// SPDX-License-Identifier: GPL-2.0-or-later /* * SPU file system -- file contents * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spufs.h" #include "sputrace.h" #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) /* Simple attribute files */ struct spufs_attr { int (*get)(void *, u64 *); int (*set)(void *, u64); char get_buf[24]; /* enough to store a u64 and "\n\0" */ char set_buf[24]; void *data; const char *fmt; /* format for read operation */ struct mutex mutex; /* protects access to these buffers */ }; static int spufs_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt) { struct spufs_attr *attr; attr = kmalloc(sizeof(*attr), GFP_KERNEL); if (!attr) return -ENOMEM; attr->get = get; attr->set = set; attr->data = inode->i_private; attr->fmt = fmt; mutex_init(&attr->mutex); file->private_data = attr; return nonseekable_open(inode, file); } static int spufs_attr_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static ssize_t spufs_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct spufs_attr *attr; size_t size; ssize_t ret; attr = file->private_data; if (!attr->get) return -EACCES; ret = mutex_lock_interruptible(&attr->mutex); if (ret) return ret; if (*ppos) { /* continued read */ size = strlen(attr->get_buf); } else { /* first read */ u64 val; ret = attr->get(attr->data, &val); if (ret) goto out; size = scnprintf(attr->get_buf, sizeof(attr->get_buf), attr->fmt, (unsigned long long)val); } ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); out: mutex_unlock(&attr->mutex); return ret; } static ssize_t spufs_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { struct spufs_attr *attr; u64 val; size_t size; ssize_t ret; attr = file->private_data; if (!attr->set) return -EACCES; ret = mutex_lock_interruptible(&attr->mutex); if (ret) return ret; ret = -EFAULT; size = min(sizeof(attr->set_buf) - 1, len); if (copy_from_user(attr->set_buf, buf, size)) goto out; ret = len; /* claim we got the whole input */ attr->set_buf[size] = '\0'; val = simple_strtol(attr->set_buf, NULL, 0); attr->set(attr->data, val); out: mutex_unlock(&attr->mutex); return ret; } static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf, size_t size) { if (!dump_emit(cprm, buf, size)) return -EIO; return size; } #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ static int __fops ## _open(struct inode *inode, struct file *file) \ { \ __simple_attr_check_format(__fmt, 0ull); \ return spufs_attr_open(inode, file, __get, __set, __fmt); \ } \ static const struct file_operations __fops = { \ .open = __fops ## _open, \ .release = spufs_attr_release, \ .read = spufs_attr_read, \ .write = spufs_attr_write, \ .llseek = generic_file_llseek, \ }; static int spufs_mem_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); file->private_data = ctx; if (!i->i_openers++) ctx->local_store = inode->i_mapping; mutex_unlock(&ctx->mapping_lock); return 0; } static int spufs_mem_release(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); if (!--i->i_openers) ctx->local_store = NULL; mutex_unlock(&ctx->mapping_lock); return 0; } static ssize_t spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm) { return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE); } static ssize_t spufs_mem_read(struct file *file, char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; ssize_t ret; ret = spu_acquire(ctx); if (ret) return ret; ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx), LS_SIZE); spu_release(ctx); return ret; } static ssize_t spufs_mem_write(struct file *file, const char __user *buffer, size_t size, loff_t *ppos) { struct spu_context *ctx = file->private_data; char *local_store; loff_t pos = *ppos; int ret; if (pos > LS_SIZE) return -EFBIG; ret = spu_acquire(ctx); if (ret) return ret; local_store = ctx->ops->get_ls(ctx); size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size); spu_release(ctx); return size; } static vm_fault_t spufs_mem_mmap_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct spu_context *ctx = vma->vm_file->private_data; unsigned long pfn, offset; vm_fault_t ret; offset = vmf->pgoff << PAGE_SHIFT; if (offset >= LS_SIZE) return VM_FAULT_SIGBUS; pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n", vmf->address, offset); if (spu_acquire(ctx)) return VM_FAULT_NOPAGE; if (ctx->state == SPU_STATE_SAVED) { vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset); } else { vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT; } ret = vmf_insert_pfn(vma, vmf->address, pfn); spu_release(ctx); return ret; } static int spufs_mem_mmap_access(struct vm_area_struct *vma, unsigned long address, void *buf, int len, int write) { struct spu_context *ctx = vma->vm_file->private_data; unsigned long offset = address - vma->vm_start; char *local_store; if (write && !(vma->vm_flags & VM_WRITE)) return -EACCES; if (spu_acquire(ctx)) return -EINTR; if ((offset + len) > vma->vm_end) len = vma->vm_end - offset; local_store = ctx->ops->get_ls(ctx); if (write) memcpy_toio(local_store + offset, buf, len); else memcpy_fromio(buf, local_store + offset, len); spu_release(ctx); return len; } static const struct vm_operations_struct spufs_mem_mmap_vmops = { .fault = spufs_mem_mmap_fault, .access = spufs_mem_mmap_access, }; static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); vma->vm_ops = &spufs_mem_mmap_vmops; return 0; } static const struct file_operations spufs_mem_fops = { .open = spufs_mem_open, .release = spufs_mem_release, .read = spufs_mem_read, .write = spufs_mem_write, .llseek = generic_file_llseek, .mmap = spufs_mem_mmap, }; static vm_fault_t spufs_ps_fault(struct vm_fault *vmf, unsigned long ps_offs, unsigned long ps_size) { struct spu_context *ctx = vmf->vma->vm_file->private_data; unsigned long area, offset = vmf->pgoff << PAGE_SHIFT; int err = 0; vm_fault_t ret = VM_FAULT_NOPAGE; spu_context_nospu_trace(spufs_ps_fault__enter, ctx); if (offset >= ps_size) return VM_FAULT_SIGBUS; if (fatal_signal_pending(current)) return VM_FAULT_SIGBUS; /* * Because we release the mmap_lock, the context may be destroyed while * we're in spu_wait. Grab an extra reference so it isn't destroyed * in the meantime. */ get_spu_context(ctx); /* * We have to wait for context to be loaded before we have * pages to hand out to the user, but we don't want to wait * with the mmap_lock held. * It is possible to drop the mmap_lock here, but then we need * to return VM_FAULT_NOPAGE because the mappings may have * hanged. */ if (spu_acquire(ctx)) goto refault; if (ctx->state == SPU_STATE_SAVED) { mmap_read_unlock(current->mm); spu_context_nospu_trace(spufs_ps_fault__sleep, ctx); err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu); mmap_read_lock(current->mm); } else { area = ctx->spu->problem_phys + ps_offs; ret = vmf_insert_pfn(vmf->vma, vmf->address, (area + offset) >> PAGE_SHIFT); spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu); } if (!err) spu_release(ctx); refault: put_spu_context(ctx); return ret; } #if SPUFS_MMAP_4K static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf) { return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE); } static const struct vm_operations_struct spufs_cntl_mmap_vmops = { .fault = spufs_cntl_mmap_fault, }; /* * mmap support for problem state control area [0x4000 - 0x4fff]. */ static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_ops = &spufs_cntl_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_cntl_mmap NULL #endif /* !SPUFS_MMAP_4K */ static int spufs_cntl_get(void *data, u64 *val) { struct spu_context *ctx = data; int ret; ret = spu_acquire(ctx); if (ret) return ret; *val = ctx->ops->status_read(ctx); spu_release(ctx); return 0; } static int spufs_cntl_set(void *data, u64 val) { struct spu_context *ctx = data; int ret; ret = spu_acquire(ctx); if (ret) return ret; ctx->ops->runcntl_write(ctx, val); spu_release(ctx); return 0; } static int spufs_cntl_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); file->private_data = ctx; if (!i->i_openers++) ctx->cntl = inode->i_mapping; mutex_unlock(&ctx->mapping_lock); return simple_attr_open(inode, file, spufs_cntl_get, spufs_cntl_set, "0x%08lx"); } static int spufs_cntl_release(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; simple_attr_release(inode, file); mutex_lock(&ctx->mapping_lock); if (!--i->i_openers) ctx->cntl = NULL; mutex_unlock(&ctx->mapping_lock); return 0; } static const struct file_operations spufs_cntl_fops = { .open = spufs_cntl_open, .release = spufs_cntl_release, .read = simple_attr_read, .write = simple_attr_write, .mmap = spufs_cntl_mmap, }; static int spufs_regs_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); file->private_data = i->i_ctx; return 0; } static ssize_t spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm) { return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs, sizeof(ctx->csa.lscsa->gprs)); } static ssize_t spufs_regs_read(struct file *file, char __user *buffer, size_t size, loff_t *pos) { int ret; struct spu_context *ctx = file->private_data; /* pre-check for file position: if we'd return EOF, there's no point * causing a deschedule */ if (*pos >= sizeof(ctx->csa.lscsa->gprs)) return 0; ret = spu_acquire_saved(ctx); if (ret) return ret; ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs, sizeof(ctx->csa.lscsa->gprs)); spu_release_saved(ctx); return ret; } static ssize_t spufs_regs_write(struct file *file, const char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; if (*pos >= sizeof(lscsa->gprs)) return -EFBIG; ret = spu_acquire_saved(ctx); if (ret) return ret; size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos, buffer, size); spu_release_saved(ctx); return size; } static const struct file_operations spufs_regs_fops = { .open = spufs_regs_open, .read = spufs_regs_read, .write = spufs_regs_write, .llseek = generic_file_llseek, }; static ssize_t spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm) { return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr, sizeof(ctx->csa.lscsa->fpcr)); } static ssize_t spufs_fpcr_read(struct file *file, char __user * buffer, size_t size, loff_t * pos) { int ret; struct spu_context *ctx = file->private_data; ret = spu_acquire_saved(ctx); if (ret) return ret; ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr, sizeof(ctx->csa.lscsa->fpcr)); spu_release_saved(ctx); return ret; } static ssize_t spufs_fpcr_write(struct file *file, const char __user * buffer, size_t size, loff_t * pos) { struct spu_context *ctx = file->private_data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; if (*pos >= sizeof(lscsa->fpcr)) return -EFBIG; ret = spu_acquire_saved(ctx); if (ret) return ret; size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos, buffer, size); spu_release_saved(ctx); return size; } static const struct file_operations spufs_fpcr_fops = { .open = spufs_regs_open, .read = spufs_fpcr_read, .write = spufs_fpcr_write, .llseek = generic_file_llseek, }; /* generic open function for all pipe-like files */ static int spufs_pipe_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); file->private_data = i->i_ctx; return stream_open(inode, file); } /* * Read as many bytes from the mailbox as possible, until * one of the conditions becomes true: * * - no more data available in the mailbox * - end of the user provided buffer * - end of the mapped area */ static ssize_t spufs_mbox_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 mbox_data, __user *udata = (void __user *)buf; ssize_t count; if (len < 4) return -EINVAL; count = spu_acquire(ctx); if (count) return count; for (count = 0; (count + 4) <= len; count += 4, udata++) { int ret; ret = ctx->ops->mbox_read(ctx, &mbox_data); if (ret == 0) break; /* * at the end of the mapped area, we can fault * but still need to return the data we have * read successfully so far. */ ret = put_user(mbox_data, udata); if (ret) { if (!count) count = -EFAULT; break; } } spu_release(ctx); if (!count) count = -EAGAIN; return count; } static const struct file_operations spufs_mbox_fops = { .open = spufs_pipe_open, .read = spufs_mbox_read, }; static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; ssize_t ret; u32 mbox_stat; if (len < 4) return -EINVAL; ret = spu_acquire(ctx); if (ret) return ret; mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; spu_release(ctx); if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) return -EFAULT; return 4; } static const struct file_operations spufs_mbox_stat_fops = { .open = spufs_pipe_open, .read = spufs_mbox_stat_read, }; /* low-level ibox access function */ size_t spu_ibox_read(struct spu_context *ctx, u32 *data) { return ctx->ops->ibox_read(ctx, data); } /* interrupt-level ibox callback function. */ void spufs_ibox_callback(struct spu *spu) { struct spu_context *ctx = spu->ctx; if (ctx) wake_up_all(&ctx->ibox_wq); } /* * Read as many bytes from the interrupt mailbox as possible, until * one of the conditions becomes true: * * - no more data available in the mailbox * - end of the user provided buffer * - end of the mapped area * * If the file is opened without O_NONBLOCK, we wait here until * any data is available, but return when we have been able to * read something. */ static ssize_t spufs_ibox_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 ibox_data, __user *udata = (void __user *)buf; ssize_t count; if (len < 4) return -EINVAL; count = spu_acquire(ctx); if (count) goto out; /* wait only for the first element */ count = 0; if (file->f_flags & O_NONBLOCK) { if (!spu_ibox_read(ctx, &ibox_data)) { count = -EAGAIN; goto out_unlock; } } else { count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); if (count) goto out; } /* if we can't write at all, return -EFAULT */ count = put_user(ibox_data, udata); if (count) goto out_unlock; for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { int ret; ret = ctx->ops->ibox_read(ctx, &ibox_data); if (ret == 0) break; /* * at the end of the mapped area, we can fault * but still need to return the data we have * read successfully so far. */ ret = put_user(ibox_data, udata); if (ret) break; } out_unlock: spu_release(ctx); out: return count; } static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait) { struct spu_context *ctx = file->private_data; __poll_t mask; poll_wait(file, &ctx->ibox_wq, wait); /* * For now keep this uninterruptible and also ignore the rule * that poll should not sleep. Will be fixed later. */ mutex_lock(&ctx->state_mutex); mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM); spu_release(ctx); return mask; } static const struct file_operations spufs_ibox_fops = { .open = spufs_pipe_open, .read = spufs_ibox_read, .poll = spufs_ibox_poll, }; static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; ssize_t ret; u32 ibox_stat; if (len < 4) return -EINVAL; ret = spu_acquire(ctx); if (ret) return ret; ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; spu_release(ctx); if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) return -EFAULT; return 4; } static const struct file_operations spufs_ibox_stat_fops = { .open = spufs_pipe_open, .read = spufs_ibox_stat_read, }; /* low-level mailbox write */ size_t spu_wbox_write(struct spu_context *ctx, u32 data) { return ctx->ops->wbox_write(ctx, data); } /* interrupt-level wbox callback function. */ void spufs_wbox_callback(struct spu *spu) { struct spu_context *ctx = spu->ctx; if (ctx) wake_up_all(&ctx->wbox_wq); } /* * Write as many bytes to the interrupt mailbox as possible, until * one of the conditions becomes true: * * - the mailbox is full * - end of the user provided buffer * - end of the mapped area * * If the file is opened without O_NONBLOCK, we wait here until * space is available, but return when we have been able to * write something. */ static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 wbox_data, __user *udata = (void __user *)buf; ssize_t count; if (len < 4) return -EINVAL; if (get_user(wbox_data, udata)) return -EFAULT; count = spu_acquire(ctx); if (count) goto out; /* * make sure we can at least write one element, by waiting * in case of !O_NONBLOCK */ count = 0; if (file->f_flags & O_NONBLOCK) { if (!spu_wbox_write(ctx, wbox_data)) { count = -EAGAIN; goto out_unlock; } } else { count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); if (count) goto out; } /* write as much as possible */ for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { int ret; ret = get_user(wbox_data, udata); if (ret) break; ret = spu_wbox_write(ctx, wbox_data); if (ret == 0) break; } out_unlock: spu_release(ctx); out: return count; } static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait) { struct spu_context *ctx = file->private_data; __poll_t mask; poll_wait(file, &ctx->wbox_wq, wait); /* * For now keep this uninterruptible and also ignore the rule * that poll should not sleep. Will be fixed later. */ mutex_lock(&ctx->state_mutex); mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM); spu_release(ctx); return mask; } static const struct file_operations spufs_wbox_fops = { .open = spufs_pipe_open, .write = spufs_wbox_write, .poll = spufs_wbox_poll, }; static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; ssize_t ret; u32 wbox_stat; if (len < 4) return -EINVAL; ret = spu_acquire(ctx); if (ret) return ret; wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; spu_release(ctx); if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) return -EFAULT; return 4; } static const struct file_operations spufs_wbox_stat_fops = { .open = spufs_pipe_open, .read = spufs_wbox_stat_read, }; static int spufs_signal1_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); file->private_data = ctx; if (!i->i_openers++) ctx->signal1 = inode->i_mapping; mutex_unlock(&ctx->mapping_lock); return nonseekable_open(inode, file); } static int spufs_signal1_release(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); if (!--i->i_openers) ctx->signal1 = NULL; mutex_unlock(&ctx->mapping_lock); return 0; } static ssize_t spufs_signal1_dump(struct spu_context *ctx, struct coredump_params *cprm) { if (!ctx->csa.spu_chnlcnt_RW[3]) return 0; return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3], sizeof(ctx->csa.spu_chnldata_RW[3])); } static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf, size_t len) { if (len < sizeof(ctx->csa.spu_chnldata_RW[3])) return -EINVAL; if (!ctx->csa.spu_chnlcnt_RW[3]) return 0; if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3], sizeof(ctx->csa.spu_chnldata_RW[3]))) return -EFAULT; return sizeof(ctx->csa.spu_chnldata_RW[3]); } static ssize_t spufs_signal1_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { int ret; struct spu_context *ctx = file->private_data; ret = spu_acquire_saved(ctx); if (ret) return ret; ret = __spufs_signal1_read(ctx, buf, len); spu_release_saved(ctx); return ret; } static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx; ssize_t ret; u32 data; ctx = file->private_data; if (len < 4) return -EINVAL; if (copy_from_user(&data, buf, 4)) return -EFAULT; ret = spu_acquire(ctx); if (ret) return ret; ctx->ops->signal1_write(ctx, data); spu_release(ctx); return 4; } static vm_fault_t spufs_signal1_mmap_fault(struct vm_fault *vmf) { #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE); #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole * signal 1 and 2 area */ return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); #else #error unsupported page size #endif } static const struct vm_operations_struct spufs_signal1_mmap_vmops = { .fault = spufs_signal1_mmap_fault, }; static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_ops = &spufs_signal1_mmap_vmops; return 0; } static const struct file_operations spufs_signal1_fops = { .open = spufs_signal1_open, .release = spufs_signal1_release, .read = spufs_signal1_read, .write = spufs_signal1_write, .mmap = spufs_signal1_mmap, }; static const struct file_operations spufs_signal1_nosched_fops = { .open = spufs_signal1_open, .release = spufs_signal1_release, .write = spufs_signal1_write, .mmap = spufs_signal1_mmap, }; static int spufs_signal2_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); file->private_data = ctx; if (!i->i_openers++) ctx->signal2 = inode->i_mapping; mutex_unlock(&ctx->mapping_lock); return nonseekable_open(inode, file); } static int spufs_signal2_release(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); if (!--i->i_openers) ctx->signal2 = NULL; mutex_unlock(&ctx->mapping_lock); return 0; } static ssize_t spufs_signal2_dump(struct spu_context *ctx, struct coredump_params *cprm) { if (!ctx->csa.spu_chnlcnt_RW[4]) return 0; return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4], sizeof(ctx->csa.spu_chnldata_RW[4])); } static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf, size_t len) { if (len < sizeof(ctx->csa.spu_chnldata_RW[4])) return -EINVAL; if (!ctx->csa.spu_chnlcnt_RW[4]) return 0; if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4], sizeof(ctx->csa.spu_chnldata_RW[4]))) return -EFAULT; return sizeof(ctx->csa.spu_chnldata_RW[4]); } static ssize_t spufs_signal2_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; ret = __spufs_signal2_read(ctx, buf, len); spu_release_saved(ctx); return ret; } static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx; ssize_t ret; u32 data; ctx = file->private_data; if (len < 4) return -EINVAL; if (copy_from_user(&data, buf, 4)) return -EFAULT; ret = spu_acquire(ctx); if (ret) return ret; ctx->ops->signal2_write(ctx, data); spu_release(ctx); return 4; } #if SPUFS_MMAP_4K static vm_fault_t spufs_signal2_mmap_fault(struct vm_fault *vmf) { #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE); #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole * signal 1 and 2 area */ return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); #else #error unsupported page size #endif } static const struct vm_operations_struct spufs_signal2_mmap_vmops = { .fault = spufs_signal2_mmap_fault, }; static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_ops = &spufs_signal2_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_signal2_mmap NULL #endif /* !SPUFS_MMAP_4K */ static const struct file_operations spufs_signal2_fops = { .open = spufs_signal2_open, .release = spufs_signal2_release, .read = spufs_signal2_read, .write = spufs_signal2_write, .mmap = spufs_signal2_mmap, }; static const struct file_operations spufs_signal2_nosched_fops = { .open = spufs_signal2_open, .release = spufs_signal2_release, .write = spufs_signal2_write, .mmap = spufs_signal2_mmap, }; /* * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the * work of acquiring (or not) the SPU context before calling through * to the actual get routine. The set routine is called directly. */ #define SPU_ATTR_NOACQUIRE 0 #define SPU_ATTR_ACQUIRE 1 #define SPU_ATTR_ACQUIRE_SAVED 2 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \ static int __##__get(void *data, u64 *val) \ { \ struct spu_context *ctx = data; \ int ret = 0; \ \ if (__acquire == SPU_ATTR_ACQUIRE) { \ ret = spu_acquire(ctx); \ if (ret) \ return ret; \ *val = __get(ctx); \ spu_release(ctx); \ } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \ ret = spu_acquire_saved(ctx); \ if (ret) \ return ret; \ *val = __get(ctx); \ spu_release_saved(ctx); \ } else \ *val = __get(ctx); \ \ return 0; \ } \ DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt); static int spufs_signal1_type_set(void *data, u64 val) { struct spu_context *ctx = data; int ret; ret = spu_acquire(ctx); if (ret) return ret; ctx->ops->signal1_type_set(ctx, val); spu_release(ctx); return 0; } static u64 spufs_signal1_type_get(struct spu_context *ctx) { return ctx->ops->signal1_type_get(ctx); } DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE); static int spufs_signal2_type_set(void *data, u64 val) { struct spu_context *ctx = data; int ret; ret = spu_acquire(ctx); if (ret) return ret; ctx->ops->signal2_type_set(ctx, val); spu_release(ctx); return 0; } static u64 spufs_signal2_type_get(struct spu_context *ctx) { return ctx->ops->signal2_type_get(ctx); } DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE); #if SPUFS_MMAP_4K static vm_fault_t spufs_mss_mmap_fault(struct vm_fault *vmf) { return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE); } static const struct vm_operations_struct spufs_mss_mmap_vmops = { .fault = spufs_mss_mmap_fault, }; /* * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. */ static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_ops = &spufs_mss_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_mss_mmap NULL #endif /* !SPUFS_MMAP_4K */ static int spufs_mss_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; file->private_data = i->i_ctx; mutex_lock(&ctx->mapping_lock); if (!i->i_openers++) ctx->mss = inode->i_mapping; mutex_unlock(&ctx->mapping_lock); return nonseekable_open(inode, file); } static int spufs_mss_release(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); if (!--i->i_openers) ctx->mss = NULL; mutex_unlock(&ctx->mapping_lock); return 0; } static const struct file_operations spufs_mss_fops = { .open = spufs_mss_open, .release = spufs_mss_release, .mmap = spufs_mss_mmap, }; static vm_fault_t spufs_psmap_mmap_fault(struct vm_fault *vmf) { return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE); } static const struct vm_operations_struct spufs_psmap_mmap_vmops = { .fault = spufs_psmap_mmap_fault, }; /* * mmap support for full problem state area [0x00000 - 0x1ffff]. */ static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_ops = &spufs_psmap_mmap_vmops; return 0; } static int spufs_psmap_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); file->private_data = i->i_ctx; if (!i->i_openers++) ctx->psmap = inode->i_mapping; mutex_unlock(&ctx->mapping_lock); return nonseekable_open(inode, file); } static int spufs_psmap_release(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); if (!--i->i_openers) ctx->psmap = NULL; mutex_unlock(&ctx->mapping_lock); return 0; } static const struct file_operations spufs_psmap_fops = { .open = spufs_psmap_open, .release = spufs_psmap_release, .mmap = spufs_psmap_mmap, }; #if SPUFS_MMAP_4K static vm_fault_t spufs_mfc_mmap_fault(struct vm_fault *vmf) { return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE); } static const struct vm_operations_struct spufs_mfc_mmap_vmops = { .fault = spufs_mfc_mmap_fault, }; /* * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. */ static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_ops = &spufs_mfc_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_mfc_mmap NULL #endif /* !SPUFS_MMAP_4K */ static int spufs_mfc_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; /* we don't want to deal with DMA into other processes */ if (ctx->owner != current->mm) return -EINVAL; if (atomic_read(&inode->i_count) != 1) return -EBUSY; mutex_lock(&ctx->mapping_lock); file->private_data = ctx; if (!i->i_openers++) ctx->mfc = inode->i_mapping; mutex_unlock(&ctx->mapping_lock); return nonseekable_open(inode, file); } static int spufs_mfc_release(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; mutex_lock(&ctx->mapping_lock); if (!--i->i_openers) ctx->mfc = NULL; mutex_unlock(&ctx->mapping_lock); return 0; } /* interrupt-level mfc callback function. */ void spufs_mfc_callback(struct spu *spu) { struct spu_context *ctx = spu->ctx; if (ctx) wake_up_all(&ctx->mfc_wq); } static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) { /* See if there is one tag group is complete */ /* FIXME we need locking around tagwait */ *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; ctx->tagwait &= ~*status; if (*status) return 1; /* enable interrupt waiting for any tag group, may silently fail if interrupts are already enabled */ ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); return 0; } static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; int ret = -EINVAL; u32 status; if (size != 4) goto out; ret = spu_acquire(ctx); if (ret) return ret; ret = -EINVAL; if (file->f_flags & O_NONBLOCK) { status = ctx->ops->read_mfc_tagstatus(ctx); if (!(status & ctx->tagwait)) ret = -EAGAIN; else /* XXX(hch): shouldn't we clear ret here? */ ctx->tagwait &= ~status; } else { ret = spufs_wait(ctx->mfc_wq, spufs_read_mfc_tagstatus(ctx, &status)); if (ret) goto out; } spu_release(ctx); ret = 4; if (copy_to_user(buffer, &status, 4)) ret = -EFAULT; out: return ret; } static int spufs_check_valid_dma(struct mfc_dma_command *cmd) { pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa, cmd->ea, cmd->size, cmd->tag, cmd->cmd); switch (cmd->cmd) { case MFC_PUT_CMD: case MFC_PUTF_CMD: case MFC_PUTB_CMD: case MFC_GET_CMD: case MFC_GETF_CMD: case MFC_GETB_CMD: break; default: pr_debug("invalid DMA opcode %x\n", cmd->cmd); return -EIO; } if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { pr_debug("invalid DMA alignment, ea %llx lsa %x\n", cmd->ea, cmd->lsa); return -EIO; } switch (cmd->size & 0xf) { case 1: break; case 2: if (cmd->lsa & 1) goto error; break; case 4: if (cmd->lsa & 3) goto error; break; case 8: if (cmd->lsa & 7) goto error; break; case 0: if (cmd->lsa & 15) goto error; break; error: default: pr_debug("invalid DMA alignment %x for size %x\n", cmd->lsa & 0xf, cmd->size); return -EIO; } if (cmd->size > 16 * 1024) { pr_debug("invalid DMA size %x\n", cmd->size); return -EIO; } if (cmd->tag & 0xfff0) { /* we reserve the higher tag numbers for kernel use */ pr_debug("invalid DMA tag\n"); return -EIO; } if (cmd->class) { /* not supported in this version */ pr_debug("invalid DMA class\n"); return -EIO; } return 0; } static int spu_send_mfc_command(struct spu_context *ctx, struct mfc_dma_command cmd, int *error) { *error = ctx->ops->send_mfc_command(ctx, &cmd); if (*error == -EAGAIN) { /* wait for any tag group to complete so we have space for the new command */ ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); /* try again, because the queue might be empty again */ *error = ctx->ops->send_mfc_command(ctx, &cmd); if (*error == -EAGAIN) return 0; } return 1; } static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; struct mfc_dma_command cmd; int ret = -EINVAL; if (size != sizeof cmd) goto out; ret = -EFAULT; if (copy_from_user(&cmd, buffer, sizeof cmd)) goto out; ret = spufs_check_valid_dma(&cmd); if (ret) goto out; ret = spu_acquire(ctx); if (ret) goto out; ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); if (ret) goto out; if (file->f_flags & O_NONBLOCK) { ret = ctx->ops->send_mfc_command(ctx, &cmd); } else { int status; ret = spufs_wait(ctx->mfc_wq, spu_send_mfc_command(ctx, cmd, &status)); if (ret) goto out; if (status) ret = status; } if (ret) goto out_unlock; ctx->tagwait |= 1 << cmd.tag; ret = size; out_unlock: spu_release(ctx); out: return ret; } static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait) { struct spu_context *ctx = file->private_data; u32 free_elements, tagstatus; __poll_t mask; poll_wait(file, &ctx->mfc_wq, wait); /* * For now keep this uninterruptible and also ignore the rule * that poll should not sleep. Will be fixed later. */ mutex_lock(&ctx->state_mutex); ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); free_elements = ctx->ops->get_mfc_free_elements(ctx); tagstatus = ctx->ops->read_mfc_tagstatus(ctx); spu_release(ctx); mask = 0; if (free_elements & 0xffff) mask |= EPOLLOUT | EPOLLWRNORM; if (tagstatus & ctx->tagwait) mask |= EPOLLIN | EPOLLRDNORM; pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__, free_elements, tagstatus, ctx->tagwait); return mask; } static int spufs_mfc_flush(struct file *file, fl_owner_t id) { struct spu_context *ctx = file->private_data; int ret; ret = spu_acquire(ctx); if (ret) return ret; spu_release(ctx); return 0; } static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file_inode(file); int err = file_write_and_wait_range(file, start, end); if (!err) { inode_lock(inode); err = spufs_mfc_flush(file, NULL); inode_unlock(inode); } return err; } static const struct file_operations spufs_mfc_fops = { .open = spufs_mfc_open, .release = spufs_mfc_release, .read = spufs_mfc_read, .write = spufs_mfc_write, .poll = spufs_mfc_poll, .flush = spufs_mfc_flush, .fsync = spufs_mfc_fsync, .mmap = spufs_mfc_mmap, }; static int spufs_npc_set(void *data, u64 val) { struct spu_context *ctx = data; int ret; ret = spu_acquire(ctx); if (ret) return ret; ctx->ops->npc_write(ctx, val); spu_release(ctx); return 0; } static u64 spufs_npc_get(struct spu_context *ctx) { return ctx->ops->npc_read(ctx); } DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, "0x%llx\n", SPU_ATTR_ACQUIRE); static int spufs_decr_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; lscsa->decr.slot[0] = (u32) val; spu_release_saved(ctx); return 0; } static u64 spufs_decr_get(struct spu_context *ctx) { struct spu_lscsa *lscsa = ctx->csa.lscsa; return lscsa->decr.slot[0]; } DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); static int spufs_decr_status_set(void *data, u64 val) { struct spu_context *ctx = data; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; if (val) ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING; else ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING; spu_release_saved(ctx); return 0; } static u64 spufs_decr_status_get(struct spu_context *ctx) { if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) return SPU_DECR_STATUS_RUNNING; else return 0; } DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, spufs_decr_status_set, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); static int spufs_event_mask_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; lscsa->event_mask.slot[0] = (u32) val; spu_release_saved(ctx); return 0; } static u64 spufs_event_mask_get(struct spu_context *ctx) { struct spu_lscsa *lscsa = ctx->csa.lscsa; return lscsa->event_mask.slot[0]; } DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, spufs_event_mask_set, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); static u64 spufs_event_status_get(struct spu_context *ctx) { struct spu_state *state = &ctx->csa; u64 stat; stat = state->spu_chnlcnt_RW[0]; if (stat) return state->spu_chnldata_RW[0]; return 0; } DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get, NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) static int spufs_srr0_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; lscsa->srr0.slot[0] = (u32) val; spu_release_saved(ctx); return 0; } static u64 spufs_srr0_get(struct spu_context *ctx) { struct spu_lscsa *lscsa = ctx->csa.lscsa; return lscsa->srr0.slot[0]; } DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) static u64 spufs_id_get(struct spu_context *ctx) { u64 num; if (ctx->state == SPU_STATE_RUNNABLE) num = ctx->spu->number; else num = (unsigned int)-1; return num; } DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n", SPU_ATTR_ACQUIRE) static u64 spufs_object_id_get(struct spu_context *ctx) { /* FIXME: Should there really be no locking here? */ return ctx->object_id; } static int spufs_object_id_set(void *data, u64 id) { struct spu_context *ctx = data; ctx->object_id = id; return 0; } DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE); static u64 spufs_lslr_get(struct spu_context *ctx) { return ctx->csa.priv2.spu_lslr_RW; } DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); static int spufs_info_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; file->private_data = ctx; return 0; } static int spufs_caps_show(struct seq_file *s, void *private) { struct spu_context *ctx = s->private; if (!(ctx->flags & SPU_CREATE_NOSCHED)) seq_puts(s, "sched\n"); if (!(ctx->flags & SPU_CREATE_ISOLATE)) seq_puts(s, "step\n"); return 0; } static int spufs_caps_open(struct inode *inode, struct file *file) { return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx); } static const struct file_operations spufs_caps_fops = { .open = spufs_caps_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static ssize_t spufs_mbox_info_dump(struct spu_context *ctx, struct coredump_params *cprm) { if (!(ctx->csa.prob.mb_stat_R & 0x0000ff)) return 0; return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R, sizeof(ctx->csa.prob.pu_mb_R)); } static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 stat, data; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; spin_lock(&ctx->csa.register_lock); stat = ctx->csa.prob.mb_stat_R; data = ctx->csa.prob.pu_mb_R; spin_unlock(&ctx->csa.register_lock); spu_release_saved(ctx); /* EOF if there's no entry in the mbox */ if (!(stat & 0x0000ff)) return 0; return simple_read_from_buffer(buf, len, pos, &data, sizeof(data)); } static const struct file_operations spufs_mbox_info_fops = { .open = spufs_info_open, .read = spufs_mbox_info_read, .llseek = generic_file_llseek, }; static ssize_t spufs_ibox_info_dump(struct spu_context *ctx, struct coredump_params *cprm) { if (!(ctx->csa.prob.mb_stat_R & 0xff0000)) return 0; return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R, sizeof(ctx->csa.priv2.puint_mb_R)); } static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 stat, data; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; spin_lock(&ctx->csa.register_lock); stat = ctx->csa.prob.mb_stat_R; data = ctx->csa.priv2.puint_mb_R; spin_unlock(&ctx->csa.register_lock); spu_release_saved(ctx); /* EOF if there's no entry in the ibox */ if (!(stat & 0xff0000)) return 0; return simple_read_from_buffer(buf, len, pos, &data, sizeof(data)); } static const struct file_operations spufs_ibox_info_fops = { .open = spufs_info_open, .read = spufs_ibox_info_read, .llseek = generic_file_llseek, }; static size_t spufs_wbox_info_cnt(struct spu_context *ctx) { return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32); } static ssize_t spufs_wbox_info_dump(struct spu_context *ctx, struct coredump_params *cprm) { return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data, spufs_wbox_info_cnt(ctx)); } static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)]; int ret, count; ret = spu_acquire_saved(ctx); if (ret) return ret; spin_lock(&ctx->csa.register_lock); count = spufs_wbox_info_cnt(ctx); memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data)); spin_unlock(&ctx->csa.register_lock); spu_release_saved(ctx); return simple_read_from_buffer(buf, len, pos, &data, count * sizeof(u32)); } static const struct file_operations spufs_wbox_info_fops = { .open = spufs_info_open, .read = spufs_wbox_info_read, .llseek = generic_file_llseek, }; static void spufs_get_dma_info(struct spu_context *ctx, struct spu_dma_info *info) { int i; info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW; info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0]; info->dma_info_status = ctx->csa.spu_chnldata_RW[24]; info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25]; info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27]; for (i = 0; i < 16; i++) { struct mfc_cq_sr *qp = &info->dma_info_command_data[i]; struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i]; qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW; qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW; qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW; qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW; } } static ssize_t spufs_dma_info_dump(struct spu_context *ctx, struct coredump_params *cprm) { struct spu_dma_info info; spufs_get_dma_info(ctx, &info); return spufs_dump_emit(cprm, &info, sizeof(info)); } static ssize_t spufs_dma_info_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; struct spu_dma_info info; int ret; ret = spu_acquire_saved(ctx); if (ret) return ret; spin_lock(&ctx->csa.register_lock); spufs_get_dma_info(ctx, &info); spin_unlock(&ctx->csa.register_lock); spu_release_saved(ctx); return simple_read_from_buffer(buf, len, pos, &info, sizeof(info)); } static const struct file_operations spufs_dma_info_fops = { .open = spufs_info_open, .read = spufs_dma_info_read, }; static void spufs_get_proxydma_info(struct spu_context *ctx, struct spu_proxydma_info *info) { int i; info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW; info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW; info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R; for (i = 0; i < 8; i++) { struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i]; struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i]; qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW; qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW; qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW; qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW; } } static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx, struct coredump_params *cprm) { struct spu_proxydma_info info; spufs_get_proxydma_info(ctx, &info); return spufs_dump_emit(cprm, &info, sizeof(info)); } static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; struct spu_proxydma_info info; int ret; if (len < sizeof(info)) return -EINVAL; ret = spu_acquire_saved(ctx); if (ret) return ret; spin_lock(&ctx->csa.register_lock); spufs_get_proxydma_info(ctx, &info); spin_unlock(&ctx->csa.register_lock); spu_release_saved(ctx); return simple_read_from_buffer(buf, len, pos, &info, sizeof(info)); } static const struct file_operations spufs_proxydma_info_fops = { .open = spufs_info_open, .read = spufs_proxydma_info_read, }; static int spufs_show_tid(struct seq_file *s, void *private) { struct spu_context *ctx = s->private; seq_printf(s, "%d\n", ctx->tid); return 0; } static int spufs_tid_open(struct inode *inode, struct file *file) { return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx); } static const struct file_operations spufs_tid_fops = { .open = spufs_tid_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const char *ctx_state_names[] = { "user", "system", "iowait", "loaded" }; static unsigned long long spufs_acct_time(struct spu_context *ctx, enum spu_utilization_state state) { unsigned long long time = ctx->stats.times[state]; /* * In general, utilization statistics are updated by the controlling * thread as the spu context moves through various well defined * state transitions, but if the context is lazily loaded its * utilization statistics are not updated as the controlling thread * is not tightly coupled with the execution of the spu context. We * calculate and apply the time delta from the last recorded state * of the spu context. */ if (ctx->spu && ctx->stats.util_state == state) { time += ktime_get_ns() - ctx->stats.tstamp; } return time / NSEC_PER_MSEC; } static unsigned long long spufs_slb_flts(struct spu_context *ctx) { unsigned long long slb_flts = ctx->stats.slb_flt; if (ctx->state == SPU_STATE_RUNNABLE) { slb_flts += (ctx->spu->stats.slb_flt - ctx->stats.slb_flt_base); } return slb_flts; } static unsigned long long spufs_class2_intrs(struct spu_context *ctx) { unsigned long long class2_intrs = ctx->stats.class2_intr; if (ctx->state == SPU_STATE_RUNNABLE) { class2_intrs += (ctx->spu->stats.class2_intr - ctx->stats.class2_intr_base); } return class2_intrs; } static int spufs_show_stat(struct seq_file *s, void *private) { struct spu_context *ctx = s->private; int ret; ret = spu_acquire(ctx); if (ret) return ret; seq_printf(s, "%s %llu %llu %llu %llu " "%llu %llu %llu %llu %llu %llu %llu %llu\n", ctx_state_names[ctx->stats.util_state], spufs_acct_time(ctx, SPU_UTIL_USER), spufs_acct_time(ctx, SPU_UTIL_SYSTEM), spufs_acct_time(ctx, SPU_UTIL_IOWAIT), spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED), ctx->stats.vol_ctx_switch, ctx->stats.invol_ctx_switch, spufs_slb_flts(ctx), ctx->stats.hash_flt, ctx->stats.min_flt, ctx->stats.maj_flt, spufs_class2_intrs(ctx), ctx->stats.libassist); spu_release(ctx); return 0; } static int spufs_stat_open(struct inode *inode, struct file *file) { return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx); } static const struct file_operations spufs_stat_fops = { .open = spufs_stat_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static inline int spufs_switch_log_used(struct spu_context *ctx) { return (ctx->switch_log->head - ctx->switch_log->tail) % SWITCH_LOG_BUFSIZE; } static inline int spufs_switch_log_avail(struct spu_context *ctx) { return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx); } static int spufs_switch_log_open(struct inode *inode, struct file *file) { struct spu_context *ctx = SPUFS_I(inode)->i_ctx; int rc; rc = spu_acquire(ctx); if (rc) return rc; if (ctx->switch_log) { rc = -EBUSY; goto out; } ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log, SWITCH_LOG_BUFSIZE), GFP_KERNEL); if (!ctx->switch_log) { rc = -ENOMEM; goto out; } ctx->switch_log->head = ctx->switch_log->tail = 0; init_waitqueue_head(&ctx->switch_log->wait); rc = 0; out: spu_release(ctx); return rc; } static int spufs_switch_log_release(struct inode *inode, struct file *file) { struct spu_context *ctx = SPUFS_I(inode)->i_ctx; int rc; rc = spu_acquire(ctx); if (rc) return rc; kfree(ctx->switch_log); ctx->switch_log = NULL; spu_release(ctx); return 0; } static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n) { struct switch_log_entry *p; p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE; return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n", (unsigned long long) p->tstamp.tv_sec, (unsigned int) p->tstamp.tv_nsec, p->spu_id, (unsigned int) p->type, (unsigned int) p->val, (unsigned long long) p->timebase); } static ssize_t spufs_switch_log_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct inode *inode = file_inode(file); struct spu_context *ctx = SPUFS_I(inode)->i_ctx; int error = 0, cnt = 0; if (!buf) return -EINVAL; error = spu_acquire(ctx); if (error) return error; while (cnt < len) { char tbuf[128]; int width; if (spufs_switch_log_used(ctx) == 0) { if (cnt > 0) { /* If there's data ready to go, we can * just return straight away */ break; } else if (file->f_flags & O_NONBLOCK) { error = -EAGAIN; break; } else { /* spufs_wait will drop the mutex and * re-acquire, but since we're in read(), the * file cannot be _released (and so * ctx->switch_log is stable). */ error = spufs_wait(ctx->switch_log->wait, spufs_switch_log_used(ctx) > 0); /* On error, spufs_wait returns without the * state mutex held */ if (error) return error; /* We may have had entries read from underneath * us while we dropped the mutex in spufs_wait, * so re-check */ if (spufs_switch_log_used(ctx) == 0) continue; } } width = switch_log_sprint(ctx, tbuf, sizeof(tbuf)); if (width < len) ctx->switch_log->tail = (ctx->switch_log->tail + 1) % SWITCH_LOG_BUFSIZE; else /* If the record is greater than space available return * partial buffer (so far) */ break; error = copy_to_user(buf + cnt, tbuf, width); if (error) break; cnt += width; } spu_release(ctx); return cnt == 0 ? error : cnt; } static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait) { struct inode *inode = file_inode(file); struct spu_context *ctx = SPUFS_I(inode)->i_ctx; __poll_t mask = 0; int rc; poll_wait(file, &ctx->switch_log->wait, wait); rc = spu_acquire(ctx); if (rc) return rc; if (spufs_switch_log_used(ctx) > 0) mask |= EPOLLIN; spu_release(ctx); return mask; } static const struct file_operations spufs_switch_log_fops = { .open = spufs_switch_log_open, .read = spufs_switch_log_read, .poll = spufs_switch_log_poll, .release = spufs_switch_log_release, }; /** * Log a context switch event to a switch log reader. * * Must be called with ctx->state_mutex held. */ void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx, u32 type, u32 val) { if (!ctx->switch_log) return; if (spufs_switch_log_avail(ctx) > 1) { struct switch_log_entry *p; p = ctx->switch_log->log + ctx->switch_log->head; ktime_get_ts64(&p->tstamp); p->timebase = get_tb(); p->spu_id = spu ? spu->number : -1; p->type = type; p->val = val; ctx->switch_log->head = (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE; } wake_up(&ctx->switch_log->wait); } static int spufs_show_ctx(struct seq_file *s, void *private) { struct spu_context *ctx = s->private; u64 mfc_control_RW; mutex_lock(&ctx->state_mutex); if (ctx->spu) { struct spu *spu = ctx->spu; struct spu_priv2 __iomem *priv2 = spu->priv2; spin_lock_irq(&spu->register_lock); mfc_control_RW = in_be64(&priv2->mfc_control_RW); spin_unlock_irq(&spu->register_lock); } else { struct spu_state *csa = &ctx->csa; mfc_control_RW = csa->priv2.mfc_control_RW; } seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)" " %c %llx %llx %llx %llx %x %x\n", ctx->state == SPU_STATE_SAVED ? 'S' : 'R', ctx->flags, ctx->sched_flags, ctx->prio, ctx->time_slice, ctx->spu ? ctx->spu->number : -1, !list_empty(&ctx->rq) ? 'q' : ' ', ctx->csa.class_0_pending, ctx->csa.class_0_dar, ctx->csa.class_1_dsisr, mfc_control_RW, ctx->ops->runcntl_read(ctx), ctx->ops->status_read(ctx)); mutex_unlock(&ctx->state_mutex); return 0; } static int spufs_ctx_open(struct inode *inode, struct file *file) { return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx); } static const struct file_operations spufs_ctx_fops = { .open = spufs_ctx_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; const struct spufs_tree_descr spufs_dir_contents[] = { { "capabilities", &spufs_caps_fops, 0444, }, { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), }, { "mbox", &spufs_mbox_fops, 0444, }, { "ibox", &spufs_ibox_fops, 0444, }, { "wbox", &spufs_wbox_fops, 0222, }, { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, { "signal1", &spufs_signal1_fops, 0666, }, { "signal2", &spufs_signal2_fops, 0666, }, { "signal1_type", &spufs_signal1_type, 0666, }, { "signal2_type", &spufs_signal2_type, 0666, }, { "cntl", &spufs_cntl_fops, 0666, }, { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), }, { "lslr", &spufs_lslr_ops, 0444, }, { "mfc", &spufs_mfc_fops, 0666, }, { "mss", &spufs_mss_fops, 0666, }, { "npc", &spufs_npc_ops, 0666, }, { "srr0", &spufs_srr0_ops, 0666, }, { "decr", &spufs_decr_ops, 0666, }, { "decr_status", &spufs_decr_status_ops, 0666, }, { "event_mask", &spufs_event_mask_ops, 0666, }, { "event_status", &spufs_event_status_ops, 0444, }, { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, { "phys-id", &spufs_id_ops, 0666, }, { "object-id", &spufs_object_id_ops, 0666, }, { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), }, { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), }, { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), }, { "dma_info", &spufs_dma_info_fops, 0444, sizeof(struct spu_dma_info), }, { "proxydma_info", &spufs_proxydma_info_fops, 0444, sizeof(struct spu_proxydma_info)}, { "tid", &spufs_tid_fops, 0444, }, { "stat", &spufs_stat_fops, 0444, }, { "switch_log", &spufs_switch_log_fops, 0444 }, {}, }; const struct spufs_tree_descr spufs_dir_nosched_contents[] = { { "capabilities", &spufs_caps_fops, 0444, }, { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, { "mbox", &spufs_mbox_fops, 0444, }, { "ibox", &spufs_ibox_fops, 0444, }, { "wbox", &spufs_wbox_fops, 0222, }, { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, { "signal1", &spufs_signal1_nosched_fops, 0222, }, { "signal2", &spufs_signal2_nosched_fops, 0222, }, { "signal1_type", &spufs_signal1_type, 0666, }, { "signal2_type", &spufs_signal2_type, 0666, }, { "mss", &spufs_mss_fops, 0666, }, { "mfc", &spufs_mfc_fops, 0666, }, { "cntl", &spufs_cntl_fops, 0666, }, { "npc", &spufs_npc_ops, 0666, }, { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, { "phys-id", &spufs_id_ops, 0666, }, { "object-id", &spufs_object_id_ops, 0666, }, { "tid", &spufs_tid_fops, 0444, }, { "stat", &spufs_stat_fops, 0444, }, {}, }; const struct spufs_tree_descr spufs_dir_debug_contents[] = { { ".ctx", &spufs_ctx_fops, 0444, }, {}, }; const struct spufs_coredump_reader spufs_coredump_read[] = { { "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])}, { "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) }, { "lslr", NULL, spufs_lslr_get, 19 }, { "decr", NULL, spufs_decr_get, 19 }, { "decr_status", NULL, spufs_decr_status_get, 19 }, { "mem", spufs_mem_dump, NULL, LS_SIZE, }, { "signal1", spufs_signal1_dump, NULL, sizeof(u32) }, { "signal1_type", NULL, spufs_signal1_type_get, 19 }, { "signal2", spufs_signal2_dump, NULL, sizeof(u32) }, { "signal2_type", NULL, spufs_signal2_type_get, 19 }, { "event_mask", NULL, spufs_event_mask_get, 19 }, { "event_status", NULL, spufs_event_status_get, 19 }, { "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) }, { "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) }, { "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)}, { "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)}, { "proxydma_info", spufs_proxydma_info_dump, NULL, sizeof(struct spu_proxydma_info)}, { "object-id", NULL, spufs_object_id_get, 19 }, { "npc", NULL, spufs_npc_get, 19 }, { NULL }, };