/* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_POWERPC_INTERRUPT_H #define _ASM_POWERPC_INTERRUPT_H /* BookE/4xx */ #define INTERRUPT_CRITICAL_INPUT 0x100 /* BookE */ #define INTERRUPT_DEBUG 0xd00 #ifdef CONFIG_BOOKE #define INTERRUPT_PERFMON 0x260 #define INTERRUPT_DOORBELL 0x280 #endif /* BookS/4xx/8xx */ #define INTERRUPT_MACHINE_CHECK 0x200 /* BookS/8xx */ #define INTERRUPT_SYSTEM_RESET 0x100 /* BookS */ #define INTERRUPT_DATA_SEGMENT 0x380 #define INTERRUPT_INST_SEGMENT 0x480 #define INTERRUPT_TRACE 0xd00 #define INTERRUPT_H_DATA_STORAGE 0xe00 #define INTERRUPT_HMI 0xe60 #define INTERRUPT_H_FAC_UNAVAIL 0xf80 #ifdef CONFIG_PPC_BOOK3S #define INTERRUPT_DOORBELL 0xa00 #define INTERRUPT_PERFMON 0xf00 #define INTERRUPT_ALTIVEC_UNAVAIL 0xf20 #endif /* BookE/BookS/4xx/8xx */ #define INTERRUPT_DATA_STORAGE 0x300 #define INTERRUPT_INST_STORAGE 0x400 #define INTERRUPT_EXTERNAL 0x500 #define INTERRUPT_ALIGNMENT 0x600 #define INTERRUPT_PROGRAM 0x700 #define INTERRUPT_SYSCALL 0xc00 #define INTERRUPT_TRACE 0xd00 /* BookE/BookS/44x */ #define INTERRUPT_FP_UNAVAIL 0x800 /* BookE/BookS/44x/8xx */ #define INTERRUPT_DECREMENTER 0x900 #ifndef INTERRUPT_PERFMON #define INTERRUPT_PERFMON 0x0 #endif /* 8xx */ #define INTERRUPT_SOFT_EMU_8xx 0x1000 #define INTERRUPT_INST_TLB_MISS_8xx 0x1100 #define INTERRUPT_DATA_TLB_MISS_8xx 0x1200 #define INTERRUPT_INST_TLB_ERROR_8xx 0x1300 #define INTERRUPT_DATA_TLB_ERROR_8xx 0x1400 #define INTERRUPT_DATA_BREAKPOINT_8xx 0x1c00 #define INTERRUPT_INST_BREAKPOINT_8xx 0x1d00 /* 603 */ #define INTERRUPT_INST_TLB_MISS_603 0x1000 #define INTERRUPT_DATA_LOAD_TLB_MISS_603 0x1100 #define INTERRUPT_DATA_STORE_TLB_MISS_603 0x1200 #ifndef __ASSEMBLY__ #include #include #include #include #include #include #include #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG /* * WARN/BUG is handled with a program interrupt so minimise checks here to * avoid recursion and maximise the chance of getting the first oops handled. */ #define INT_SOFT_MASK_BUG_ON(regs, cond) \ do { \ if ((user_mode(regs) || (TRAP(regs) != INTERRUPT_PROGRAM))) \ BUG_ON(cond); \ } while (0) #else #define INT_SOFT_MASK_BUG_ON(regs, cond) #endif #ifdef CONFIG_PPC_BOOK3S_64 extern char __end_soft_masked[]; bool search_kernel_soft_mask_table(unsigned long addr); unsigned long search_kernel_restart_table(unsigned long addr); DECLARE_STATIC_KEY_FALSE(interrupt_exit_not_reentrant); static inline bool is_implicit_soft_masked(struct pt_regs *regs) { if (user_mode(regs)) return false; if (regs->nip >= (unsigned long)__end_soft_masked) return false; return search_kernel_soft_mask_table(regs->nip); } static inline void srr_regs_clobbered(void) { local_paca->srr_valid = 0; local_paca->hsrr_valid = 0; } #else static inline unsigned long search_kernel_restart_table(unsigned long addr) { return 0; } static inline bool is_implicit_soft_masked(struct pt_regs *regs) { return false; } static inline void srr_regs_clobbered(void) { } #endif static inline void nap_adjust_return(struct pt_regs *regs) { #ifdef CONFIG_PPC_970_NAP if (unlikely(test_thread_local_flags(_TLF_NAPPING))) { /* Can avoid a test-and-clear because NMIs do not call this */ clear_thread_local_flags(_TLF_NAPPING); regs_set_return_ip(regs, (unsigned long)power4_idle_nap_return); } #endif } static inline void booke_restore_dbcr0(void) { #ifdef CONFIG_PPC_ADV_DEBUG_REGS unsigned long dbcr0 = current->thread.debug.dbcr0; if (IS_ENABLED(CONFIG_PPC32) && unlikely(dbcr0 & DBCR0_IDM)) { mtspr(SPRN_DBSR, -1); mtspr(SPRN_DBCR0, global_dbcr0[smp_processor_id()]); } #endif } static inline void interrupt_enter_prepare(struct pt_regs *regs) { #ifdef CONFIG_PPC64 irq_soft_mask_set(IRQS_ALL_DISABLED); /* * If the interrupt was taken with HARD_DIS clear, then enable MSR[EE]. * Asynchronous interrupts get here with HARD_DIS set (see below), so * this enables MSR[EE] for synchronous interrupts. IRQs remain * soft-masked. The interrupt handler may later call * interrupt_cond_local_irq_enable() to achieve a regular process * context. */ if (!(local_paca->irq_happened & PACA_IRQ_HARD_DIS)) { INT_SOFT_MASK_BUG_ON(regs, !(regs->msr & MSR_EE)); __hard_irq_enable(); } else { __hard_RI_enable(); } /* Enable MSR[RI] early, to support kernel SLB and hash faults */ #endif if (!arch_irq_disabled_regs(regs)) trace_hardirqs_off(); if (user_mode(regs)) { kuap_lock(); CT_WARN_ON(ct_state() != CT_STATE_USER); user_exit_irqoff(); account_cpu_user_entry(); account_stolen_time(); } else { kuap_save_and_lock(regs); /* * CT_WARN_ON comes here via program_check_exception, * so avoid recursion. */ if (TRAP(regs) != INTERRUPT_PROGRAM) CT_WARN_ON(ct_state() != CT_STATE_KERNEL && ct_state() != CT_STATE_IDLE); INT_SOFT_MASK_BUG_ON(regs, is_implicit_soft_masked(regs)); INT_SOFT_MASK_BUG_ON(regs, arch_irq_disabled_regs(regs) && search_kernel_restart_table(regs->nip)); } INT_SOFT_MASK_BUG_ON(regs, !arch_irq_disabled_regs(regs) && !(regs->msr & MSR_EE)); booke_restore_dbcr0(); } /* * Care should be taken to note that interrupt_exit_prepare and * interrupt_async_exit_prepare do not necessarily return immediately to * regs context (e.g., if regs is usermode, we don't necessarily return to * user mode). Other interrupts might be taken between here and return, * context switch / preemption may occur in the exit path after this, or a * signal may be delivered, etc. * * The real interrupt exit code is platform specific, e.g., * interrupt_exit_user_prepare / interrupt_exit_kernel_prepare for 64s. * * However interrupt_nmi_exit_prepare does return directly to regs, because * NMIs do not do "exit work" or replay soft-masked interrupts. */ static inline void interrupt_exit_prepare(struct pt_regs *regs) { } static inline void interrupt_async_enter_prepare(struct pt_regs *regs) { #ifdef CONFIG_PPC64 /* Ensure interrupt_enter_prepare does not enable MSR[EE] */ local_paca->irq_happened |= PACA_IRQ_HARD_DIS; #endif interrupt_enter_prepare(regs); #ifdef CONFIG_PPC_BOOK3S_64 /* * RI=1 is set by interrupt_enter_prepare, so this thread flags access * has to come afterward (it can cause SLB faults). */ if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_local_flags(_TLF_RUNLATCH)) __ppc64_runlatch_on(); #endif irq_enter(); } static inline void interrupt_async_exit_prepare(struct pt_regs *regs) { /* * Adjust at exit so the main handler sees the true NIA. This must * come before irq_exit() because irq_exit can enable interrupts, and * if another interrupt is taken before nap_adjust_return has run * here, then that interrupt would return directly to idle nap return. */ nap_adjust_return(regs); irq_exit(); interrupt_exit_prepare(regs); } struct interrupt_nmi_state { #ifdef CONFIG_PPC64 u8 irq_soft_mask; u8 irq_happened; u8 ftrace_enabled; u64 softe; #endif }; static inline bool nmi_disables_ftrace(struct pt_regs *regs) { /* Allow DEC and PMI to be traced when they are soft-NMI */ if (IS_ENABLED(CONFIG_PPC_BOOK3S_64)) { if (TRAP(regs) == INTERRUPT_DECREMENTER) return false; if (TRAP(regs) == INTERRUPT_PERFMON) return false; } if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) { if (TRAP(regs) == INTERRUPT_PERFMON) return false; } return true; } static inline void interrupt_nmi_enter_prepare(struct pt_regs *regs, struct interrupt_nmi_state *state) { #ifdef CONFIG_PPC64 state->irq_soft_mask = local_paca->irq_soft_mask; state->irq_happened = local_paca->irq_happened; state->softe = regs->softe; /* * Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does * the right thing, and set IRQ_HARD_DIS. We do not want to reconcile * because that goes through irq tracing which we don't want in NMI. */ local_paca->irq_soft_mask = IRQS_ALL_DISABLED; local_paca->irq_happened |= PACA_IRQ_HARD_DIS; if (!(regs->msr & MSR_EE) || is_implicit_soft_masked(regs)) { /* * Adjust regs->softe to be soft-masked if it had not been * reconcied (e.g., interrupt entry with MSR[EE]=0 but softe * not yet set disabled), or if it was in an implicit soft * masked state. This makes arch_irq_disabled_regs(regs) * behave as expected. */ regs->softe = IRQS_ALL_DISABLED; } __hard_RI_enable(); /* Don't do any per-CPU operations until interrupt state is fixed */ if (nmi_disables_ftrace(regs)) { state->ftrace_enabled = this_cpu_get_ftrace_enabled(); this_cpu_set_ftrace_enabled(0); } #endif /* If data relocations are enabled, it's safe to use nmi_enter() */ if (mfmsr() & MSR_DR) { nmi_enter(); return; } /* * But do not use nmi_enter() for pseries hash guest taking a real-mode * NMI because not everything it touches is within the RMA limit. */ if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) return; /* * Likewise, don't use it if we have some form of instrumentation (like * KASAN shadow) that is not safe to access in real mode (even on radix) */ if (IS_ENABLED(CONFIG_KASAN)) return; /* * Likewise, do not use it in real mode if percpu first chunk is not * embedded. With CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK enabled there * are chances where percpu allocation can come from vmalloc area. */ if (percpu_first_chunk_is_paged) return; /* Otherwise, it should be safe to call it */ nmi_enter(); } static inline void interrupt_nmi_exit_prepare(struct pt_regs *regs, struct interrupt_nmi_state *state) { if (mfmsr() & MSR_DR) { // nmi_exit if relocations are on nmi_exit(); } else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) { // no nmi_exit for a pseries hash guest taking a real mode exception } else if (IS_ENABLED(CONFIG_KASAN)) { // no nmi_exit for KASAN in real mode } else if (percpu_first_chunk_is_paged) { // no nmi_exit if percpu first chunk is not embedded } else { nmi_exit(); } /* * nmi does not call nap_adjust_return because nmi should not create * new work to do (must use irq_work for that). */ #ifdef CONFIG_PPC64 #ifdef CONFIG_PPC_BOOK3S if (arch_irq_disabled_regs(regs)) { unsigned long rst = search_kernel_restart_table(regs->nip); if (rst) regs_set_return_ip(regs, rst); } #endif if (nmi_disables_ftrace(regs)) this_cpu_set_ftrace_enabled(state->ftrace_enabled); /* Check we didn't change the pending interrupt mask. */ WARN_ON_ONCE((state->irq_happened | PACA_IRQ_HARD_DIS) != local_paca->irq_happened); regs->softe = state->softe; local_paca->irq_happened = state->irq_happened; local_paca->irq_soft_mask = state->irq_soft_mask; #endif } /* * Don't use noinstr here like x86, but rather add NOKPROBE_SYMBOL to each * function definition. The reason for this is the noinstr section is placed * after the main text section, i.e., very far away from the interrupt entry * asm. That creates problems with fitting linker stubs when building large * kernels. */ #define interrupt_handler __visible noinline notrace __no_kcsan __no_sanitize_address /** * DECLARE_INTERRUPT_HANDLER_RAW - Declare raw interrupt handler function * @func: Function name of the entry point * @returns: Returns a value back to asm caller */ #define DECLARE_INTERRUPT_HANDLER_RAW(func) \ __visible long func(struct pt_regs *regs) /** * DEFINE_INTERRUPT_HANDLER_RAW - Define raw interrupt handler function * @func: Function name of the entry point * @returns: Returns a value back to asm caller * * @func is called from ASM entry code. * * This is a plain function which does no tracing, reconciling, etc. * The macro is written so it acts as function definition. Append the * body with a pair of curly brackets. * * raw interrupt handlers must not enable or disable interrupts, or * schedule, tracing and instrumentation (ftrace, lockdep, etc) would * not be advisable either, although may be possible in a pinch, the * trace will look odd at least. * * A raw handler may call one of the other interrupt handler functions * to be converted into that interrupt context without these restrictions. * * On PPC64, _RAW handlers may return with fast_interrupt_return. * * Specific handlers may have additional restrictions. */ #define DEFINE_INTERRUPT_HANDLER_RAW(func) \ static __always_inline __no_sanitize_address __no_kcsan long \ ____##func(struct pt_regs *regs); \ \ interrupt_handler long func(struct pt_regs *regs) \ { \ long ret; \ \ __hard_RI_enable(); \ \ ret = ____##func (regs); \ \ return ret; \ } \ NOKPROBE_SYMBOL(func); \ \ static __always_inline __no_sanitize_address __no_kcsan long \ ____##func(struct pt_regs *regs) /** * DECLARE_INTERRUPT_HANDLER - Declare synchronous interrupt handler function * @func: Function name of the entry point */ #define DECLARE_INTERRUPT_HANDLER(func) \ __visible void func(struct pt_regs *regs) /** * DEFINE_INTERRUPT_HANDLER - Define synchronous interrupt handler function * @func: Function name of the entry point * * @func is called from ASM entry code. * * The macro is written so it acts as function definition. Append the * body with a pair of curly brackets. */ #define DEFINE_INTERRUPT_HANDLER(func) \ static __always_inline void ____##func(struct pt_regs *regs); \ \ interrupt_handler void func(struct pt_regs *regs) \ { \ interrupt_enter_prepare(regs); \ \ ____##func (regs); \ \ interrupt_exit_prepare(regs); \ } \ NOKPROBE_SYMBOL(func); \ \ static __always_inline void ____##func(struct pt_regs *regs) /** * DECLARE_INTERRUPT_HANDLER_RET - Declare synchronous interrupt handler function * @func: Function name of the entry point * @returns: Returns a value back to asm caller */ #define DECLARE_INTERRUPT_HANDLER_RET(func) \ __visible long func(struct pt_regs *regs) /** * DEFINE_INTERRUPT_HANDLER_RET - Define synchronous interrupt handler function * @func: Function name of the entry point * @returns: Returns a value back to asm caller * * @func is called from ASM entry code. * * The macro is written so it acts as function definition. Append the * body with a pair of curly brackets. */ #define DEFINE_INTERRUPT_HANDLER_RET(func) \ static __always_inline long ____##func(struct pt_regs *regs); \ \ interrupt_handler long func(struct pt_regs *regs) \ { \ long ret; \ \ interrupt_enter_prepare(regs); \ \ ret = ____##func (regs); \ \ interrupt_exit_prepare(regs); \ \ return ret; \ } \ NOKPROBE_SYMBOL(func); \ \ static __always_inline long ____##func(struct pt_regs *regs) /** * DECLARE_INTERRUPT_HANDLER_ASYNC - Declare asynchronous interrupt handler function * @func: Function name of the entry point */ #define DECLARE_INTERRUPT_HANDLER_ASYNC(func) \ __visible void func(struct pt_regs *regs) /** * DEFINE_INTERRUPT_HANDLER_ASYNC - Define asynchronous interrupt handler function * @func: Function name of the entry point * * @func is called from ASM entry code. * * The macro is written so it acts as function definition. Append the * body with a pair of curly brackets. */ #define DEFINE_INTERRUPT_HANDLER_ASYNC(func) \ static __always_inline void ____##func(struct pt_regs *regs); \ \ interrupt_handler void func(struct pt_regs *regs) \ { \ interrupt_async_enter_prepare(regs); \ \ ____##func (regs); \ \ interrupt_async_exit_prepare(regs); \ } \ NOKPROBE_SYMBOL(func); \ \ static __always_inline void ____##func(struct pt_regs *regs) /** * DECLARE_INTERRUPT_HANDLER_NMI - Declare NMI interrupt handler function * @func: Function name of the entry point * @returns: Returns a value back to asm caller */ #define DECLARE_INTERRUPT_HANDLER_NMI(func) \ __visible long func(struct pt_regs *regs) /** * DEFINE_INTERRUPT_HANDLER_NMI - Define NMI interrupt handler function * @func: Function name of the entry point * @returns: Returns a value back to asm caller * * @func is called from ASM entry code. * * The macro is written so it acts as function definition. Append the * body with a pair of curly brackets. */ #define DEFINE_INTERRUPT_HANDLER_NMI(func) \ static __always_inline __no_sanitize_address __no_kcsan long \ ____##func(struct pt_regs *regs); \ \ interrupt_handler long func(struct pt_regs *regs) \ { \ struct interrupt_nmi_state state; \ long ret; \ \ interrupt_nmi_enter_prepare(regs, &state); \ \ ret = ____##func (regs); \ \ interrupt_nmi_exit_prepare(regs, &state); \ \ return ret; \ } \ NOKPROBE_SYMBOL(func); \ \ static __always_inline __no_sanitize_address __no_kcsan long \ ____##func(struct pt_regs *regs) /* Interrupt handlers */ /* kernel/traps.c */ DECLARE_INTERRUPT_HANDLER_NMI(system_reset_exception); #ifdef CONFIG_PPC_BOOK3S_64 DECLARE_INTERRUPT_HANDLER_RAW(machine_check_early_boot); DECLARE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async); #endif DECLARE_INTERRUPT_HANDLER_NMI(machine_check_exception); DECLARE_INTERRUPT_HANDLER(SMIException); DECLARE_INTERRUPT_HANDLER(handle_hmi_exception); DECLARE_INTERRUPT_HANDLER(unknown_exception); DECLARE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception); DECLARE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception); DECLARE_INTERRUPT_HANDLER(instruction_breakpoint_exception); DECLARE_INTERRUPT_HANDLER(RunModeException); DECLARE_INTERRUPT_HANDLER(single_step_exception); DECLARE_INTERRUPT_HANDLER(program_check_exception); DECLARE_INTERRUPT_HANDLER(emulation_assist_interrupt); DECLARE_INTERRUPT_HANDLER(alignment_exception); DECLARE_INTERRUPT_HANDLER(StackOverflow); DECLARE_INTERRUPT_HANDLER(stack_overflow_exception); DECLARE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception); DECLARE_INTERRUPT_HANDLER(altivec_unavailable_exception); DECLARE_INTERRUPT_HANDLER(vsx_unavailable_exception); DECLARE_INTERRUPT_HANDLER(facility_unavailable_exception); DECLARE_INTERRUPT_HANDLER(fp_unavailable_tm); DECLARE_INTERRUPT_HANDLER(altivec_unavailable_tm); DECLARE_INTERRUPT_HANDLER(vsx_unavailable_tm); DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi); DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async); DECLARE_INTERRUPT_HANDLER_RAW(performance_monitor_exception); DECLARE_INTERRUPT_HANDLER(DebugException); DECLARE_INTERRUPT_HANDLER(altivec_assist_exception); DECLARE_INTERRUPT_HANDLER(CacheLockingException); DECLARE_INTERRUPT_HANDLER(SPEFloatingPointException); DECLARE_INTERRUPT_HANDLER(SPEFloatingPointRoundException); DECLARE_INTERRUPT_HANDLER_NMI(WatchdogException); DECLARE_INTERRUPT_HANDLER(kernel_bad_stack); /* slb.c */ DECLARE_INTERRUPT_HANDLER_RAW(do_slb_fault); DECLARE_INTERRUPT_HANDLER(do_bad_segment_interrupt); /* hash_utils.c */ DECLARE_INTERRUPT_HANDLER(do_hash_fault); /* fault.c */ DECLARE_INTERRUPT_HANDLER(do_page_fault); DECLARE_INTERRUPT_HANDLER(do_bad_page_fault_segv); /* process.c */ DECLARE_INTERRUPT_HANDLER(do_break); /* time.c */ DECLARE_INTERRUPT_HANDLER_ASYNC(timer_interrupt); /* mce.c */ DECLARE_INTERRUPT_HANDLER_NMI(machine_check_early); DECLARE_INTERRUPT_HANDLER_NMI(hmi_exception_realmode); DECLARE_INTERRUPT_HANDLER_ASYNC(TAUException); /* irq.c */ DECLARE_INTERRUPT_HANDLER_ASYNC(do_IRQ); void __noreturn unrecoverable_exception(struct pt_regs *regs); void replay_system_reset(void); void replay_soft_interrupts(void); static inline void interrupt_cond_local_irq_enable(struct pt_regs *regs) { if (!arch_irq_disabled_regs(regs)) local_irq_enable(); } long system_call_exception(struct pt_regs *regs, unsigned long r0); notrace unsigned long syscall_exit_prepare(unsigned long r3, struct pt_regs *regs, long scv); notrace unsigned long interrupt_exit_user_prepare(struct pt_regs *regs); notrace unsigned long interrupt_exit_kernel_prepare(struct pt_regs *regs); #ifdef CONFIG_PPC64 unsigned long syscall_exit_restart(unsigned long r3, struct pt_regs *regs); unsigned long interrupt_exit_user_restart(struct pt_regs *regs); unsigned long interrupt_exit_kernel_restart(struct pt_regs *regs); #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_INTERRUPT_H */