// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* VHE specific context */ DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); /* * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1 * semantics, irrespective of the configuration), but that cannot be * applied to the actual HW as things would otherwise break badly. * * - TGE: we want the guest to use EL1, which is incompatible with * this bit being set * * - API/APK: they are already accounted for by vcpu_load(), and can * only take effect across a load/put cycle (such as ERET) */ #define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK) static u64 __compute_hcr(struct kvm_vcpu *vcpu) { u64 hcr = vcpu->arch.hcr_el2; if (!vcpu_has_nv(vcpu)) return hcr; if (is_hyp_ctxt(vcpu)) { hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB; if (!vcpu_el2_e2h_is_set(vcpu)) hcr |= HCR_NV1; write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2); } return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE); } static void __activate_cptr_traps(struct kvm_vcpu *vcpu) { u64 cptr; /* * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2, * except for some missing controls, such as TAM. * In this case, CPTR_EL2.TAM has the same position with or without * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM * shift value for trapping the AMU accesses. */ u64 val = CPACR_ELx_TTA | CPTR_EL2_TAM; if (guest_owns_fp_regs()) { val |= CPACR_ELx_FPEN; if (vcpu_has_sve(vcpu)) val |= CPACR_ELx_ZEN; } else { __activate_traps_fpsimd32(vcpu); } if (!vcpu_has_nv(vcpu)) goto write; /* * The architecture is a bit crap (what a surprise): an EL2 guest * writing to CPTR_EL2 via CPACR_EL1 can't set any of TCPAC or TTA, * as they are RES0 in the guest's view. To work around it, trap the * sucker using the very same bit it can't set... */ if (vcpu_el2_e2h_is_set(vcpu) && is_hyp_ctxt(vcpu)) val |= CPTR_EL2_TCPAC; /* * Layer the guest hypervisor's trap configuration on top of our own if * we're in a nested context. */ if (is_hyp_ctxt(vcpu)) goto write; cptr = vcpu_sanitised_cptr_el2(vcpu); /* * Pay attention, there's some interesting detail here. * * The CPTR_EL2.xEN fields are 2 bits wide, although there are only two * meaningful trap states when HCR_EL2.TGE = 0 (running a nested guest): * * - CPTR_EL2.xEN = x0, traps are enabled * - CPTR_EL2.xEN = x1, traps are disabled * * In other words, bit[0] determines if guest accesses trap or not. In * the interest of simplicity, clear the entire field if the guest * hypervisor has traps enabled to dispel any illusion of something more * complicated taking place. */ if (!(SYS_FIELD_GET(CPACR_ELx, FPEN, cptr) & BIT(0))) val &= ~CPACR_ELx_FPEN; if (!(SYS_FIELD_GET(CPACR_ELx, ZEN, cptr) & BIT(0))) val &= ~CPACR_ELx_ZEN; if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S2POE, IMP)) val |= cptr & CPACR_ELx_E0POE; val |= cptr & CPTR_EL2_TCPAC; write: write_sysreg(val, cpacr_el1); } static void __activate_traps(struct kvm_vcpu *vcpu) { u64 val; ___activate_traps(vcpu, __compute_hcr(vcpu)); if (has_cntpoff()) { struct timer_map map; get_timer_map(vcpu, &map); /* * We're entrering the guest. Reload the correct * values from memory now that TGE is clear. */ if (map.direct_ptimer == vcpu_ptimer(vcpu)) val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); if (map.direct_ptimer == vcpu_hptimer(vcpu)) val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); if (map.direct_ptimer) { write_sysreg_el0(val, SYS_CNTP_CVAL); isb(); } } __activate_cptr_traps(vcpu); write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1); } NOKPROBE_SYMBOL(__activate_traps); static void __deactivate_traps(struct kvm_vcpu *vcpu) { const char *host_vectors = vectors; ___deactivate_traps(vcpu); write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); if (has_cntpoff()) { struct timer_map map; u64 val, offset; get_timer_map(vcpu, &map); /* * We're exiting the guest. Save the latest CVAL value * to memory and apply the offset now that TGE is set. */ val = read_sysreg_el0(SYS_CNTP_CVAL); if (map.direct_ptimer == vcpu_ptimer(vcpu)) __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val; if (map.direct_ptimer == vcpu_hptimer(vcpu)) __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val; offset = read_sysreg_s(SYS_CNTPOFF_EL2); if (map.direct_ptimer && offset) { write_sysreg_el0(val + offset, SYS_CNTP_CVAL); isb(); } } /* * ARM errata 1165522 and 1530923 require the actual execution of the * above before we can switch to the EL2/EL0 translation regime used by * the host. */ asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); kvm_reset_cptr_el2(vcpu); if (!arm64_kernel_unmapped_at_el0()) host_vectors = __this_cpu_read(this_cpu_vector); write_sysreg(host_vectors, vbar_el1); } NOKPROBE_SYMBOL(__deactivate_traps); /* * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to * prevent a race condition between context switching of PMUSERENR_EL0 * in __{activate,deactivate}_traps_common() and IPIs that attempts to * update PMUSERENR_EL0. See also kvm_set_pmuserenr(). */ static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu) { unsigned long flags; local_irq_save(flags); __activate_traps_common(vcpu); local_irq_restore(flags); } static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu) { unsigned long flags; local_irq_save(flags); __deactivate_traps_common(vcpu); local_irq_restore(flags); } void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu) { host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu; __vcpu_load_switch_sysregs(vcpu); __vcpu_load_activate_traps(vcpu); __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch); } void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu) { __vcpu_put_deactivate_traps(vcpu); __vcpu_put_switch_sysregs(vcpu); host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL; } static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code) { u64 esr = kvm_vcpu_get_esr(vcpu); u64 spsr, elr, mode; /* * Going through the whole put/load motions is a waste of time * if this is a VHE guest hypervisor returning to its own * userspace, or the hypervisor performing a local exception * return. No need to save/restore registers, no need to * switch S2 MMU. Just do the canonical ERET. * * Unless the trap has to be forwarded further down the line, * of course... */ if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) || (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET)) return false; spsr = read_sysreg_el1(SYS_SPSR); mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT); switch (mode) { case PSR_MODE_EL0t: if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))) return false; break; case PSR_MODE_EL2t: mode = PSR_MODE_EL1t; break; case PSR_MODE_EL2h: mode = PSR_MODE_EL1h; break; default: return false; } /* If ERETAx fails, take the slow path */ if (esr_iss_is_eretax(esr)) { if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr))) return false; } else { elr = read_sysreg_el1(SYS_ELR); } spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode; write_sysreg_el2(spsr, SYS_SPSR); write_sysreg_el2(elr, SYS_ELR); return true; } static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu) { __fpsimd_save_state(*host_data_ptr(fpsimd_state)); if (kvm_has_fpmr(vcpu->kvm)) **host_data_ptr(fpmr_ptr) = read_sysreg_s(SYS_FPMR); } static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code) { int ret = -EINVAL; u32 instr; u64 val; /* * Ideally, we would never trap on EL2 S1 TLB invalidations using * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}. * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2, * meaning that we can't track changes to the virtual TGE bit. So we * have to leave HCR_EL2.TTLB set on the host. Oopsie... * * Try and handle these invalidation as quickly as possible, without * fully exiting. Note that we don't need to consider any forwarding * here, as having E2H+TGE set is the very definition of being * InHost. * * For the lesser hypervisors out there that have failed to get on * with the VHE program, we can also handle the nVHE style of EL2 * invalidation. */ if (!(is_hyp_ctxt(vcpu))) return false; instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) && vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) || kvm_supported_tlbi_s1e2_op (vcpu, instr)) ret = __kvm_tlbi_s1e2(NULL, val, instr); if (ret) return false; __kvm_skip_instr(vcpu); return true; } static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code) { u64 esr = kvm_vcpu_get_esr(vcpu); int rt; if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1) return false; rt = kvm_vcpu_sys_get_rt(vcpu); if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) { vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2)); } else { vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2); __activate_cptr_traps(vcpu); } __kvm_skip_instr(vcpu); return true; } static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); if (!vcpu_has_nv(vcpu)) return false; if (sysreg != SYS_ZCR_EL2) return false; if (guest_owns_fp_regs()) return false; /* * ZCR_EL2 traps are handled in the slow path, with the expectation * that the guest's FP context has already been loaded onto the CPU. * * Load the guest's FP context and unconditionally forward to the * slow path for handling (i.e. return false). */ kvm_hyp_handle_fpsimd(vcpu, exit_code); return false; } static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code) { if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code)) return true; if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code)) return true; if (kvm_hyp_handle_zcr_el2(vcpu, exit_code)) return true; return kvm_hyp_handle_sysreg(vcpu, exit_code); } static const exit_handler_fn hyp_exit_handlers[] = { [0 ... ESR_ELx_EC_MAX] = NULL, [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe, [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, [ESR_ELx_EC_ERET] = kvm_hyp_handle_eret, [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, }; static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) { return hyp_exit_handlers; } static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * If we were in HYP context on entry, adjust the PSTATE view * so that the usual helpers work correctly. */ if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) { u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); switch (mode) { case PSR_MODE_EL1t: mode = PSR_MODE_EL2t; break; case PSR_MODE_EL1h: mode = PSR_MODE_EL2h; break; } *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT); *vcpu_cpsr(vcpu) |= mode; } } /* Switch to the guest for VHE systems running in EL2 */ static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *host_ctxt; struct kvm_cpu_context *guest_ctxt; u64 exit_code; host_ctxt = host_data_ptr(host_ctxt); guest_ctxt = &vcpu->arch.ctxt; sysreg_save_host_state_vhe(host_ctxt); /* * Note that ARM erratum 1165522 requires us to configure both stage 1 * and stage 2 translation for the guest context before we clear * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been * loaded on the CPU in kvm_vcpu_load_vhe(). */ __activate_traps(vcpu); __kvm_adjust_pc(vcpu); sysreg_restore_guest_state_vhe(guest_ctxt); __debug_switch_to_guest(vcpu); do { /* Jump in the fire! */ exit_code = __guest_enter(vcpu); /* And we're baaack! */ } while (fixup_guest_exit(vcpu, &exit_code)); sysreg_save_guest_state_vhe(guest_ctxt); __deactivate_traps(vcpu); sysreg_restore_host_state_vhe(host_ctxt); if (guest_owns_fp_regs()) __fpsimd_save_fpexc32(vcpu); __debug_switch_to_host(vcpu); return exit_code; } NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe); int __kvm_vcpu_run(struct kvm_vcpu *vcpu) { int ret; local_daif_mask(); /* * Having IRQs masked via PMR when entering the guest means the GIC * will not signal the CPU of interrupts of lower priority, and the * only way to get out will be via guest exceptions. * Naturally, we want to avoid this. * * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. */ pmr_sync(); ret = __kvm_vcpu_run_vhe(vcpu); /* * local_daif_restore() takes care to properly restore PSTATE.DAIF * and the GIC PMR if the host is using IRQ priorities. */ local_daif_restore(DAIF_PROCCTX_NOIRQ); /* * When we exit from the guest we change a number of CPU configuration * parameters, such as traps. We rely on the isb() in kvm_call_hyp*() * to make sure these changes take effect before running the host or * additional guests. */ return ret; } static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par) { struct kvm_cpu_context *host_ctxt; struct kvm_vcpu *vcpu; host_ctxt = host_data_ptr(host_ctxt); vcpu = host_ctxt->__hyp_running_vcpu; __deactivate_traps(vcpu); sysreg_restore_host_state_vhe(host_ctxt); panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n", spsr, elr, read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR), read_sysreg(hpfar_el2), par, vcpu); } NOKPROBE_SYMBOL(__hyp_call_panic); void __noreturn hyp_panic(void) { u64 spsr = read_sysreg_el2(SYS_SPSR); u64 elr = read_sysreg_el2(SYS_ELR); u64 par = read_sysreg_par(); __hyp_call_panic(spsr, elr, par); } asmlinkage void kvm_unexpected_el2_exception(void) { __kvm_unexpected_el2_exception(); }