// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2004 Benjamin Herrenschmidt, IBM Corp. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The alignment of the vDSO */ #define VDSO_ALIGNMENT (1 << 16) extern char vdso32_start, vdso32_end; extern char vdso64_start, vdso64_end; long sys_ni_syscall(void); /* * The vdso data page (aka. systemcfg for old ppc64 fans) is here. * Once the early boot kernel code no longer needs to muck around * with it, it will become dynamically allocated */ static union { struct vdso_arch_data data; u8 page[PAGE_SIZE]; } vdso_data_store __page_aligned_data; struct vdso_arch_data *vdso_data = &vdso_data_store.data; enum vvar_pages { VVAR_DATA_PAGE_OFFSET, VVAR_TIMENS_PAGE_OFFSET, VVAR_NR_PAGES, }; static int vdso_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma, unsigned long text_size) { unsigned long new_size = new_vma->vm_end - new_vma->vm_start; if (new_size != text_size) return -EINVAL; current->mm->context.vdso = (void __user *)new_vma->vm_start; return 0; } static int vdso32_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) { return vdso_mremap(sm, new_vma, &vdso32_end - &vdso32_start); } static int vdso64_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) { return vdso_mremap(sm, new_vma, &vdso64_end - &vdso64_start); } static void vdso_close(const struct vm_special_mapping *sm, struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; /* * close() is called for munmap() but also for mremap(). In the mremap() * case the vdso pointer has already been updated by the mremap() hook * above, so it must not be set to NULL here. */ if (vma->vm_start != (unsigned long)mm->context.vdso) return; mm->context.vdso = NULL; } static vm_fault_t vvar_fault(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf); static struct vm_special_mapping vvar_spec __ro_after_init = { .name = "[vvar]", .fault = vvar_fault, }; static struct vm_special_mapping vdso32_spec __ro_after_init = { .name = "[vdso]", .mremap = vdso32_mremap, .close = vdso_close, }; static struct vm_special_mapping vdso64_spec __ro_after_init = { .name = "[vdso]", .mremap = vdso64_mremap, .close = vdso_close, }; #ifdef CONFIG_TIME_NS struct vdso_data *arch_get_vdso_data(void *vvar_page) { return ((struct vdso_arch_data *)vvar_page)->data; } /* * The vvar mapping contains data for a specific time namespace, so when a task * changes namespace we must unmap its vvar data for the old namespace. * Subsequent faults will map in data for the new namespace. * * For more details see timens_setup_vdso_data(). */ int vdso_join_timens(struct task_struct *task, struct time_namespace *ns) { struct mm_struct *mm = task->mm; VMA_ITERATOR(vmi, mm, 0); struct vm_area_struct *vma; mmap_read_lock(mm); for_each_vma(vmi, vma) { if (vma_is_special_mapping(vma, &vvar_spec)) zap_vma_pages(vma); } mmap_read_unlock(mm); return 0; } #endif static vm_fault_t vvar_fault(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *timens_page = find_timens_vvar_page(vma); unsigned long pfn; switch (vmf->pgoff) { case VVAR_DATA_PAGE_OFFSET: if (timens_page) pfn = page_to_pfn(timens_page); else pfn = virt_to_pfn(vdso_data); break; #ifdef CONFIG_TIME_NS case VVAR_TIMENS_PAGE_OFFSET: /* * If a task belongs to a time namespace then a namespace * specific VVAR is mapped with the VVAR_DATA_PAGE_OFFSET and * the real VVAR page is mapped with the VVAR_TIMENS_PAGE_OFFSET * offset. * See also the comment near timens_setup_vdso_data(). */ if (!timens_page) return VM_FAULT_SIGBUS; pfn = virt_to_pfn(vdso_data); break; #endif /* CONFIG_TIME_NS */ default: return VM_FAULT_SIGBUS; } return vmf_insert_pfn(vma, vmf->address, pfn); } /* * This is called from binfmt_elf, we create the special vma for the * vDSO and insert it into the mm struct tree */ static int __arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { unsigned long vdso_size, vdso_base, mappings_size; struct vm_special_mapping *vdso_spec; unsigned long vvar_size = VVAR_NR_PAGES * PAGE_SIZE; struct mm_struct *mm = current->mm; struct vm_area_struct *vma; if (is_32bit_task()) { vdso_spec = &vdso32_spec; vdso_size = &vdso32_end - &vdso32_start; } else { vdso_spec = &vdso64_spec; vdso_size = &vdso64_end - &vdso64_start; } mappings_size = vdso_size + vvar_size; mappings_size += (VDSO_ALIGNMENT - 1) & PAGE_MASK; /* * Pick a base address for the vDSO in process space. * Add enough to the size so that the result can be aligned. */ vdso_base = get_unmapped_area(NULL, 0, mappings_size, 0, 0); if (IS_ERR_VALUE(vdso_base)) return vdso_base; /* Add required alignment. */ vdso_base = ALIGN(vdso_base, VDSO_ALIGNMENT); vma = _install_special_mapping(mm, vdso_base, vvar_size, VM_READ | VM_MAYREAD | VM_IO | VM_DONTDUMP | VM_PFNMAP, &vvar_spec); if (IS_ERR(vma)) return PTR_ERR(vma); /* * our vma flags don't have VM_WRITE so by default, the process isn't * allowed to write those pages. * gdb can break that with ptrace interface, and thus trigger COW on * those pages but it's then your responsibility to never do that on * the "data" page of the vDSO or you'll stop getting kernel updates * and your nice userland gettimeofday will be totally dead. * It's fine to use that for setting breakpoints in the vDSO code * pages though. */ vma = _install_special_mapping(mm, vdso_base + vvar_size, vdso_size, VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC, vdso_spec); if (IS_ERR(vma)) { do_munmap(mm, vdso_base, vvar_size, NULL); return PTR_ERR(vma); } // Now that the mappings are in place, set the mm VDSO pointer mm->context.vdso = (void __user *)vdso_base + vvar_size; return 0; } int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { struct mm_struct *mm = current->mm; int rc; mm->context.vdso = NULL; if (mmap_write_lock_killable(mm)) return -EINTR; rc = __arch_setup_additional_pages(bprm, uses_interp); mmap_write_unlock(mm); return rc; } #define VDSO_DO_FIXUPS(type, value, bits, sec) do { \ void *__start = (void *)VDSO##bits##_SYMBOL(&vdso##bits##_start, sec##_start); \ void *__end = (void *)VDSO##bits##_SYMBOL(&vdso##bits##_start, sec##_end); \ \ do_##type##_fixups((value), __start, __end); \ } while (0) static void __init vdso_fixup_features(void) { #ifdef CONFIG_PPC64 VDSO_DO_FIXUPS(feature, cur_cpu_spec->cpu_features, 64, ftr_fixup); VDSO_DO_FIXUPS(feature, cur_cpu_spec->mmu_features, 64, mmu_ftr_fixup); VDSO_DO_FIXUPS(feature, powerpc_firmware_features, 64, fw_ftr_fixup); VDSO_DO_FIXUPS(lwsync, cur_cpu_spec->cpu_features, 64, lwsync_fixup); #endif /* CONFIG_PPC64 */ #ifdef CONFIG_VDSO32 VDSO_DO_FIXUPS(feature, cur_cpu_spec->cpu_features, 32, ftr_fixup); VDSO_DO_FIXUPS(feature, cur_cpu_spec->mmu_features, 32, mmu_ftr_fixup); #ifdef CONFIG_PPC64 VDSO_DO_FIXUPS(feature, powerpc_firmware_features, 32, fw_ftr_fixup); #endif /* CONFIG_PPC64 */ VDSO_DO_FIXUPS(lwsync, cur_cpu_spec->cpu_features, 32, lwsync_fixup); #endif } /* * Called from setup_arch to initialize the bitmap of available * syscalls in the systemcfg page */ static void __init vdso_setup_syscall_map(void) { unsigned int i; for (i = 0; i < NR_syscalls; i++) { if (sys_call_table[i] != (void *)&sys_ni_syscall) vdso_data->syscall_map[i >> 5] |= 0x80000000UL >> (i & 0x1f); if (IS_ENABLED(CONFIG_COMPAT) && compat_sys_call_table[i] != (void *)&sys_ni_syscall) vdso_data->compat_syscall_map[i >> 5] |= 0x80000000UL >> (i & 0x1f); } } #ifdef CONFIG_PPC64 int vdso_getcpu_init(void) { unsigned long cpu, node, val; /* * SPRG_VDSO contains the CPU in the bottom 16 bits and the NUMA node * in the next 16 bits. The VDSO uses this to implement getcpu(). */ cpu = get_cpu(); WARN_ON_ONCE(cpu > 0xffff); node = cpu_to_node(cpu); WARN_ON_ONCE(node > 0xffff); val = (cpu & 0xffff) | ((node & 0xffff) << 16); mtspr(SPRN_SPRG_VDSO_WRITE, val); get_paca()->sprg_vdso = val; put_cpu(); return 0; } /* We need to call this before SMP init */ early_initcall(vdso_getcpu_init); #endif static struct page ** __init vdso_setup_pages(void *start, void *end) { int i; struct page **pagelist; int pages = (end - start) >> PAGE_SHIFT; pagelist = kcalloc(pages + 1, sizeof(struct page *), GFP_KERNEL); if (!pagelist) panic("%s: Cannot allocate page list for VDSO", __func__); for (i = 0; i < pages; i++) pagelist[i] = virt_to_page(start + i * PAGE_SIZE); return pagelist; } static int __init vdso_init(void) { #ifdef CONFIG_PPC64 vdso_data->dcache_block_size = ppc64_caches.l1d.block_size; vdso_data->icache_block_size = ppc64_caches.l1i.block_size; vdso_data->dcache_log_block_size = ppc64_caches.l1d.log_block_size; vdso_data->icache_log_block_size = ppc64_caches.l1i.log_block_size; #endif /* CONFIG_PPC64 */ vdso_setup_syscall_map(); vdso_fixup_features(); if (IS_ENABLED(CONFIG_VDSO32)) vdso32_spec.pages = vdso_setup_pages(&vdso32_start, &vdso32_end); if (IS_ENABLED(CONFIG_PPC64)) vdso64_spec.pages = vdso_setup_pages(&vdso64_start, &vdso64_end); smp_wmb(); return 0; } arch_initcall(vdso_init);