// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018-2019 HiSilicon Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include "hpre.h" #define CAP_FILE_PERMISSION 0444 #define HPRE_CTRL_CNT_CLR_CE_BIT BIT(0) #define HPRE_CTRL_CNT_CLR_CE 0x301000 #define HPRE_FSM_MAX_CNT 0x301008 #define HPRE_VFG_AXQOS 0x30100c #define HPRE_VFG_AXCACHE 0x301010 #define HPRE_RDCHN_INI_CFG 0x301014 #define HPRE_AWUSR_FP_CFG 0x301018 #define HPRE_BD_ENDIAN 0x301020 #define HPRE_ECC_BYPASS 0x301024 #define HPRE_RAS_WIDTH_CFG 0x301028 #define HPRE_POISON_BYPASS 0x30102c #define HPRE_BD_ARUSR_CFG 0x301030 #define HPRE_BD_AWUSR_CFG 0x301034 #define HPRE_TYPES_ENB 0x301038 #define HPRE_RSA_ENB BIT(0) #define HPRE_ECC_ENB BIT(1) #define HPRE_DATA_RUSER_CFG 0x30103c #define HPRE_DATA_WUSER_CFG 0x301040 #define HPRE_INT_MASK 0x301400 #define HPRE_INT_STATUS 0x301800 #define HPRE_HAC_INT_MSK 0x301400 #define HPRE_HAC_RAS_CE_ENB 0x301410 #define HPRE_HAC_RAS_NFE_ENB 0x301414 #define HPRE_HAC_RAS_FE_ENB 0x301418 #define HPRE_HAC_INT_SET 0x301500 #define HPRE_RNG_TIMEOUT_NUM 0x301A34 #define HPRE_CORE_INT_ENABLE 0 #define HPRE_RDCHN_INI_ST 0x301a00 #define HPRE_CLSTR_BASE 0x302000 #define HPRE_CORE_EN_OFFSET 0x04 #define HPRE_CORE_INI_CFG_OFFSET 0x20 #define HPRE_CORE_INI_STATUS_OFFSET 0x80 #define HPRE_CORE_HTBT_WARN_OFFSET 0x8c #define HPRE_CORE_IS_SCHD_OFFSET 0x90 #define HPRE_RAS_CE_ENB 0x301410 #define HPRE_RAS_NFE_ENB 0x301414 #define HPRE_RAS_FE_ENB 0x301418 #define HPRE_OOO_SHUTDOWN_SEL 0x301a3c #define HPRE_HAC_RAS_FE_ENABLE 0 #define HPRE_CORE_ENB (HPRE_CLSTR_BASE + HPRE_CORE_EN_OFFSET) #define HPRE_CORE_INI_CFG (HPRE_CLSTR_BASE + HPRE_CORE_INI_CFG_OFFSET) #define HPRE_CORE_INI_STATUS (HPRE_CLSTR_BASE + HPRE_CORE_INI_STATUS_OFFSET) #define HPRE_HAC_ECC1_CNT 0x301a04 #define HPRE_HAC_ECC2_CNT 0x301a08 #define HPRE_HAC_SOURCE_INT 0x301600 #define HPRE_CLSTR_ADDR_INTRVL 0x1000 #define HPRE_CLUSTER_INQURY 0x100 #define HPRE_CLSTR_ADDR_INQRY_RSLT 0x104 #define HPRE_PASID_EN_BIT 9 #define HPRE_REG_RD_INTVRL_US 10 #define HPRE_REG_RD_TMOUT_US 1000 #define HPRE_DBGFS_VAL_MAX_LEN 20 #define PCI_DEVICE_ID_HUAWEI_HPRE_PF 0xa258 #define HPRE_QM_USR_CFG_MASK GENMASK(31, 1) #define HPRE_QM_AXI_CFG_MASK GENMASK(15, 0) #define HPRE_QM_VFG_AX_MASK GENMASK(7, 0) #define HPRE_BD_USR_MASK GENMASK(1, 0) #define HPRE_PREFETCH_CFG 0x301130 #define HPRE_SVA_PREFTCH_DFX 0x30115C #define HPRE_PREFETCH_ENABLE (~(BIT(0) | BIT(30))) #define HPRE_PREFETCH_DISABLE BIT(30) #define HPRE_SVA_DISABLE_READY (BIT(4) | BIT(8)) /* clock gate */ #define HPRE_CLKGATE_CTL 0x301a10 #define HPRE_PEH_CFG_AUTO_GATE 0x301a2c #define HPRE_CLUSTER_DYN_CTL 0x302010 #define HPRE_CORE_SHB_CFG 0x302088 #define HPRE_CLKGATE_CTL_EN BIT(0) #define HPRE_PEH_CFG_AUTO_GATE_EN BIT(0) #define HPRE_CLUSTER_DYN_CTL_EN BIT(0) #define HPRE_CORE_GATE_EN (BIT(30) | BIT(31)) #define HPRE_AM_OOO_SHUTDOWN_ENB 0x301044 #define HPRE_AM_OOO_SHUTDOWN_ENABLE BIT(0) #define HPRE_WR_MSI_PORT BIT(2) #define HPRE_CORE_ECC_2BIT_ERR BIT(1) #define HPRE_OOO_ECC_2BIT_ERR BIT(5) #define HPRE_QM_BME_FLR BIT(7) #define HPRE_QM_PM_FLR BIT(11) #define HPRE_QM_SRIOV_FLR BIT(12) #define HPRE_SHAPER_TYPE_RATE 640 #define HPRE_VIA_MSI_DSM 1 #define HPRE_SQE_MASK_OFFSET 8 #define HPRE_SQE_MASK_LEN 44 #define HPRE_CTX_Q_NUM_DEF 1 #define HPRE_DFX_BASE 0x301000 #define HPRE_DFX_COMMON1 0x301400 #define HPRE_DFX_COMMON2 0x301A00 #define HPRE_DFX_CORE 0x302000 #define HPRE_DFX_BASE_LEN 0x55 #define HPRE_DFX_COMMON1_LEN 0x41 #define HPRE_DFX_COMMON2_LEN 0xE #define HPRE_DFX_CORE_LEN 0x43 static const char hpre_name[] = "hisi_hpre"; static struct dentry *hpre_debugfs_root; static const struct pci_device_id hpre_dev_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_PF) }, { PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_VF) }, { 0, } }; MODULE_DEVICE_TABLE(pci, hpre_dev_ids); struct hpre_hw_error { u32 int_msk; const char *msg; }; static const struct qm_dev_alg hpre_dev_algs[] = { { .alg_msk = BIT(0), .alg = "rsa\n" }, { .alg_msk = BIT(1), .alg = "dh\n" }, { .alg_msk = BIT(2), .alg = "ecdh\n" }, { .alg_msk = BIT(3), .alg = "ecdsa\n" }, { .alg_msk = BIT(4), .alg = "sm2\n" }, { .alg_msk = BIT(5), .alg = "x25519\n" }, { .alg_msk = BIT(6), .alg = "x448\n" }, { /* sentinel */ } }; static struct hisi_qm_list hpre_devices = { .register_to_crypto = hpre_algs_register, .unregister_from_crypto = hpre_algs_unregister, }; static const char * const hpre_debug_file_name[] = { [HPRE_CLEAR_ENABLE] = "rdclr_en", [HPRE_CLUSTER_CTRL] = "cluster_ctrl", }; enum hpre_cap_type { HPRE_QM_NFE_MASK_CAP, HPRE_QM_RESET_MASK_CAP, HPRE_QM_OOO_SHUTDOWN_MASK_CAP, HPRE_QM_CE_MASK_CAP, HPRE_NFE_MASK_CAP, HPRE_RESET_MASK_CAP, HPRE_OOO_SHUTDOWN_MASK_CAP, HPRE_CE_MASK_CAP, HPRE_CLUSTER_NUM_CAP, HPRE_CORE_TYPE_NUM_CAP, HPRE_CORE_NUM_CAP, HPRE_CLUSTER_CORE_NUM_CAP, HPRE_CORE_ENABLE_BITMAP_CAP, HPRE_DRV_ALG_BITMAP_CAP, HPRE_DEV_ALG_BITMAP_CAP, HPRE_CORE1_ALG_BITMAP_CAP, HPRE_CORE2_ALG_BITMAP_CAP, HPRE_CORE3_ALG_BITMAP_CAP, HPRE_CORE4_ALG_BITMAP_CAP, HPRE_CORE5_ALG_BITMAP_CAP, HPRE_CORE6_ALG_BITMAP_CAP, HPRE_CORE7_ALG_BITMAP_CAP, HPRE_CORE8_ALG_BITMAP_CAP, HPRE_CORE9_ALG_BITMAP_CAP, HPRE_CORE10_ALG_BITMAP_CAP }; static const struct hisi_qm_cap_info hpre_basic_info[] = { {HPRE_QM_NFE_MASK_CAP, 0x3124, 0, GENMASK(31, 0), 0x0, 0x1C37, 0x7C37}, {HPRE_QM_RESET_MASK_CAP, 0x3128, 0, GENMASK(31, 0), 0x0, 0xC37, 0x6C37}, {HPRE_QM_OOO_SHUTDOWN_MASK_CAP, 0x3128, 0, GENMASK(31, 0), 0x0, 0x4, 0x6C37}, {HPRE_QM_CE_MASK_CAP, 0x312C, 0, GENMASK(31, 0), 0x0, 0x8, 0x8}, {HPRE_NFE_MASK_CAP, 0x3130, 0, GENMASK(31, 0), 0x0, 0x3FFFFE, 0x1FFFC3E}, {HPRE_RESET_MASK_CAP, 0x3134, 0, GENMASK(31, 0), 0x0, 0x3FFFFE, 0xBFFC3E}, {HPRE_OOO_SHUTDOWN_MASK_CAP, 0x3134, 0, GENMASK(31, 0), 0x0, 0x22, 0xBFFC3E}, {HPRE_CE_MASK_CAP, 0x3138, 0, GENMASK(31, 0), 0x0, 0x1, 0x1}, {HPRE_CLUSTER_NUM_CAP, 0x313c, 20, GENMASK(3, 0), 0x0, 0x4, 0x1}, {HPRE_CORE_TYPE_NUM_CAP, 0x313c, 16, GENMASK(3, 0), 0x0, 0x2, 0x2}, {HPRE_CORE_NUM_CAP, 0x313c, 8, GENMASK(7, 0), 0x0, 0x8, 0xA}, {HPRE_CLUSTER_CORE_NUM_CAP, 0x313c, 0, GENMASK(7, 0), 0x0, 0x2, 0xA}, {HPRE_CORE_ENABLE_BITMAP_CAP, 0x3140, 0, GENMASK(31, 0), 0x0, 0xF, 0x3FF}, {HPRE_DRV_ALG_BITMAP_CAP, 0x3144, 0, GENMASK(31, 0), 0x0, 0x03, 0x27}, {HPRE_DEV_ALG_BITMAP_CAP, 0x3148, 0, GENMASK(31, 0), 0x0, 0x03, 0x7F}, {HPRE_CORE1_ALG_BITMAP_CAP, 0x314c, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE2_ALG_BITMAP_CAP, 0x3150, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE3_ALG_BITMAP_CAP, 0x3154, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE4_ALG_BITMAP_CAP, 0x3158, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE5_ALG_BITMAP_CAP, 0x315c, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE6_ALG_BITMAP_CAP, 0x3160, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE7_ALG_BITMAP_CAP, 0x3164, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE8_ALG_BITMAP_CAP, 0x3168, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F}, {HPRE_CORE9_ALG_BITMAP_CAP, 0x316c, 0, GENMASK(31, 0), 0x0, 0x10, 0x10}, {HPRE_CORE10_ALG_BITMAP_CAP, 0x3170, 0, GENMASK(31, 0), 0x0, 0x10, 0x10} }; static const struct hisi_qm_cap_query_info hpre_cap_query_info[] = { {QM_RAS_NFE_TYPE, "QM_RAS_NFE_TYPE ", 0x3124, 0x0, 0x1C37, 0x7C37}, {QM_RAS_NFE_RESET, "QM_RAS_NFE_RESET ", 0x3128, 0x0, 0xC77, 0x6C77}, {QM_RAS_CE_TYPE, "QM_RAS_CE_TYPE ", 0x312C, 0x0, 0x8, 0x8}, {HPRE_RAS_NFE_TYPE, "HPRE_RAS_NFE_TYPE ", 0x3130, 0x0, 0x3FFFFE, 0x1FFFC3E}, {HPRE_RAS_NFE_RESET, "HPRE_RAS_NFE_RESET ", 0x3134, 0x0, 0x3FFFFE, 0xBFFC3E}, {HPRE_RAS_CE_TYPE, "HPRE_RAS_CE_TYPE ", 0x3138, 0x0, 0x1, 0x1}, {HPRE_CORE_INFO, "HPRE_CORE_INFO ", 0x313c, 0x0, 0x420802, 0x120A0A}, {HPRE_CORE_EN, "HPRE_CORE_EN ", 0x3140, 0x0, 0xF, 0x3FF}, {HPRE_DRV_ALG_BITMAP, "HPRE_DRV_ALG_BITMAP ", 0x3144, 0x0, 0x03, 0x27}, {HPRE_ALG_BITMAP, "HPRE_ALG_BITMAP ", 0x3148, 0x0, 0x03, 0x7F}, {HPRE_CORE1_BITMAP_CAP, "HPRE_CORE1_BITMAP_CAP ", 0x314c, 0x0, 0x7F, 0x7F}, {HPRE_CORE2_BITMAP_CAP, "HPRE_CORE2_BITMAP_CAP ", 0x3150, 0x0, 0x7F, 0x7F}, {HPRE_CORE3_BITMAP_CAP, "HPRE_CORE3_BITMAP_CAP ", 0x3154, 0x0, 0x7F, 0x7F}, {HPRE_CORE4_BITMAP_CAP, "HPRE_CORE4_BITMAP_CAP ", 0x3158, 0x0, 0x7F, 0x7F}, {HPRE_CORE5_BITMAP_CAP, "HPRE_CORE5_BITMAP_CAP ", 0x315c, 0x0, 0x7F, 0x7F}, {HPRE_CORE6_BITMAP_CAP, "HPRE_CORE6_BITMAP_CAP ", 0x3160, 0x0, 0x7F, 0x7F}, {HPRE_CORE7_BITMAP_CAP, "HPRE_CORE7_BITMAP_CAP ", 0x3164, 0x0, 0x7F, 0x7F}, {HPRE_CORE8_BITMAP_CAP, "HPRE_CORE8_BITMAP_CAP ", 0x3168, 0x0, 0x7F, 0x7F}, {HPRE_CORE9_BITMAP_CAP, "HPRE_CORE9_BITMAP_CAP ", 0x316c, 0x0, 0x10, 0x10}, {HPRE_CORE10_BITMAP_CAP, "HPRE_CORE10_BITMAP_CAP ", 0x3170, 0x0, 0x10, 0x10}, }; static const struct hpre_hw_error hpre_hw_errors[] = { { .int_msk = BIT(0), .msg = "core_ecc_1bit_err_int_set" }, { .int_msk = BIT(1), .msg = "core_ecc_2bit_err_int_set" }, { .int_msk = BIT(2), .msg = "dat_wb_poison_int_set" }, { .int_msk = BIT(3), .msg = "dat_rd_poison_int_set" }, { .int_msk = BIT(4), .msg = "bd_rd_poison_int_set" }, { .int_msk = BIT(5), .msg = "ooo_ecc_2bit_err_int_set" }, { .int_msk = BIT(6), .msg = "cluster1_shb_timeout_int_set" }, { .int_msk = BIT(7), .msg = "cluster2_shb_timeout_int_set" }, { .int_msk = BIT(8), .msg = "cluster3_shb_timeout_int_set" }, { .int_msk = BIT(9), .msg = "cluster4_shb_timeout_int_set" }, { .int_msk = GENMASK(15, 10), .msg = "ooo_rdrsp_err_int_set" }, { .int_msk = GENMASK(21, 16), .msg = "ooo_wrrsp_err_int_set" }, { .int_msk = BIT(22), .msg = "pt_rng_timeout_int_set" }, { .int_msk = BIT(23), .msg = "sva_fsm_timeout_int_set" }, { .int_msk = BIT(24), .msg = "sva_int_set" }, { /* sentinel */ } }; static const u64 hpre_cluster_offsets[] = { [HPRE_CLUSTER0] = HPRE_CLSTR_BASE + HPRE_CLUSTER0 * HPRE_CLSTR_ADDR_INTRVL, [HPRE_CLUSTER1] = HPRE_CLSTR_BASE + HPRE_CLUSTER1 * HPRE_CLSTR_ADDR_INTRVL, [HPRE_CLUSTER2] = HPRE_CLSTR_BASE + HPRE_CLUSTER2 * HPRE_CLSTR_ADDR_INTRVL, [HPRE_CLUSTER3] = HPRE_CLSTR_BASE + HPRE_CLUSTER3 * HPRE_CLSTR_ADDR_INTRVL, }; static const struct debugfs_reg32 hpre_cluster_dfx_regs[] = { {"CORES_EN_STATUS ", HPRE_CORE_EN_OFFSET}, {"CORES_INI_CFG ", HPRE_CORE_INI_CFG_OFFSET}, {"CORES_INI_STATUS ", HPRE_CORE_INI_STATUS_OFFSET}, {"CORES_HTBT_WARN ", HPRE_CORE_HTBT_WARN_OFFSET}, {"CORES_IS_SCHD ", HPRE_CORE_IS_SCHD_OFFSET}, }; static const struct debugfs_reg32 hpre_com_dfx_regs[] = { {"READ_CLR_EN ", HPRE_CTRL_CNT_CLR_CE}, {"AXQOS ", HPRE_VFG_AXQOS}, {"AWUSR_CFG ", HPRE_AWUSR_FP_CFG}, {"BD_ENDIAN ", HPRE_BD_ENDIAN}, {"ECC_CHECK_CTRL ", HPRE_ECC_BYPASS}, {"RAS_INT_WIDTH ", HPRE_RAS_WIDTH_CFG}, {"POISON_BYPASS ", HPRE_POISON_BYPASS}, {"BD_ARUSER ", HPRE_BD_ARUSR_CFG}, {"BD_AWUSER ", HPRE_BD_AWUSR_CFG}, {"DATA_ARUSER ", HPRE_DATA_RUSER_CFG}, {"DATA_AWUSER ", HPRE_DATA_WUSER_CFG}, {"INT_STATUS ", HPRE_INT_STATUS}, {"INT_MASK ", HPRE_HAC_INT_MSK}, {"RAS_CE_ENB ", HPRE_HAC_RAS_CE_ENB}, {"RAS_NFE_ENB ", HPRE_HAC_RAS_NFE_ENB}, {"RAS_FE_ENB ", HPRE_HAC_RAS_FE_ENB}, {"INT_SET ", HPRE_HAC_INT_SET}, {"RNG_TIMEOUT_NUM ", HPRE_RNG_TIMEOUT_NUM}, }; static const char *hpre_dfx_files[HPRE_DFX_FILE_NUM] = { "send_cnt", "recv_cnt", "send_fail_cnt", "send_busy_cnt", "over_thrhld_cnt", "overtime_thrhld", "invalid_req_cnt" }; /* define the HPRE's dfx regs region and region length */ static struct dfx_diff_registers hpre_diff_regs[] = { { .reg_offset = HPRE_DFX_BASE, .reg_len = HPRE_DFX_BASE_LEN, }, { .reg_offset = HPRE_DFX_COMMON1, .reg_len = HPRE_DFX_COMMON1_LEN, }, { .reg_offset = HPRE_DFX_COMMON2, .reg_len = HPRE_DFX_COMMON2_LEN, }, { .reg_offset = HPRE_DFX_CORE, .reg_len = HPRE_DFX_CORE_LEN, }, }; static const struct hisi_qm_err_ini hpre_err_ini; bool hpre_check_alg_support(struct hisi_qm *qm, u32 alg) { u32 cap_val; cap_val = qm->cap_tables.dev_cap_table[HPRE_DRV_ALG_BITMAP].cap_val; if (alg & cap_val) return true; return false; } static int hpre_diff_regs_show(struct seq_file *s, void *unused) { struct hisi_qm *qm = s->private; hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.acc_diff_regs, ARRAY_SIZE(hpre_diff_regs)); return 0; } DEFINE_SHOW_ATTRIBUTE(hpre_diff_regs); static int hpre_com_regs_show(struct seq_file *s, void *unused) { hisi_qm_regs_dump(s, s->private); return 0; } DEFINE_SHOW_ATTRIBUTE(hpre_com_regs); static int hpre_cluster_regs_show(struct seq_file *s, void *unused) { hisi_qm_regs_dump(s, s->private); return 0; } DEFINE_SHOW_ATTRIBUTE(hpre_cluster_regs); static const struct kernel_param_ops hpre_uacce_mode_ops = { .set = uacce_mode_set, .get = param_get_int, }; /* * uacce_mode = 0 means hpre only register to crypto, * uacce_mode = 1 means hpre both register to crypto and uacce. */ static u32 uacce_mode = UACCE_MODE_NOUACCE; module_param_cb(uacce_mode, &hpre_uacce_mode_ops, &uacce_mode, 0444); MODULE_PARM_DESC(uacce_mode, UACCE_MODE_DESC); static bool pf_q_num_flag; static int pf_q_num_set(const char *val, const struct kernel_param *kp) { pf_q_num_flag = true; return hisi_qm_q_num_set(val, kp, PCI_DEVICE_ID_HUAWEI_HPRE_PF); } static const struct kernel_param_ops hpre_pf_q_num_ops = { .set = pf_q_num_set, .get = param_get_int, }; static u32 pf_q_num = HPRE_PF_DEF_Q_NUM; module_param_cb(pf_q_num, &hpre_pf_q_num_ops, &pf_q_num, 0444); MODULE_PARM_DESC(pf_q_num, "Number of queues in PF of CS(2-1024)"); static const struct kernel_param_ops vfs_num_ops = { .set = vfs_num_set, .get = param_get_int, }; static u32 vfs_num; module_param_cb(vfs_num, &vfs_num_ops, &vfs_num, 0444); MODULE_PARM_DESC(vfs_num, "Number of VFs to enable(1-63), 0(default)"); struct hisi_qp *hpre_create_qp(u8 type) { int node = cpu_to_node(raw_smp_processor_id()); struct hisi_qp *qp = NULL; int ret; if (type != HPRE_V2_ALG_TYPE && type != HPRE_V3_ECC_ALG_TYPE) return NULL; /* * type: 0 - RSA/DH. algorithm supported in V2, * 1 - ECC algorithm in V3. */ ret = hisi_qm_alloc_qps_node(&hpre_devices, 1, type, node, &qp); if (!ret) return qp; return NULL; } static void hpre_config_pasid(struct hisi_qm *qm) { u32 val1, val2; if (qm->ver >= QM_HW_V3) return; val1 = readl_relaxed(qm->io_base + HPRE_DATA_RUSER_CFG); val2 = readl_relaxed(qm->io_base + HPRE_DATA_WUSER_CFG); if (qm->use_sva) { val1 |= BIT(HPRE_PASID_EN_BIT); val2 |= BIT(HPRE_PASID_EN_BIT); } else { val1 &= ~BIT(HPRE_PASID_EN_BIT); val2 &= ~BIT(HPRE_PASID_EN_BIT); } writel_relaxed(val1, qm->io_base + HPRE_DATA_RUSER_CFG); writel_relaxed(val2, qm->io_base + HPRE_DATA_WUSER_CFG); } static int hpre_cfg_by_dsm(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; union acpi_object *obj; guid_t guid; if (guid_parse("b06b81ab-0134-4a45-9b0c-483447b95fa7", &guid)) { dev_err(dev, "Hpre GUID failed\n"); return -EINVAL; } /* Switch over to MSI handling due to non-standard PCI implementation */ obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &guid, 0, HPRE_VIA_MSI_DSM, NULL); if (!obj) { dev_err(dev, "ACPI handle failed!\n"); return -EIO; } ACPI_FREE(obj); return 0; } static int hpre_set_cluster(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; u32 cluster_core_mask; unsigned long offset; u32 hpre_core_info; u8 clusters_num; u32 val = 0; int ret, i; cluster_core_mask = qm->cap_tables.dev_cap_table[HPRE_CORE_EN].cap_val; hpre_core_info = qm->cap_tables.dev_cap_table[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; for (i = 0; i < clusters_num; i++) { offset = i * HPRE_CLSTR_ADDR_INTRVL; /* clusters initiating */ writel(cluster_core_mask, qm->io_base + offset + HPRE_CORE_ENB); writel(0x1, qm->io_base + offset + HPRE_CORE_INI_CFG); ret = readl_relaxed_poll_timeout(qm->io_base + offset + HPRE_CORE_INI_STATUS, val, ((val & cluster_core_mask) == cluster_core_mask), HPRE_REG_RD_INTVRL_US, HPRE_REG_RD_TMOUT_US); if (ret) { dev_err(dev, "cluster %d int st status timeout!\n", i); return -ETIMEDOUT; } } return 0; } /* * For Kunpeng 920, we should disable FLR triggered by hardware (BME/PM/SRIOV). * Or it may stay in D3 state when we bind and unbind hpre quickly, * as it does FLR triggered by hardware. */ static void disable_flr_of_bme(struct hisi_qm *qm) { u32 val; val = readl(qm->io_base + QM_PEH_AXUSER_CFG); val &= ~(HPRE_QM_BME_FLR | HPRE_QM_SRIOV_FLR); val |= HPRE_QM_PM_FLR; writel(val, qm->io_base + QM_PEH_AXUSER_CFG); writel(PEH_AXUSER_CFG_ENABLE, qm->io_base + QM_PEH_AXUSER_CFG_ENABLE); } static void hpre_open_sva_prefetch(struct hisi_qm *qm) { u32 val; int ret; if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) return; /* Enable prefetch */ val = readl_relaxed(qm->io_base + HPRE_PREFETCH_CFG); val &= HPRE_PREFETCH_ENABLE; writel(val, qm->io_base + HPRE_PREFETCH_CFG); ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_PREFETCH_CFG, val, !(val & HPRE_PREFETCH_DISABLE), HPRE_REG_RD_INTVRL_US, HPRE_REG_RD_TMOUT_US); if (ret) pci_err(qm->pdev, "failed to open sva prefetch\n"); } static void hpre_close_sva_prefetch(struct hisi_qm *qm) { u32 val; int ret; if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) return; val = readl_relaxed(qm->io_base + HPRE_PREFETCH_CFG); val |= HPRE_PREFETCH_DISABLE; writel(val, qm->io_base + HPRE_PREFETCH_CFG); ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_SVA_PREFTCH_DFX, val, !(val & HPRE_SVA_DISABLE_READY), HPRE_REG_RD_INTVRL_US, HPRE_REG_RD_TMOUT_US); if (ret) pci_err(qm->pdev, "failed to close sva prefetch\n"); } static void hpre_enable_clock_gate(struct hisi_qm *qm) { unsigned long offset; u8 clusters_num, i; u32 hpre_core_info; u32 val; if (qm->ver < QM_HW_V3) return; val = readl(qm->io_base + HPRE_CLKGATE_CTL); val |= HPRE_CLKGATE_CTL_EN; writel(val, qm->io_base + HPRE_CLKGATE_CTL); val = readl(qm->io_base + HPRE_PEH_CFG_AUTO_GATE); val |= HPRE_PEH_CFG_AUTO_GATE_EN; writel(val, qm->io_base + HPRE_PEH_CFG_AUTO_GATE); hpre_core_info = qm->cap_tables.dev_cap_table[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; for (i = 0; i < clusters_num; i++) { offset = (unsigned long)i * HPRE_CLSTR_ADDR_INTRVL; val = readl(qm->io_base + offset + HPRE_CLUSTER_DYN_CTL); val |= HPRE_CLUSTER_DYN_CTL_EN; writel(val, qm->io_base + offset + HPRE_CLUSTER_DYN_CTL); val = readl(qm->io_base + offset + HPRE_CORE_SHB_CFG); val |= HPRE_CORE_GATE_EN; writel(val, qm->io_base + offset + HPRE_CORE_SHB_CFG); } } static void hpre_disable_clock_gate(struct hisi_qm *qm) { unsigned long offset; u8 clusters_num, i; u32 hpre_core_info; u32 val; if (qm->ver < QM_HW_V3) return; val = readl(qm->io_base + HPRE_CLKGATE_CTL); val &= ~HPRE_CLKGATE_CTL_EN; writel(val, qm->io_base + HPRE_CLKGATE_CTL); val = readl(qm->io_base + HPRE_PEH_CFG_AUTO_GATE); val &= ~HPRE_PEH_CFG_AUTO_GATE_EN; writel(val, qm->io_base + HPRE_PEH_CFG_AUTO_GATE); hpre_core_info = qm->cap_tables.dev_cap_table[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; for (i = 0; i < clusters_num; i++) { offset = (unsigned long)i * HPRE_CLSTR_ADDR_INTRVL; val = readl(qm->io_base + offset + HPRE_CLUSTER_DYN_CTL); val &= ~HPRE_CLUSTER_DYN_CTL_EN; writel(val, qm->io_base + offset + HPRE_CLUSTER_DYN_CTL); val = readl(qm->io_base + offset + HPRE_CORE_SHB_CFG); val &= ~HPRE_CORE_GATE_EN; writel(val, qm->io_base + offset + HPRE_CORE_SHB_CFG); } } static int hpre_set_user_domain_and_cache(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; u32 val; int ret; /* disabel dynamic clock gate before sram init */ hpre_disable_clock_gate(qm); writel(HPRE_QM_USR_CFG_MASK, qm->io_base + QM_ARUSER_M_CFG_ENABLE); writel(HPRE_QM_USR_CFG_MASK, qm->io_base + QM_AWUSER_M_CFG_ENABLE); writel_relaxed(HPRE_QM_AXI_CFG_MASK, qm->io_base + QM_AXI_M_CFG); if (qm->ver >= QM_HW_V3) writel(HPRE_RSA_ENB | HPRE_ECC_ENB, qm->io_base + HPRE_TYPES_ENB); else writel(HPRE_RSA_ENB, qm->io_base + HPRE_TYPES_ENB); writel(HPRE_QM_VFG_AX_MASK, qm->io_base + HPRE_VFG_AXCACHE); writel(0x0, qm->io_base + HPRE_BD_ENDIAN); writel(0x0, qm->io_base + HPRE_POISON_BYPASS); writel(0x0, qm->io_base + HPRE_ECC_BYPASS); writel(HPRE_BD_USR_MASK, qm->io_base + HPRE_BD_ARUSR_CFG); writel(HPRE_BD_USR_MASK, qm->io_base + HPRE_BD_AWUSR_CFG); writel(0x1, qm->io_base + HPRE_RDCHN_INI_CFG); ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_RDCHN_INI_ST, val, val & BIT(0), HPRE_REG_RD_INTVRL_US, HPRE_REG_RD_TMOUT_US); if (ret) { dev_err(dev, "read rd channel timeout fail!\n"); return -ETIMEDOUT; } ret = hpre_set_cluster(qm); if (ret) return -ETIMEDOUT; /* This setting is only needed by Kunpeng 920. */ if (qm->ver == QM_HW_V2) { ret = hpre_cfg_by_dsm(qm); if (ret) return ret; disable_flr_of_bme(qm); } /* Config data buffer pasid needed by Kunpeng 920 */ hpre_config_pasid(qm); hpre_enable_clock_gate(qm); return ret; } static void hpre_cnt_regs_clear(struct hisi_qm *qm) { unsigned long offset; u32 hpre_core_info; u8 clusters_num; int i; /* clear clusterX/cluster_ctrl */ hpre_core_info = qm->cap_tables.dev_cap_table[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; for (i = 0; i < clusters_num; i++) { offset = HPRE_CLSTR_BASE + i * HPRE_CLSTR_ADDR_INTRVL; writel(0x0, qm->io_base + offset + HPRE_CLUSTER_INQURY); } /* clear rdclr_en */ writel(0x0, qm->io_base + HPRE_CTRL_CNT_CLR_CE); hisi_qm_debug_regs_clear(qm); } static void hpre_master_ooo_ctrl(struct hisi_qm *qm, bool enable) { u32 val1, val2; val1 = readl(qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB); if (enable) { val1 |= HPRE_AM_OOO_SHUTDOWN_ENABLE; val2 = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver); } else { val1 &= ~HPRE_AM_OOO_SHUTDOWN_ENABLE; val2 = 0x0; } if (qm->ver > QM_HW_V2) writel(val2, qm->io_base + HPRE_OOO_SHUTDOWN_SEL); writel(val1, qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB); } static void hpre_hw_error_disable(struct hisi_qm *qm) { u32 ce, nfe; ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CE_MASK_CAP, qm->cap_ver); nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver); /* disable hpre hw error interrupts */ writel(ce | nfe | HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_INT_MASK); /* disable HPRE block master OOO when nfe occurs on Kunpeng930 */ hpre_master_ooo_ctrl(qm, false); } static void hpre_hw_error_enable(struct hisi_qm *qm) { u32 ce, nfe, err_en; ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CE_MASK_CAP, qm->cap_ver); nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver); /* clear HPRE hw error source if having */ writel(ce | nfe | HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_HAC_SOURCE_INT); /* configure error type */ writel(ce, qm->io_base + HPRE_RAS_CE_ENB); writel(nfe, qm->io_base + HPRE_RAS_NFE_ENB); writel(HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_RAS_FE_ENB); /* enable HPRE block master OOO when nfe occurs on Kunpeng930 */ hpre_master_ooo_ctrl(qm, true); /* enable hpre hw error interrupts */ err_en = ce | nfe | HPRE_HAC_RAS_FE_ENABLE; writel(~err_en, qm->io_base + HPRE_INT_MASK); } static inline struct hisi_qm *hpre_file_to_qm(struct hpre_debugfs_file *file) { struct hpre *hpre = container_of(file->debug, struct hpre, debug); return &hpre->qm; } static u32 hpre_clear_enable_read(struct hpre_debugfs_file *file) { struct hisi_qm *qm = hpre_file_to_qm(file); return readl(qm->io_base + HPRE_CTRL_CNT_CLR_CE) & HPRE_CTRL_CNT_CLR_CE_BIT; } static int hpre_clear_enable_write(struct hpre_debugfs_file *file, u32 val) { struct hisi_qm *qm = hpre_file_to_qm(file); u32 tmp; if (val != 1 && val != 0) return -EINVAL; tmp = (readl(qm->io_base + HPRE_CTRL_CNT_CLR_CE) & ~HPRE_CTRL_CNT_CLR_CE_BIT) | val; writel(tmp, qm->io_base + HPRE_CTRL_CNT_CLR_CE); return 0; } static u32 hpre_cluster_inqry_read(struct hpre_debugfs_file *file) { struct hisi_qm *qm = hpre_file_to_qm(file); int cluster_index = file->index - HPRE_CLUSTER_CTRL; unsigned long offset = HPRE_CLSTR_BASE + cluster_index * HPRE_CLSTR_ADDR_INTRVL; return readl(qm->io_base + offset + HPRE_CLSTR_ADDR_INQRY_RSLT); } static void hpre_cluster_inqry_write(struct hpre_debugfs_file *file, u32 val) { struct hisi_qm *qm = hpre_file_to_qm(file); int cluster_index = file->index - HPRE_CLUSTER_CTRL; unsigned long offset = HPRE_CLSTR_BASE + cluster_index * HPRE_CLSTR_ADDR_INTRVL; writel(val, qm->io_base + offset + HPRE_CLUSTER_INQURY); } static ssize_t hpre_ctrl_debug_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct hpre_debugfs_file *file = filp->private_data; struct hisi_qm *qm = hpre_file_to_qm(file); char tbuf[HPRE_DBGFS_VAL_MAX_LEN]; u32 val; int ret; ret = hisi_qm_get_dfx_access(qm); if (ret) return ret; spin_lock_irq(&file->lock); switch (file->type) { case HPRE_CLEAR_ENABLE: val = hpre_clear_enable_read(file); break; case HPRE_CLUSTER_CTRL: val = hpre_cluster_inqry_read(file); break; default: goto err_input; } spin_unlock_irq(&file->lock); hisi_qm_put_dfx_access(qm); ret = snprintf(tbuf, HPRE_DBGFS_VAL_MAX_LEN, "%u\n", val); return simple_read_from_buffer(buf, count, pos, tbuf, ret); err_input: spin_unlock_irq(&file->lock); hisi_qm_put_dfx_access(qm); return -EINVAL; } static ssize_t hpre_ctrl_debug_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct hpre_debugfs_file *file = filp->private_data; struct hisi_qm *qm = hpre_file_to_qm(file); char tbuf[HPRE_DBGFS_VAL_MAX_LEN]; unsigned long val; int len, ret; if (*pos != 0) return 0; if (count >= HPRE_DBGFS_VAL_MAX_LEN) return -ENOSPC; len = simple_write_to_buffer(tbuf, HPRE_DBGFS_VAL_MAX_LEN - 1, pos, buf, count); if (len < 0) return len; tbuf[len] = '\0'; if (kstrtoul(tbuf, 0, &val)) return -EFAULT; ret = hisi_qm_get_dfx_access(qm); if (ret) return ret; spin_lock_irq(&file->lock); switch (file->type) { case HPRE_CLEAR_ENABLE: ret = hpre_clear_enable_write(file, val); if (ret) goto err_input; break; case HPRE_CLUSTER_CTRL: hpre_cluster_inqry_write(file, val); break; default: ret = -EINVAL; goto err_input; } ret = count; err_input: spin_unlock_irq(&file->lock); hisi_qm_put_dfx_access(qm); return ret; } static const struct file_operations hpre_ctrl_debug_fops = { .owner = THIS_MODULE, .open = simple_open, .read = hpre_ctrl_debug_read, .write = hpre_ctrl_debug_write, }; static int hpre_debugfs_atomic64_get(void *data, u64 *val) { struct hpre_dfx *dfx_item = data; *val = atomic64_read(&dfx_item->value); return 0; } static int hpre_debugfs_atomic64_set(void *data, u64 val) { struct hpre_dfx *dfx_item = data; struct hpre_dfx *hpre_dfx = NULL; if (dfx_item->type == HPRE_OVERTIME_THRHLD) { hpre_dfx = dfx_item - HPRE_OVERTIME_THRHLD; atomic64_set(&hpre_dfx[HPRE_OVER_THRHLD_CNT].value, 0); } else if (val) { return -EINVAL; } atomic64_set(&dfx_item->value, val); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(hpre_atomic64_ops, hpre_debugfs_atomic64_get, hpre_debugfs_atomic64_set, "%llu\n"); static int hpre_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, enum hpre_ctrl_dbgfs_file type, int indx) { struct hpre *hpre = container_of(qm, struct hpre, qm); struct hpre_debug *dbg = &hpre->debug; struct dentry *file_dir; if (dir) file_dir = dir; else file_dir = qm->debug.debug_root; if (type >= HPRE_DEBUG_FILE_NUM) return -EINVAL; spin_lock_init(&dbg->files[indx].lock); dbg->files[indx].debug = dbg; dbg->files[indx].type = type; dbg->files[indx].index = indx; debugfs_create_file(hpre_debug_file_name[type], 0600, file_dir, dbg->files + indx, &hpre_ctrl_debug_fops); return 0; } static int hpre_pf_comm_regs_debugfs_init(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct debugfs_regset32 *regset; regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); if (!regset) return -ENOMEM; regset->regs = hpre_com_dfx_regs; regset->nregs = ARRAY_SIZE(hpre_com_dfx_regs); regset->base = qm->io_base; regset->dev = dev; debugfs_create_file("regs", 0444, qm->debug.debug_root, regset, &hpre_com_regs_fops); return 0; } static int hpre_cluster_debugfs_init(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; char buf[HPRE_DBGFS_VAL_MAX_LEN]; struct debugfs_regset32 *regset; struct dentry *tmp_d; u32 hpre_core_info; u8 clusters_num; int i, ret; hpre_core_info = qm->cap_tables.dev_cap_table[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; for (i = 0; i < clusters_num; i++) { ret = snprintf(buf, HPRE_DBGFS_VAL_MAX_LEN, "cluster%d", i); if (ret >= HPRE_DBGFS_VAL_MAX_LEN) return -EINVAL; tmp_d = debugfs_create_dir(buf, qm->debug.debug_root); regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); if (!regset) return -ENOMEM; regset->regs = hpre_cluster_dfx_regs; regset->nregs = ARRAY_SIZE(hpre_cluster_dfx_regs); regset->base = qm->io_base + hpre_cluster_offsets[i]; regset->dev = dev; debugfs_create_file("regs", 0444, tmp_d, regset, &hpre_cluster_regs_fops); ret = hpre_create_debugfs_file(qm, tmp_d, HPRE_CLUSTER_CTRL, i + HPRE_CLUSTER_CTRL); if (ret) return ret; } return 0; } static int hpre_ctrl_debug_init(struct hisi_qm *qm) { int ret; ret = hpre_create_debugfs_file(qm, NULL, HPRE_CLEAR_ENABLE, HPRE_CLEAR_ENABLE); if (ret) return ret; ret = hpre_pf_comm_regs_debugfs_init(qm); if (ret) return ret; return hpre_cluster_debugfs_init(qm); } static int hpre_cap_regs_show(struct seq_file *s, void *unused) { struct hisi_qm *qm = s->private; u32 i, size; size = qm->cap_tables.qm_cap_size; for (i = 0; i < size; i++) seq_printf(s, "%s= 0x%08x\n", qm->cap_tables.qm_cap_table[i].name, qm->cap_tables.qm_cap_table[i].cap_val); size = qm->cap_tables.dev_cap_size; for (i = 0; i < size; i++) seq_printf(s, "%s= 0x%08x\n", qm->cap_tables.dev_cap_table[i].name, qm->cap_tables.dev_cap_table[i].cap_val); return 0; } DEFINE_SHOW_ATTRIBUTE(hpre_cap_regs); static void hpre_dfx_debug_init(struct hisi_qm *qm) { struct dfx_diff_registers *hpre_regs = qm->debug.acc_diff_regs; struct hpre *hpre = container_of(qm, struct hpre, qm); struct hpre_dfx *dfx = hpre->debug.dfx; struct dentry *parent; int i; parent = debugfs_create_dir("hpre_dfx", qm->debug.debug_root); for (i = 0; i < HPRE_DFX_FILE_NUM; i++) { dfx[i].type = i; debugfs_create_file(hpre_dfx_files[i], 0644, parent, &dfx[i], &hpre_atomic64_ops); } if (qm->fun_type == QM_HW_PF && hpre_regs) debugfs_create_file("diff_regs", 0444, parent, qm, &hpre_diff_regs_fops); debugfs_create_file("cap_regs", CAP_FILE_PERMISSION, qm->debug.debug_root, qm, &hpre_cap_regs_fops); } static int hpre_debugfs_init(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret; ret = hisi_qm_regs_debugfs_init(qm, hpre_diff_regs, ARRAY_SIZE(hpre_diff_regs)); if (ret) { dev_warn(dev, "Failed to init HPRE diff regs!\n"); return ret; } qm->debug.debug_root = debugfs_create_dir(dev_name(dev), hpre_debugfs_root); qm->debug.sqe_mask_offset = HPRE_SQE_MASK_OFFSET; qm->debug.sqe_mask_len = HPRE_SQE_MASK_LEN; hisi_qm_debug_init(qm); if (qm->pdev->device == PCI_DEVICE_ID_HUAWEI_HPRE_PF) { ret = hpre_ctrl_debug_init(qm); if (ret) goto debugfs_remove; } hpre_dfx_debug_init(qm); return 0; debugfs_remove: debugfs_remove_recursive(qm->debug.debug_root); hisi_qm_regs_debugfs_uninit(qm, ARRAY_SIZE(hpre_diff_regs)); return ret; } static void hpre_debugfs_exit(struct hisi_qm *qm) { debugfs_remove_recursive(qm->debug.debug_root); hisi_qm_regs_debugfs_uninit(qm, ARRAY_SIZE(hpre_diff_regs)); } static int hpre_pre_store_cap_reg(struct hisi_qm *qm) { struct hisi_qm_cap_record *hpre_cap; struct device *dev = &qm->pdev->dev; u32 hpre_core_info; u8 clusters_num; size_t i, size; size = ARRAY_SIZE(hpre_cap_query_info); hpre_cap = devm_kzalloc(dev, sizeof(*hpre_cap) * size, GFP_KERNEL); if (!hpre_cap) return -ENOMEM; for (i = 0; i < size; i++) { hpre_cap[i].type = hpre_cap_query_info[i].type; hpre_cap[i].name = hpre_cap_query_info[i].name; hpre_cap[i].cap_val = hisi_qm_get_cap_value(qm, hpre_cap_query_info, i, qm->cap_ver); } hpre_core_info = hpre_cap[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; if (clusters_num > HPRE_CLUSTERS_NUM_MAX) { dev_err(dev, "Device cluster num %u is out of range for driver supports %d!\n", clusters_num, HPRE_CLUSTERS_NUM_MAX); return -EINVAL; } qm->cap_tables.dev_cap_table = hpre_cap; qm->cap_tables.dev_cap_size = size; return 0; } static int hpre_qm_init(struct hisi_qm *qm, struct pci_dev *pdev) { u64 alg_msk; int ret; if (pdev->revision == QM_HW_V1) { pci_warn(pdev, "HPRE version 1 is not supported!\n"); return -EINVAL; } qm->mode = uacce_mode; qm->pdev = pdev; qm->ver = pdev->revision; qm->sqe_size = HPRE_SQE_SIZE; qm->dev_name = hpre_name; qm->fun_type = (pdev->device == PCI_DEVICE_ID_HUAWEI_HPRE_PF) ? QM_HW_PF : QM_HW_VF; if (qm->fun_type == QM_HW_PF) { qm->qp_base = HPRE_PF_DEF_Q_BASE; qm->qp_num = pf_q_num; qm->debug.curr_qm_qp_num = pf_q_num; qm->qm_list = &hpre_devices; qm->err_ini = &hpre_err_ini; if (pf_q_num_flag) set_bit(QM_MODULE_PARAM, &qm->misc_ctl); } ret = hisi_qm_init(qm); if (ret) { pci_err(pdev, "Failed to init hpre qm configures!\n"); return ret; } /* Fetch and save the value of capability registers */ ret = hpre_pre_store_cap_reg(qm); if (ret) { pci_err(pdev, "Failed to pre-store capability registers!\n"); hisi_qm_uninit(qm); return ret; } alg_msk = qm->cap_tables.dev_cap_table[HPRE_ALG_BITMAP].cap_val; ret = hisi_qm_set_algs(qm, alg_msk, hpre_dev_algs, ARRAY_SIZE(hpre_dev_algs)); if (ret) { pci_err(pdev, "Failed to set hpre algs!\n"); hisi_qm_uninit(qm); } return ret; } static int hpre_show_last_regs_init(struct hisi_qm *qm) { int cluster_dfx_regs_num = ARRAY_SIZE(hpre_cluster_dfx_regs); int com_dfx_regs_num = ARRAY_SIZE(hpre_com_dfx_regs); struct qm_debug *debug = &qm->debug; void __iomem *io_base; u32 hpre_core_info; u8 clusters_num; int i, j, idx; hpre_core_info = qm->cap_tables.dev_cap_table[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; debug->last_words = kcalloc(cluster_dfx_regs_num * clusters_num + com_dfx_regs_num, sizeof(unsigned int), GFP_KERNEL); if (!debug->last_words) return -ENOMEM; for (i = 0; i < com_dfx_regs_num; i++) debug->last_words[i] = readl_relaxed(qm->io_base + hpre_com_dfx_regs[i].offset); for (i = 0; i < clusters_num; i++) { io_base = qm->io_base + hpre_cluster_offsets[i]; for (j = 0; j < cluster_dfx_regs_num; j++) { idx = com_dfx_regs_num + i * cluster_dfx_regs_num + j; debug->last_words[idx] = readl_relaxed( io_base + hpre_cluster_dfx_regs[j].offset); } } return 0; } static void hpre_show_last_regs_uninit(struct hisi_qm *qm) { struct qm_debug *debug = &qm->debug; if (qm->fun_type == QM_HW_VF || !debug->last_words) return; kfree(debug->last_words); debug->last_words = NULL; } static void hpre_show_last_dfx_regs(struct hisi_qm *qm) { int cluster_dfx_regs_num = ARRAY_SIZE(hpre_cluster_dfx_regs); int com_dfx_regs_num = ARRAY_SIZE(hpre_com_dfx_regs); struct qm_debug *debug = &qm->debug; struct pci_dev *pdev = qm->pdev; void __iomem *io_base; u32 hpre_core_info; u8 clusters_num; int i, j, idx; u32 val; if (qm->fun_type == QM_HW_VF || !debug->last_words) return; /* dumps last word of the debugging registers during controller reset */ for (i = 0; i < com_dfx_regs_num; i++) { val = readl_relaxed(qm->io_base + hpre_com_dfx_regs[i].offset); if (debug->last_words[i] != val) pci_info(pdev, "Common_core:%s \t= 0x%08x => 0x%08x\n", hpre_com_dfx_regs[i].name, debug->last_words[i], val); } hpre_core_info = qm->cap_tables.dev_cap_table[HPRE_CORE_INFO].cap_val; clusters_num = (hpre_core_info >> hpre_basic_info[HPRE_CLUSTER_NUM_CAP].shift) & hpre_basic_info[HPRE_CLUSTER_NUM_CAP].mask; for (i = 0; i < clusters_num; i++) { io_base = qm->io_base + hpre_cluster_offsets[i]; for (j = 0; j < cluster_dfx_regs_num; j++) { val = readl_relaxed(io_base + hpre_cluster_dfx_regs[j].offset); idx = com_dfx_regs_num + i * cluster_dfx_regs_num + j; if (debug->last_words[idx] != val) pci_info(pdev, "cluster-%d:%s \t= 0x%08x => 0x%08x\n", i, hpre_cluster_dfx_regs[j].name, debug->last_words[idx], val); } } } static void hpre_log_hw_error(struct hisi_qm *qm, u32 err_sts) { const struct hpre_hw_error *err = hpre_hw_errors; struct device *dev = &qm->pdev->dev; while (err->msg) { if (err->int_msk & err_sts) dev_warn(dev, "%s [error status=0x%x] found\n", err->msg, err->int_msk); err++; } } static u32 hpre_get_hw_err_status(struct hisi_qm *qm) { return readl(qm->io_base + HPRE_INT_STATUS); } static void hpre_clear_hw_err_status(struct hisi_qm *qm, u32 err_sts) { writel(err_sts, qm->io_base + HPRE_HAC_SOURCE_INT); } static void hpre_disable_error_report(struct hisi_qm *qm, u32 err_type) { u32 nfe_mask; nfe_mask = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver); writel(nfe_mask & (~err_type), qm->io_base + HPRE_RAS_NFE_ENB); } static void hpre_open_axi_master_ooo(struct hisi_qm *qm) { u32 value; value = readl(qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB); writel(value & ~HPRE_AM_OOO_SHUTDOWN_ENABLE, qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB); writel(value | HPRE_AM_OOO_SHUTDOWN_ENABLE, qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB); } static enum acc_err_result hpre_get_err_result(struct hisi_qm *qm) { u32 err_status; err_status = hpre_get_hw_err_status(qm); if (err_status) { if (err_status & qm->err_info.ecc_2bits_mask) qm->err_status.is_dev_ecc_mbit = true; hpre_log_hw_error(qm, err_status); if (err_status & qm->err_info.dev_reset_mask) { /* Disable the same error reporting until device is recovered. */ hpre_disable_error_report(qm, err_status); return ACC_ERR_NEED_RESET; } hpre_clear_hw_err_status(qm, err_status); } return ACC_ERR_RECOVERED; } static void hpre_err_info_init(struct hisi_qm *qm) { struct hisi_qm_err_info *err_info = &qm->err_info; err_info->fe = HPRE_HAC_RAS_FE_ENABLE; err_info->ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_CE_MASK_CAP, qm->cap_ver); err_info->nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_NFE_MASK_CAP, qm->cap_ver); err_info->ecc_2bits_mask = HPRE_CORE_ECC_2BIT_ERR | HPRE_OOO_ECC_2BIT_ERR; err_info->dev_shutdown_mask = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver); err_info->qm_shutdown_mask = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver); err_info->qm_reset_mask = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_RESET_MASK_CAP, qm->cap_ver); err_info->dev_reset_mask = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_RESET_MASK_CAP, qm->cap_ver); err_info->msi_wr_port = HPRE_WR_MSI_PORT; err_info->acpi_rst = "HRST"; } static const struct hisi_qm_err_ini hpre_err_ini = { .hw_init = hpre_set_user_domain_and_cache, .hw_err_enable = hpre_hw_error_enable, .hw_err_disable = hpre_hw_error_disable, .get_dev_hw_err_status = hpre_get_hw_err_status, .clear_dev_hw_err_status = hpre_clear_hw_err_status, .open_axi_master_ooo = hpre_open_axi_master_ooo, .open_sva_prefetch = hpre_open_sva_prefetch, .close_sva_prefetch = hpre_close_sva_prefetch, .show_last_dfx_regs = hpre_show_last_dfx_regs, .err_info_init = hpre_err_info_init, .get_err_result = hpre_get_err_result, }; static int hpre_pf_probe_init(struct hpre *hpre) { struct hisi_qm *qm = &hpre->qm; int ret; ret = hpre_set_user_domain_and_cache(qm); if (ret) return ret; hpre_open_sva_prefetch(qm); hisi_qm_dev_err_init(qm); ret = hpre_show_last_regs_init(qm); if (ret) pci_err(qm->pdev, "Failed to init last word regs!\n"); return ret; } static int hpre_probe_init(struct hpre *hpre) { u32 type_rate = HPRE_SHAPER_TYPE_RATE; struct hisi_qm *qm = &hpre->qm; int ret; if (qm->fun_type == QM_HW_PF) { ret = hpre_pf_probe_init(hpre); if (ret) return ret; /* Enable shaper type 0 */ if (qm->ver >= QM_HW_V3) { type_rate |= QM_SHAPER_ENABLE; qm->type_rate = type_rate; } } return 0; } static void hpre_probe_uninit(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_VF) return; hpre_cnt_regs_clear(qm); qm->debug.curr_qm_qp_num = 0; hpre_show_last_regs_uninit(qm); hpre_close_sva_prefetch(qm); hisi_qm_dev_err_uninit(qm); } static int hpre_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct hisi_qm *qm; struct hpre *hpre; int ret; hpre = devm_kzalloc(&pdev->dev, sizeof(*hpre), GFP_KERNEL); if (!hpre) return -ENOMEM; qm = &hpre->qm; ret = hpre_qm_init(qm, pdev); if (ret) { pci_err(pdev, "Failed to init HPRE QM (%d)!\n", ret); return ret; } ret = hpre_probe_init(hpre); if (ret) { pci_err(pdev, "Failed to probe (%d)!\n", ret); goto err_with_qm_init; } ret = hisi_qm_start(qm); if (ret) goto err_with_probe_init; ret = hpre_debugfs_init(qm); if (ret) dev_warn(&pdev->dev, "init debugfs fail!\n"); hisi_qm_add_list(qm, &hpre_devices); ret = hisi_qm_alg_register(qm, &hpre_devices, HPRE_CTX_Q_NUM_DEF); if (ret < 0) { pci_err(pdev, "fail to register algs to crypto!\n"); goto err_qm_del_list; } if (qm->uacce) { ret = uacce_register(qm->uacce); if (ret) { pci_err(pdev, "failed to register uacce (%d)!\n", ret); goto err_with_alg_register; } } if (qm->fun_type == QM_HW_PF && vfs_num) { ret = hisi_qm_sriov_enable(pdev, vfs_num); if (ret < 0) goto err_with_alg_register; } hisi_qm_pm_init(qm); return 0; err_with_alg_register: hisi_qm_alg_unregister(qm, &hpre_devices, HPRE_CTX_Q_NUM_DEF); err_qm_del_list: hisi_qm_del_list(qm, &hpre_devices); hpre_debugfs_exit(qm); hisi_qm_stop(qm, QM_NORMAL); err_with_probe_init: hpre_probe_uninit(qm); err_with_qm_init: hisi_qm_uninit(qm); return ret; } static void hpre_remove(struct pci_dev *pdev) { struct hisi_qm *qm = pci_get_drvdata(pdev); hisi_qm_pm_uninit(qm); hisi_qm_wait_task_finish(qm, &hpre_devices); hisi_qm_alg_unregister(qm, &hpre_devices, HPRE_CTX_Q_NUM_DEF); hisi_qm_del_list(qm, &hpre_devices); if (qm->fun_type == QM_HW_PF && qm->vfs_num) hisi_qm_sriov_disable(pdev, true); hpre_debugfs_exit(qm); hisi_qm_stop(qm, QM_NORMAL); hpre_probe_uninit(qm); hisi_qm_uninit(qm); } static const struct dev_pm_ops hpre_pm_ops = { SET_RUNTIME_PM_OPS(hisi_qm_suspend, hisi_qm_resume, NULL) }; static const struct pci_error_handlers hpre_err_handler = { .error_detected = hisi_qm_dev_err_detected, .slot_reset = hisi_qm_dev_slot_reset, .reset_prepare = hisi_qm_reset_prepare, .reset_done = hisi_qm_reset_done, }; static struct pci_driver hpre_pci_driver = { .name = hpre_name, .id_table = hpre_dev_ids, .probe = hpre_probe, .remove = hpre_remove, .sriov_configure = IS_ENABLED(CONFIG_PCI_IOV) ? hisi_qm_sriov_configure : NULL, .err_handler = &hpre_err_handler, .shutdown = hisi_qm_dev_shutdown, .driver.pm = &hpre_pm_ops, }; struct pci_driver *hisi_hpre_get_pf_driver(void) { return &hpre_pci_driver; } EXPORT_SYMBOL_GPL(hisi_hpre_get_pf_driver); static void hpre_register_debugfs(void) { if (!debugfs_initialized()) return; hpre_debugfs_root = debugfs_create_dir(hpre_name, NULL); } static void hpre_unregister_debugfs(void) { debugfs_remove_recursive(hpre_debugfs_root); } static int __init hpre_init(void) { int ret; hisi_qm_init_list(&hpre_devices); hpre_register_debugfs(); ret = pci_register_driver(&hpre_pci_driver); if (ret) { hpre_unregister_debugfs(); pr_err("hpre: can't register hisi hpre driver.\n"); } return ret; } static void __exit hpre_exit(void) { pci_unregister_driver(&hpre_pci_driver); hpre_unregister_debugfs(); } module_init(hpre_init); module_exit(hpre_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Zaibo Xu "); MODULE_AUTHOR("Meng Yu "); MODULE_DESCRIPTION("Driver for HiSilicon HPRE accelerator");