// SPDX-License-Identifier: GPL-2.0 /* * ACPI Time and Alarm (TAD) Device Driver * * Copyright (C) 2018 Intel Corporation * Author: Rafael J. Wysocki * * This driver is based on Section 9.18 of the ACPI 6.2 specification revision. * * It only supports the system wakeup capabilities of the TAD. * * Provided are sysfs attributes, available under the TAD platform device, * allowing user space to manage the AC and DC wakeup timers of the TAD: * set and read their values, set and check their expire timer wake policies, * check and clear their status and check the capabilities of the TAD reported * by AML. The DC timer attributes are only present if the TAD supports a * separate DC alarm timer. * * The wakeup events handling and power management of the TAD is expected to * be taken care of by the ACPI PM domain attached to its platform device. */ #include #include #include #include #include #include MODULE_DESCRIPTION("ACPI Time and Alarm (TAD) Device Driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Rafael J. Wysocki"); /* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */ #define ACPI_TAD_AC_WAKE BIT(0) #define ACPI_TAD_DC_WAKE BIT(1) #define ACPI_TAD_RT BIT(2) #define ACPI_TAD_RT_IN_MS BIT(3) #define ACPI_TAD_S4_S5__GWS BIT(4) #define ACPI_TAD_AC_S4_WAKE BIT(5) #define ACPI_TAD_AC_S5_WAKE BIT(6) #define ACPI_TAD_DC_S4_WAKE BIT(7) #define ACPI_TAD_DC_S5_WAKE BIT(8) /* ACPI TAD alarm timer selection */ #define ACPI_TAD_AC_TIMER (u32)0 #define ACPI_TAD_DC_TIMER (u32)1 /* Special value for disabled timer or expired timer wake policy. */ #define ACPI_TAD_WAKE_DISABLED (~(u32)0) struct acpi_tad_driver_data { u32 capabilities; }; struct acpi_tad_rt { u16 year; /* 1900 - 9999 */ u8 month; /* 1 - 12 */ u8 day; /* 1 - 31 */ u8 hour; /* 0 - 23 */ u8 minute; /* 0 - 59 */ u8 second; /* 0 - 59 */ u8 valid; /* 0 (failed) or 1 (success) for reads, 0 for writes */ u16 msec; /* 1 - 1000 */ s16 tz; /* -1440 to 1440 or 2047 (unspecified) */ u8 daylight; u8 padding[3]; /* must be 0 */ } __packed; static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt) { acpi_handle handle = ACPI_HANDLE(dev); union acpi_object args[] = { { .type = ACPI_TYPE_BUFFER, }, }; struct acpi_object_list arg_list = { .pointer = args, .count = ARRAY_SIZE(args), }; unsigned long long retval; acpi_status status; if (rt->year < 1900 || rt->year > 9999 || rt->month < 1 || rt->month > 12 || rt->hour > 23 || rt->minute > 59 || rt->second > 59 || rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) || rt->daylight > 3) return -ERANGE; args[0].buffer.pointer = (u8 *)rt; args[0].buffer.length = sizeof(*rt); pm_runtime_get_sync(dev); status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval); pm_runtime_put_sync(dev); if (ACPI_FAILURE(status) || retval) return -EIO; return 0; } static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt) { acpi_handle handle = ACPI_HANDLE(dev); struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER }; union acpi_object *out_obj; struct acpi_tad_rt *data; acpi_status status; int ret = -EIO; pm_runtime_get_sync(dev); status = acpi_evaluate_object(handle, "_GRT", NULL, &output); pm_runtime_put_sync(dev); if (ACPI_FAILURE(status)) goto out_free; out_obj = output.pointer; if (out_obj->type != ACPI_TYPE_BUFFER) goto out_free; if (out_obj->buffer.length != sizeof(*rt)) goto out_free; data = (struct acpi_tad_rt *)(out_obj->buffer.pointer); if (!data->valid) goto out_free; memcpy(rt, data, sizeof(*rt)); ret = 0; out_free: ACPI_FREE(output.pointer); return ret; } static char *acpi_tad_rt_next_field(char *s, int *val) { char *p; p = strchr(s, ':'); if (!p) return NULL; *p = '\0'; if (kstrtoint(s, 10, val)) return NULL; return p + 1; } static ssize_t time_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_tad_rt rt; char *str, *s; int val, ret = -ENODATA; str = kmemdup_nul(buf, count, GFP_KERNEL); if (!str) return -ENOMEM; s = acpi_tad_rt_next_field(str, &val); if (!s) goto out_free; rt.year = val; s = acpi_tad_rt_next_field(s, &val); if (!s) goto out_free; rt.month = val; s = acpi_tad_rt_next_field(s, &val); if (!s) goto out_free; rt.day = val; s = acpi_tad_rt_next_field(s, &val); if (!s) goto out_free; rt.hour = val; s = acpi_tad_rt_next_field(s, &val); if (!s) goto out_free; rt.minute = val; s = acpi_tad_rt_next_field(s, &val); if (!s) goto out_free; rt.second = val; s = acpi_tad_rt_next_field(s, &val); if (!s) goto out_free; rt.tz = val; if (kstrtoint(s, 10, &val)) goto out_free; rt.daylight = val; rt.valid = 0; rt.msec = 0; memset(rt.padding, 0, 3); ret = acpi_tad_set_real_time(dev, &rt); out_free: kfree(str); return ret ? ret : count; } static ssize_t time_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_tad_rt rt; int ret; ret = acpi_tad_get_real_time(dev, &rt); if (ret) return ret; return sprintf(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n", rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second, rt.tz, rt.daylight); } static DEVICE_ATTR_RW(time); static struct attribute *acpi_tad_time_attrs[] = { &dev_attr_time.attr, NULL, }; static const struct attribute_group acpi_tad_time_attr_group = { .attrs = acpi_tad_time_attrs, }; static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id, u32 value) { acpi_handle handle = ACPI_HANDLE(dev); union acpi_object args[] = { { .type = ACPI_TYPE_INTEGER, }, { .type = ACPI_TYPE_INTEGER, }, }; struct acpi_object_list arg_list = { .pointer = args, .count = ARRAY_SIZE(args), }; unsigned long long retval; acpi_status status; args[0].integer.value = timer_id; args[1].integer.value = value; pm_runtime_get_sync(dev); status = acpi_evaluate_integer(handle, method, &arg_list, &retval); pm_runtime_put_sync(dev); if (ACPI_FAILURE(status) || retval) return -EIO; return 0; } static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method, u32 timer_id, const char *specval) { u32 value; if (sysfs_streq(buf, specval)) { value = ACPI_TAD_WAKE_DISABLED; } else { int ret = kstrtou32(buf, 0, &value); if (ret) return ret; if (value == ACPI_TAD_WAKE_DISABLED) return -EINVAL; } return acpi_tad_wake_set(dev, method, timer_id, value); } static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method, u32 timer_id, const char *specval) { acpi_handle handle = ACPI_HANDLE(dev); union acpi_object args[] = { { .type = ACPI_TYPE_INTEGER, }, }; struct acpi_object_list arg_list = { .pointer = args, .count = ARRAY_SIZE(args), }; unsigned long long retval; acpi_status status; args[0].integer.value = timer_id; pm_runtime_get_sync(dev); status = acpi_evaluate_integer(handle, method, &arg_list, &retval); pm_runtime_put_sync(dev); if (ACPI_FAILURE(status)) return -EIO; if ((u32)retval == ACPI_TAD_WAKE_DISABLED) return sprintf(buf, "%s\n", specval); return sprintf(buf, "%u\n", (u32)retval); } static const char *alarm_specval = "disabled"; static int acpi_tad_alarm_write(struct device *dev, const char *buf, u32 timer_id) { return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval); } static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id) { return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval); } static const char *policy_specval = "never"; static int acpi_tad_policy_write(struct device *dev, const char *buf, u32 timer_id) { return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval); } static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id) { return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval); } static int acpi_tad_clear_status(struct device *dev, u32 timer_id) { acpi_handle handle = ACPI_HANDLE(dev); union acpi_object args[] = { { .type = ACPI_TYPE_INTEGER, }, }; struct acpi_object_list arg_list = { .pointer = args, .count = ARRAY_SIZE(args), }; unsigned long long retval; acpi_status status; args[0].integer.value = timer_id; pm_runtime_get_sync(dev); status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval); pm_runtime_put_sync(dev); if (ACPI_FAILURE(status) || retval) return -EIO; return 0; } static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id) { int ret, value; ret = kstrtoint(buf, 0, &value); if (ret) return ret; if (value) return -EINVAL; return acpi_tad_clear_status(dev, timer_id); } static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id) { acpi_handle handle = ACPI_HANDLE(dev); union acpi_object args[] = { { .type = ACPI_TYPE_INTEGER, }, }; struct acpi_object_list arg_list = { .pointer = args, .count = ARRAY_SIZE(args), }; unsigned long long retval; acpi_status status; args[0].integer.value = timer_id; pm_runtime_get_sync(dev); status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval); pm_runtime_put_sync(dev); if (ACPI_FAILURE(status)) return -EIO; return sprintf(buf, "0x%02X\n", (u32)retval); } static ssize_t caps_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_tad_driver_data *dd = dev_get_drvdata(dev); return sprintf(buf, "0x%02X\n", dd->capabilities); } static DEVICE_ATTR_RO(caps); static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER); return ret ? ret : count; } static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER); } static DEVICE_ATTR_RW(ac_alarm); static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER); return ret ? ret : count; } static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr, char *buf) { return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER); } static DEVICE_ATTR_RW(ac_policy); static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER); return ret ? ret : count; } static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr, char *buf) { return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER); } static DEVICE_ATTR_RW(ac_status); static struct attribute *acpi_tad_attrs[] = { &dev_attr_caps.attr, &dev_attr_ac_alarm.attr, &dev_attr_ac_policy.attr, &dev_attr_ac_status.attr, NULL, }; static const struct attribute_group acpi_tad_attr_group = { .attrs = acpi_tad_attrs, }; static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER); return ret ? ret : count; } static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER); } static DEVICE_ATTR_RW(dc_alarm); static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER); return ret ? ret : count; } static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr, char *buf) { return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER); } static DEVICE_ATTR_RW(dc_policy); static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER); return ret ? ret : count; } static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr, char *buf) { return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER); } static DEVICE_ATTR_RW(dc_status); static struct attribute *acpi_tad_dc_attrs[] = { &dev_attr_dc_alarm.attr, &dev_attr_dc_policy.attr, &dev_attr_dc_status.attr, NULL, }; static const struct attribute_group acpi_tad_dc_attr_group = { .attrs = acpi_tad_dc_attrs, }; static int acpi_tad_disable_timer(struct device *dev, u32 timer_id) { return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED); } static void acpi_tad_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; acpi_handle handle = ACPI_HANDLE(dev); struct acpi_tad_driver_data *dd = dev_get_drvdata(dev); device_init_wakeup(dev, false); pm_runtime_get_sync(dev); if (dd->capabilities & ACPI_TAD_DC_WAKE) sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group); sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group); acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER); acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER); if (dd->capabilities & ACPI_TAD_DC_WAKE) { acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER); acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER); } pm_runtime_put_sync(dev); pm_runtime_disable(dev); acpi_remove_cmos_rtc_space_handler(handle); } static int acpi_tad_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; acpi_handle handle = ACPI_HANDLE(dev); struct acpi_tad_driver_data *dd; acpi_status status; unsigned long long caps; int ret; ret = acpi_install_cmos_rtc_space_handler(handle); if (ret < 0) { dev_info(dev, "Unable to install space handler\n"); return -ENODEV; } /* * Initialization failure messages are mostly about firmware issues, so * print them at the "info" level. */ status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps); if (ACPI_FAILURE(status)) { dev_info(dev, "Unable to get capabilities\n"); ret = -ENODEV; goto remove_handler; } if (!(caps & ACPI_TAD_AC_WAKE)) { dev_info(dev, "Unsupported capabilities\n"); ret = -ENODEV; goto remove_handler; } if (!acpi_has_method(handle, "_PRW")) { dev_info(dev, "Missing _PRW\n"); ret = -ENODEV; goto remove_handler; } dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL); if (!dd) { ret = -ENOMEM; goto remove_handler; } dd->capabilities = caps; dev_set_drvdata(dev, dd); /* * Assume that the ACPI PM domain has been attached to the device and * simply enable system wakeup and runtime PM and put the device into * runtime suspend. Everything else should be taken care of by the ACPI * PM domain callbacks. */ device_init_wakeup(dev, true); dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND | DPM_FLAG_MAY_SKIP_RESUME); /* * The platform bus type layer tells the ACPI PM domain powers up the * device, so set the runtime PM status of it to "active". */ pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_suspend(dev); ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group); if (ret) goto fail; if (caps & ACPI_TAD_DC_WAKE) { ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group); if (ret) goto fail; } if (caps & ACPI_TAD_RT) { ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group); if (ret) goto fail; } return 0; fail: acpi_tad_remove(pdev); /* Don't fallthrough because cmos rtc space handler is removed in acpi_tad_remove() */ return ret; remove_handler: acpi_remove_cmos_rtc_space_handler(handle); return ret; } static const struct acpi_device_id acpi_tad_ids[] = { {"ACPI000E", 0}, {} }; static struct platform_driver acpi_tad_driver = { .driver = { .name = "acpi-tad", .acpi_match_table = acpi_tad_ids, }, .probe = acpi_tad_probe, .remove = acpi_tad_remove, }; MODULE_DEVICE_TABLE(acpi, acpi_tad_ids); module_platform_driver(acpi_tad_driver);