when reading back the VMCR on non-VHE systems. */ if (used_lrs || !has_vhe()) { if (!cpu_if->vgic_sre) { dsb(sy); isb(); } } if (used_lrs || cpu_if->its_vpe.its_vm) { int i; u32 elrsr; elrsr = read_gicreg(ICH_ELRSR_EL2); write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2); for (i = 0; i < used_lrs; i++) { if (elrsr & (1 << i)) cpu_if->vgic_lr[i] &= ~ICH_LR_STATE; else cpu_if->vgic_lr[i] = __gic_v3_get_lr(i); __gic_v3_set_lr(0, i); } } } void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if) { u64 used_lrs = cpu_if->used_lrs; int i; if (used_lrs || cpu_if->its_vpe.its_vm) { write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); for (i = 0; i < used_lrs; i++) __gic_v3_set_lr(cpu_if->vgic_lr[i], i); } /* * Ensure that writes to the LRs, and on non-VHE systems ensure that * the write to the VMCR in __vgic_v3_activate_traps(), will have * reached the (re)distributors. This ensure the guest will read the * correct values from the memory-mapped interface. */ if (used_lrs || !has_vhe()) { if (!cpu_if->vgic_sre) { isb(); dsb(sy); } } } void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if) { /* * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a * Group0 interrupt (as generated in GICv2 mode) to be * delivered as a FIQ to the guest, with potentially fatal * consequences. So we must make sure that ICC_SRE_EL1 has * been actually programmed with the value we want before * starting to mess with the rest of the GIC, and VMCR_EL2 in * particular. This logic must be called before * __vgic_v3_restore_state(). * * However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is * provisioned at all. In order to prevent illegal accesses to the * system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1 * so that the trap bits can take effect. Yes, we *loves* the GIC. */ if (!(cpu_if->vgic_hcr & ICH_HCR_EN)) { write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1); isb(); } else if (!cpu_if->vgic_sre) { write_gicreg(0, ICC_SRE_EL1); isb(); write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2); if (has_vhe()) { /* * Ensure that the write to the VMCR will have reached * the (re)distributors. This ensure the guest will * read the correct values from the memory-mapped * interface. */ isb(); dsb(sy); } } /* * Prevent the guest from touching the ICC_SRE_EL1 system * register. Note that this may not have any effect, as * ICC_SRE_EL2.Enable being RAO/WI is a valid implementation. */ write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE, ICC_SRE_EL2); /* * If we need to trap system registers, we must write * ICH_HCR_EL2 anyway, even if no interrupts are being * injected. Note that this also applies if we don't expect * any system register access (no vgic at all). */ if (static_branch_unlikely(&vgic_v3_cpuif_trap) || cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre) write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); } void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if) { u64 val; if (!cpu_if->vgic_sre) { cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2); } val = read_gicreg(ICC_SRE_EL2); write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2); if (!cpu_if->vgic_sre) { /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */ isb(); write_gicreg(1, ICC_SRE_EL1); } /* * If we were trapping system registers, we enabled the VGIC even if * no interrupts were being injected, and we disable it again here. */ if (static_branch_unlikely(&vgic_v3_cpuif_trap) || cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre) write_gicreg(0, ICH_HCR_EL2); } static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if) { u64 val; u32 nr_pre_bits; val = read_gicreg(ICH_VTR_EL2); nr_pre_bits = vtr_to_nr_pre_bits(val); switch (nr_pre_bits) { case 7: cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3); cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2); fallthrough; case 6: cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1); fallthrough; default: cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0); } switch (nr_pre_bits) { case 7: cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3); cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2); fallthrough; case 6: cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1); fallthrough; default: cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0); } } static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if) { u64 val; u32 nr_pre_bits; val = read_gicreg(ICH_VTR_EL2); nr_pre_bits = vtr_to_nr_pre_bits(val); switch (nr_pre_bits) { case 7: __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3); __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2); fallthrough; case 6: __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1); fallthrough; default: __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0); } switch (nr_pre_bits) { case 7: __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3); __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2); fallthrough; case 6: __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1); fallthrough; default: __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0); } } void __vgic_v3_init_lrs(void) { int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2)); int i; for (i = 0; i <= max_lr_idx; i++) __gic_v3_set_lr(0, i); } /* * Return the GIC CPU configuration: * - [31:0] ICH_VTR_EL2 * - [62:32] RES0 * - [63] MMIO (GICv2) capable */ u64 __vgic_v3_get_gic_config(void) { u64 val, sre = read_gicreg(ICC_SRE_EL1); unsigned long flags = 0; /* * To check whether we have a MMIO-based (GICv2 compatible) * CPU interface, we need to disable the system register * view. To do that safely, we have to prevent any interrupt * from firing (which would be deadly). * * Note that this only makes sense on VHE, as interrupts are * already masked for nVHE as part of the exception entry to * EL2. */ if (has_vhe()) flags = local_daif_save(); /* * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates * that to be able to set ICC_SRE_EL1.SRE to 0, all the * interrupt overrides must be set. You've got to love this. */ sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO); isb(); write_gicreg(0, ICC_SRE_EL1); isb(); val = read_gicreg(ICC_SRE_EL1); write_gicreg(sre, ICC_SRE_EL1); isb(); sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0); isb(); if (has_vhe()) local_daif_restore(flags); val = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63); val |= read_gicreg(ICH_VTR_EL2); return val; } static u64 __vgic_v3_read_vmcr(void) { return read_gicreg(ICH_VMCR_EL2); } static void __vgic_v3_write_vmcr(u32 vmcr) { write_gicreg(vmcr, ICH_VMCR_EL2); } void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if) { __vgic_v3_save_aprs(cpu_if); if (cpu_if->vgic_sre) cpu_if->vgic_vmcr = __vgic_v3_read_vmcr(); } void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if) { /* * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen * is dependent on ICC_SRE_EL1.SRE, and we have to perform the * VMCR_EL2 save/restore in the world switch. */ if (cpu_if->vgic_sre) __vgic_v3_write_vmcr(cpu_if->vgic_vmcr); __vgic_v3_restore_aprs(cpu_if); } static int __vgic_v3_bpr_min(void) { /* See Pseudocode for VPriorityGroup */ return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2)); } static int __vgic_v3_get_group(struct kvm_vcpu *vcpu) { u64 esr = kvm_vcpu_get_esr(vcpu); u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; return crm != 8; } #define GICv3_IDLE_PRIORITY 0xff static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr, u64 *lr_val) { unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; u8 priority = GICv3_IDLE_PRIORITY; int i, lr = -1; for (i = 0; i < used_lrs; i++) { u64 val = __gic_v3_get_lr(i); u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; /* Not pending in the state? */ if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT) continue; /* Group-0 interrupt, but Group-0 disabled? */ if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK)) continue; /* Group-1 interrupt, but Group-1 disabled? */ if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK)) continue; /* Not the highest priority? */ if (lr_prio >= priority) continue; /* This is a candidate */ priority = lr_prio; *lr_val = val; lr = i; } if (lr == -1) *lr_val = ICC_IAR1_EL1_SPURIOUS; return lr; } static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid, u64 *lr_val) { unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; int i; for (i = 0; i < used_lrs; i++) { u64 val = __gic_v3_get_lr(i); if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid && (val & ICH_LR_ACTIVE_BIT)) { *lr_val = val; return i; } } *lr_val = ICC_IAR1_EL1_SPURIOUS; return -1; } static int __vgic_v3_get_highest_active_priority(void) { u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2)); u32 hap = 0; int i; for (i = 0; i < nr_apr_regs; i++) { u32 val; /* * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers * contain the active priority levels for this VCPU * for the maximum number of supported priority * levels, and we return the full priority level only * if the BPR is programmed to its minimum, otherwise * we return a combination of the priority level and * subpriority, as determined by the setting of the * BPR, but without the full subpriority. */ val = __vgic_v3_read_ap0rn(i); val |= __vgic_v3_read_ap1rn(i); if (!val) { hap += 32; continue; } return (hap + __ffs(val)) << __vgic_v3_bpr_min(); } return GICv3_IDLE_PRIORITY; } static unsigned int __vgic_v3_get_bpr0(u32 vmcr) { return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; } static unsigned int __vgic_v3_get_bpr1(u32 vmcr) { unsigned int bpr; if (vmcr & ICH_VMCR_CBPR_MASK) { bpr = __vgic_v3_get_bpr0(vmcr); if (bpr < 7) bpr++; } else { bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; } return bpr; } /* * Convert a priority to a preemption level, taking the relevant BPR * into account by zeroing the sub-priority bits. */ static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp) { unsigned int bpr; if (!grp) bpr = __vgic_v3_get_bpr0(vmcr) + 1; else bpr = __vgic_v3_get_bpr1(vmcr); return pri & (GENMASK(7, 0) << bpr); } /* * The priority value is independent of any of the BPR values, so we * normalize it using the minimal BPR value. This guarantees that no * matter what the guest does with its BPR, we can always set/get the * same value of a priority. */ static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp) { u8 pre, ap; u32 val; int apr; pre = __vgic_v3_pri_to_pre(pri, vmcr, grp); ap = pre >> __vgic_v3_bpr_min(); apr = ap / 32; if (!grp) { val = __vgic_v3_read_ap0rn(apr); __vgic_v3_write_ap0rn(val | BIT(ap % 32), apr); } else { val = __vgic_v3_read_ap1rn(apr); __vgic_v3_write_ap1rn(val | BIT(ap % 32), apr); } } static int __vgic_v3_clear_highest_active_priority(void) { u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2)); u32 hap = 0; int i; for (i = 0; i < nr_apr_regs; i++) { u32 ap0, ap1; int c0, c1; ap0 = __vgic_v3_read_ap0rn(i); ap1 = __vgic_v3_read_ap1rn(i); if (!ap0 && !ap1) { hap += 32; continue; } c0 = ap0 ? __ffs(ap0) : 32; c1 = ap1 ? __ffs(ap1) : 32; /* Always clear the LSB, which is the highest priority */ if (c0 < c1) { ap0 &= ~BIT(c0); __vgic_v3_write_ap0rn(ap0, i); hap += c0; } else { ap1 &= ~BIT(c1); __vgic_v3_write_ap1rn(ap1, i); hap += c1; } /* Rescale to 8 bits of priority */ return hap << __vgic_v3_bpr_min(); } return GICv3_IDLE_PRIORITY; } static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u64 lr_val; u8 lr_prio, pmr; int lr, grp; grp = __vgic_v3_get_group(vcpu); lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val); if (lr < 0) goto spurious; if (grp != !!(lr_val & ICH_LR_GROUP)) goto spurious; pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; if (pmr <= lr_prio) goto spurious; if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp)) goto spurious; lr_val &= ~ICH_LR_STATE; lr_val |= ICH_LR_ACTIVE_BIT; __gic_v3_set_lr(lr_val, lr); __vgic_v3_set_active_priority(lr_prio, vmcr, grp); vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK); return; spurious: vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS); } static void __vgic_v3_clear_active_lr(int lr, u64 lr_val) { lr_val &= ~ICH_LR_ACTIVE_BIT; if (lr_val & ICH_LR_HW) { u32 pid; pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT; gic_write_dir(pid); } __gic_v3_set_lr(lr_val, lr); } static void __vgic_v3_bump_eoicount(void) { u32 hcr; hcr = read_gicreg(ICH_HCR_EL2); hcr += 1 << ICH_HCR_EOIcount_SHIFT; write_gicreg(hcr, ICH_HCR_EL2); } static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u32 vid = vcpu_get_reg(vcpu, rt); u64 lr_val; int lr; /* EOImode == 0, nothing to be done here */ if (!(vmcr & ICH_VMCR_EOIM_MASK)) return; /* No deactivate to be performed on an LPI */ if (vid >= VGIC_MIN_LPI) return; lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val); if (lr == -1) { __vgic_v3_bump_eoicount(); return; } __vgic_v3_clear_active_lr(lr, lr_val); } static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u32 vid = vcpu_get_reg(vcpu, rt); u64 lr_val; u8 lr_prio, act_prio; int lr, grp; grp = __vgic_v3_get_group(vcpu); /* Drop priority in any case */ act_prio = __vgic_v3_clear_highest_active_priority(); lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val); if (lr == -1) { /* Do not bump EOIcount for LPIs that aren't in the LRs */ if (!(vid >= VGIC_MIN_LPI)) __vgic_v3_bump_eoicount(); return; } /* EOImode == 1 and not an LPI, nothing to be done here */ if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI)) return; lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT; /* If priorities or group do not match, the guest has fscked-up. */ if (grp != !!(lr_val & ICH_LR_GROUP) || __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio) return; /* Let's now perform the deactivation */ __vgic_v3_clear_active_lr(lr, lr_val); } static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK)); } static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK)); } static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u64 val = vcpu_get_reg(vcpu, rt); if (val & 1) vmcr |= ICH_VMCR_ENG0_MASK; else vmcr &= ~ICH_VMCR_ENG0_MASK; __vgic_v3_write_vmcr(vmcr); } static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u64 val = vcpu_get_reg(vcpu, rt); if (val & 1) vmcr |= ICH_VMCR_ENG1_MASK; else vmcr &= ~ICH_VMCR_ENG1_MASK; __vgic_v3_write_vmcr(vmcr); } static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr)); } static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr)); } static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u64 val = vcpu_get_reg(vcpu, rt); u8 bpr_min = __vgic_v3_bpr_min() - 1; /* Enforce BPR limiting */ if (val < bpr_min) val = bpr_min; val <<= ICH_VMCR_BPR0_SHIFT; val &= ICH_VMCR_BPR0_MASK; vmcr &= ~ICH_VMCR_BPR0_MASK; vmcr |= val; __vgic_v3_write_vmcr(vmcr); } static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u64 val = vcpu_get_reg(vcpu, rt); u8 bpr_min = __vgic_v3_bpr_min(); if (vmcr & ICH_VMCR_CBPR_MASK) return; /* Enforce BPR limiting */ if (val < bpr_min) val = bpr_min; val <<= ICH_VMCR_BPR1_SHIFT; val &= ICH_VMCR_BPR1_MASK; vmcr &= ~ICH_VMCR_BPR1_MASK; vmcr |= val; __vgic_v3_write_vmcr(vmcr); } static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n) { u32 val; if (!__vgic_v3_get_group(vcpu)) val = __vgic_v3_read_ap0rn(n); else val = __vgic_v3_read_ap1rn(n); vcpu_set_reg(vcpu, rt, val); } static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n) { u32 val = vcpu_get_reg(vcpu, rt); if (!__vgic_v3_get_group(vcpu)) __vgic_v3_write_ap0rn(val, n); else __vgic_v3_write_ap1rn(val, n); } static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_read_apxrn(vcpu, rt, 0); } static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_read_apxrn(vcpu, rt, 1); } static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_read_apxrn(vcpu, rt, 2); } static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_read_apxrn(vcpu, rt, 3); } static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_write_apxrn(vcpu, rt, 0); } static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_write_apxrn(vcpu, rt, 1); } static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_write_apxrn(vcpu, rt, 2); } static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { __vgic_v3_write_apxrn(vcpu, rt, 3); } static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u64 lr_val; int lr, lr_grp, grp; grp = __vgic_v3_get_group(vcpu); lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val); if (lr == -1) goto spurious; lr_grp = !!(lr_val & ICH_LR_GROUP); if (lr_grp != grp) lr_val = ICC_IAR1_EL1_SPURIOUS; spurious: vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK); } static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { vmcr &= ICH_VMCR_PMR_MASK; vmcr >>= ICH_VMCR_PMR_SHIFT; vcpu_set_reg(vcpu, rt, vmcr); } static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u32 val = vcpu_get_reg(vcpu, rt); val <<= ICH_VMCR_PMR_SHIFT; val &= ICH_VMCR_PMR_MASK; vmcr &= ~ICH_VMCR_PMR_MASK; vmcr |= val; write_gicreg(vmcr, ICH_VMCR_EL2); } static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u32 val = __vgic_v3_get_highest_active_priority(); vcpu_set_reg(vcpu, rt, val); } static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u32 vtr, val; vtr = read_gicreg(ICH_VTR_EL2); /* PRIbits */ val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT; /* IDbits */ val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT; /* SEIS */ if (kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) val |= BIT(ICC_CTLR_EL1_SEIS_SHIFT); /* A3V */ val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT; /* EOImode */ val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT; /* CBPR */ val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; vcpu_set_reg(vcpu, rt, val); } static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt) { u32 val = vcpu_get_reg(vcpu, rt); if (val & ICC_CTLR_EL1_CBPR_MASK) vmcr |= ICH_VMCR_CBPR_MASK; else vmcr &= ~ICH_VMCR_CBPR_MASK; if (val & ICC_CTLR_EL1_EOImode_MASK) vmcr |= ICH_VMCR_EOIM_MASK; else vmcr &= ~ICH_VMCR_EOIM_MASK; write_gicreg(vmcr, ICH_VMCR_EL2); } static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu, u32 sysreg, bool is_read) { u64 ich_hcr; if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) return false; ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2); switch (sysreg) { case SYS_ICC_IGRPEN0_EL1: if (is_read && (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) return true; if (!is_read && (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) return true; fallthrough; case SYS_ICC_AP0Rn_EL1(0): case SYS_ICC_AP0Rn_EL1(1): case SYS_ICC_AP0Rn_EL1(2): case SYS_ICC_AP0Rn_EL1(3): case SYS_ICC_BPR0_EL1: case SYS_ICC_EOIR0_EL1: case SYS_ICC_HPPIR0_EL1: case SYS_ICC_IAR0_EL1: return ich_hcr & ICH_HCR_TALL0; case SYS_ICC_IGRPEN1_EL1: if (is_read && (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) return true; if (!is_read && (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGxTR_EL2_ICC_IGRPENn_EL1)) return true; fallthrough; case SYS_ICC_AP1Rn_EL1(0): case SYS_ICC_AP1Rn_EL1(1): case SYS_ICC_AP1Rn_EL1(2): case SYS_ICC_AP1Rn_EL1(3): case SYS_ICC_BPR1_EL1: case SYS_ICC_EOIR1_EL1: case SYS_ICC_HPPIR1_EL1: case SYS_ICC_IAR1_EL1: return ich_hcr & ICH_HCR_TALL1; case SYS_ICC_DIR_EL1: if (ich_hcr & ICH_HCR_TDIR) return true; fallthrough; case SYS_ICC_RPR_EL1: case SYS_ICC_CTLR_EL1: case SYS_ICC_PMR_EL1: return ich_hcr & ICH_HCR_TC; default: return false; } } int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu) { int rt; u64 esr; u32 vmcr; void (*fn)(struct kvm_vcpu *, u32, int); bool is_read; u32 sysreg; if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3) return 0; esr = kvm_vcpu_get_esr(vcpu); if (vcpu_mode_is_32bit(vcpu)) { if (!kvm_condition_valid(vcpu)) { __kvm_skip_instr(vcpu); return 1; } sysreg = esr_cp15_to_sysreg(esr); } else { sysreg = esr_sys64_to_sysreg(esr); } is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ; if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read)) return 0; switch (sysreg) { case SYS_ICC_IAR0_EL1: case SYS_ICC_IAR1_EL1: if (unlikely(!is_read)) return 0; fn = __vgic_v3_read_iar; break; case SYS_ICC_EOIR0_EL1: case SYS_ICC_EOIR1_EL1: if (unlikely(is_read)) return 0; fn = __vgic_v3_write_eoir; break; case SYS_ICC_IGRPEN1_EL1: if (is_read) fn = __vgic_v3_read_igrpen1; else fn = __vgic_v3_write_igrpen1; break; case SYS_ICC_BPR1_EL1: if (is_read) fn = __vgic_v3_read_bpr1; else fn = __vgic_v3_write_bpr1; break; case SYS_ICC_AP0Rn_EL1(0): case SYS_ICC_AP1Rn_EL1(0): if (is_read) fn = __vgic_v3_read_apxr0; else fn = __vgic_v3_write_apxr0; break; case SYS_ICC_AP0Rn_EL1(1): case SYS_ICC_AP1Rn_EL1(1): if (is_read) fn = __vgic_v3_read_apxr1; else fn = __vgic_v3_write_apxr1; break; case SYS_ICC_AP0Rn_EL1(2): case SYS_ICC_AP1Rn_EL1(2): if (is_read) fn = __vgic_v3_read_apxr2; else fn = __vgic_v3_write_apxr2; break; case SYS_ICC_AP0Rn_EL1(3): case SYS_ICC_AP1Rn_EL1(3): if (is_read) fn = __vgic_v3_read_apxr3; else fn = __vgic_v3_write_apxr3; break; case SYS_ICC_HPPIR0_EL1: case SYS_ICC_HPPIR1_EL1: if (unlikely(!is_read)) return 0; fn = __vgic_v3_read_hppir; break; case SYS_ICC_IGRPEN0_EL1: if (is_read) fn = __vgic_v3_read_igrpen0; else fn = __vgic_v3_write_igrpen0; break; case SYS_ICC_BPR0_EL1: if (is_read) fn = __vgic_v3_read_bpr0; else fn = __vgic_v3_write_bpr0; break; case SYS_ICC_DIR_EL1: if (unlikely(is_read)) return 0; fn = __vgic_v3_write_dir; break; case SYS_ICC_RPR_EL1: if (unlikely(!is_read)) return 0; fn = __vgic_v3_read_rpr; break; case SYS_ICC_CTLR_EL1: if (is_read) fn = __vgic_v3_read_ctlr; else fn = __vgic_v3_write_ctlr; break; case SYS_ICC_PMR_EL1: if (is_read) fn = __vgic_v3_read_pmr; else fn = __vgic_v3_write_pmr; break; default: return 0; } vmcr = __vgic_v3_read_vmcr(); rt = kvm_vcpu_sys_get_rt(vcpu); fn(vcpu, vmcr, rt); __kvm_skip_instr(vcpu); return 1; }