// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) STMicroelectronics SA 2017 * Author: Fabien Dessenne * Ux500 support taken from snippets in the old Ux500 cryp driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "stm32-cryp" /* Bit [0] encrypt / decrypt */ #define FLG_ENCRYPT BIT(0) /* Bit [8..1] algo & operation mode */ #define FLG_AES BIT(1) #define FLG_DES BIT(2) #define FLG_TDES BIT(3) #define FLG_ECB BIT(4) #define FLG_CBC BIT(5) #define FLG_CTR BIT(6) #define FLG_GCM BIT(7) #define FLG_CCM BIT(8) /* Mode mask = bits [15..0] */ #define FLG_MODE_MASK GENMASK(15, 0) /* Bit [31..16] status */ #define FLG_IN_OUT_DMA BIT(16) #define FLG_HEADER_DMA BIT(17) /* Registers */ #define CRYP_CR 0x00000000 #define CRYP_SR 0x00000004 #define CRYP_DIN 0x00000008 #define CRYP_DOUT 0x0000000C #define CRYP_DMACR 0x00000010 #define CRYP_IMSCR 0x00000014 #define CRYP_RISR 0x00000018 #define CRYP_MISR 0x0000001C #define CRYP_K0LR 0x00000020 #define CRYP_K0RR 0x00000024 #define CRYP_K1LR 0x00000028 #define CRYP_K1RR 0x0000002C #define CRYP_K2LR 0x00000030 #define CRYP_K2RR 0x00000034 #define CRYP_K3LR 0x00000038 #define CRYP_K3RR 0x0000003C #define CRYP_IV0LR 0x00000040 #define CRYP_IV0RR 0x00000044 #define CRYP_IV1LR 0x00000048 #define CRYP_IV1RR 0x0000004C #define CRYP_CSGCMCCM0R 0x00000050 #define CRYP_CSGCM0R 0x00000070 #define UX500_CRYP_CR 0x00000000 #define UX500_CRYP_SR 0x00000004 #define UX500_CRYP_DIN 0x00000008 #define UX500_CRYP_DINSIZE 0x0000000C #define UX500_CRYP_DOUT 0x00000010 #define UX500_CRYP_DOUSIZE 0x00000014 #define UX500_CRYP_DMACR 0x00000018 #define UX500_CRYP_IMSC 0x0000001C #define UX500_CRYP_RIS 0x00000020 #define UX500_CRYP_MIS 0x00000024 #define UX500_CRYP_K1L 0x00000028 #define UX500_CRYP_K1R 0x0000002C #define UX500_CRYP_K2L 0x00000030 #define UX500_CRYP_K2R 0x00000034 #define UX500_CRYP_K3L 0x00000038 #define UX500_CRYP_K3R 0x0000003C #define UX500_CRYP_K4L 0x00000040 #define UX500_CRYP_K4R 0x00000044 #define UX500_CRYP_IV0L 0x00000048 #define UX500_CRYP_IV0R 0x0000004C #define UX500_CRYP_IV1L 0x00000050 #define UX500_CRYP_IV1R 0x00000054 /* Registers values */ #define CR_DEC_NOT_ENC 0x00000004 #define CR_TDES_ECB 0x00000000 #define CR_TDES_CBC 0x00000008 #define CR_DES_ECB 0x00000010 #define CR_DES_CBC 0x00000018 #define CR_AES_ECB 0x00000020 #define CR_AES_CBC 0x00000028 #define CR_AES_CTR 0x00000030 #define CR_AES_KP 0x00000038 /* Not on Ux500 */ #define CR_AES_XTS 0x00000038 /* Only on Ux500 */ #define CR_AES_GCM 0x00080000 #define CR_AES_CCM 0x00080008 #define CR_AES_UNKNOWN 0xFFFFFFFF #define CR_ALGO_MASK 0x00080038 #define CR_DATA32 0x00000000 #define CR_DATA16 0x00000040 #define CR_DATA8 0x00000080 #define CR_DATA1 0x000000C0 #define CR_KEY128 0x00000000 #define CR_KEY192 0x00000100 #define CR_KEY256 0x00000200 #define CR_KEYRDEN 0x00000400 /* Only on Ux500 */ #define CR_KSE 0x00000800 /* Only on Ux500 */ #define CR_FFLUSH 0x00004000 #define CR_CRYPEN 0x00008000 #define CR_PH_INIT 0x00000000 #define CR_PH_HEADER 0x00010000 #define CR_PH_PAYLOAD 0x00020000 #define CR_PH_FINAL 0x00030000 #define CR_PH_MASK 0x00030000 #define CR_NBPBL_SHIFT 20 #define SR_IFNF BIT(1) #define SR_OFNE BIT(2) #define SR_BUSY BIT(8) #define DMACR_DIEN BIT(0) #define DMACR_DOEN BIT(1) #define IMSCR_IN BIT(0) #define IMSCR_OUT BIT(1) #define MISR_IN BIT(0) #define MISR_OUT BIT(1) /* Misc */ #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32)) #define GCM_CTR_INIT 2 #define CRYP_AUTOSUSPEND_DELAY 50 #define CRYP_DMA_BURST_REG 4 enum stm32_dma_mode { NO_DMA, DMA_PLAIN_SG, DMA_NEED_SG_TRUNC }; struct stm32_cryp_caps { bool aeads_support; bool linear_aes_key; bool kp_mode; bool iv_protection; bool swap_final; bool padding_wa; u32 cr; u32 sr; u32 din; u32 dout; u32 dmacr; u32 imsc; u32 mis; u32 k1l; u32 k1r; u32 k3r; u32 iv0l; u32 iv0r; u32 iv1l; u32 iv1r; }; struct stm32_cryp_ctx { struct stm32_cryp *cryp; int keylen; __be32 key[AES_KEYSIZE_256 / sizeof(u32)]; unsigned long flags; }; struct stm32_cryp_reqctx { unsigned long mode; }; struct stm32_cryp { struct list_head list; struct device *dev; void __iomem *regs; phys_addr_t phys_base; struct clk *clk; unsigned long flags; u32 irq_status; const struct stm32_cryp_caps *caps; struct stm32_cryp_ctx *ctx; struct crypto_engine *engine; struct skcipher_request *req; struct aead_request *areq; size_t authsize; size_t hw_blocksize; size_t payload_in; size_t header_in; size_t payload_out; /* DMA process fields */ struct scatterlist *in_sg; struct scatterlist *header_sg; struct scatterlist *out_sg; size_t in_sg_len; size_t header_sg_len; size_t out_sg_len; struct completion dma_completion; struct dma_chan *dma_lch_in; struct dma_chan *dma_lch_out; enum stm32_dma_mode dma_mode; /* IT process fields */ struct scatter_walk in_walk; struct scatter_walk out_walk; __be32 last_ctr[4]; u32 gcm_ctr; }; struct stm32_cryp_list { struct list_head dev_list; spinlock_t lock; /* protect dev_list */ }; static struct stm32_cryp_list cryp_list = { .dev_list = LIST_HEAD_INIT(cryp_list.dev_list), .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock), }; static inline bool is_aes(struct stm32_cryp *cryp) { return cryp->flags & FLG_AES; } static inline bool is_des(struct stm32_cryp *cryp) { return cryp->flags & FLG_DES; } static inline bool is_tdes(struct stm32_cryp *cryp) { return cryp->flags & FLG_TDES; } static inline bool is_ecb(struct stm32_cryp *cryp) { return cryp->flags & FLG_ECB; } static inline bool is_cbc(struct stm32_cryp *cryp) { return cryp->flags & FLG_CBC; } static inline bool is_ctr(struct stm32_cryp *cryp) { return cryp->flags & FLG_CTR; } static inline bool is_gcm(struct stm32_cryp *cryp) { return cryp->flags & FLG_GCM; } static inline bool is_ccm(struct stm32_cryp *cryp) { return cryp->flags & FLG_CCM; } static inline bool is_encrypt(struct stm32_cryp *cryp) { return cryp->flags & FLG_ENCRYPT; } static inline bool is_decrypt(struct stm32_cryp *cryp) { return !is_encrypt(cryp); } static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst) { return readl_relaxed(cryp->regs + ofst); } static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val) { writel_relaxed(val, cryp->regs + ofst); } static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp) { u32 status; return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status, !(status & SR_BUSY), 10, 100000); } static inline void stm32_cryp_enable(struct stm32_cryp *cryp) { writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN, cryp->regs + cryp->caps->cr); } static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp) { u32 status; return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status, !(status & CR_CRYPEN), 10, 100000); } static inline int stm32_cryp_wait_input(struct stm32_cryp *cryp) { u32 status; return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status, status & SR_IFNF, 1, 10); } static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp) { u32 status; return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status, status & SR_OFNE, 1, 10); } static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp) { writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN, cryp->regs + cryp->caps->cr); } static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp) { writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN, cryp->regs + cryp->caps->cr); } static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp); static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp); static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp); static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp); static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err); static int stm32_cryp_dma_start(struct stm32_cryp *cryp); static int stm32_cryp_it_start(struct stm32_cryp *cryp); static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx) { struct stm32_cryp *tmp, *cryp = NULL; spin_lock_bh(&cryp_list.lock); if (!ctx->cryp) { list_for_each_entry(tmp, &cryp_list.dev_list, list) { cryp = tmp; break; } ctx->cryp = cryp; } else { cryp = ctx->cryp; } spin_unlock_bh(&cryp_list.lock); return cryp; } static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv) { if (!iv) return; stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++)); stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++)); if (is_aes(cryp)) { stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++)); stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++)); } } static void stm32_cryp_get_iv(struct stm32_cryp *cryp) { struct skcipher_request *req = cryp->req; __be32 *tmp = (void *)req->iv; if (!tmp) return; if (cryp->caps->iv_protection) stm32_cryp_key_read_enable(cryp); *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l)); *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r)); if (is_aes(cryp)) { *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l)); *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r)); } if (cryp->caps->iv_protection) stm32_cryp_key_read_disable(cryp); } /** * ux500_swap_bits_in_byte() - mirror the bits in a byte * @b: the byte to be mirrored * * The bits are swapped the following way: * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and * nibble 2 (n2) bits 4-7. * * Nibble 1 (n1): * (The "old" (moved) bit is replaced with a zero) * 1. Move bit 6 and 7, 4 positions to the left. * 2. Move bit 3 and 5, 2 positions to the left. * 3. Move bit 1-4, 1 position to the left. * * Nibble 2 (n2): * 1. Move bit 0 and 1, 4 positions to the right. * 2. Move bit 2 and 4, 2 positions to the right. * 3. Move bit 3-6, 1 position to the right. * * Combine the two nibbles to a complete and swapped byte. */ static inline u8 ux500_swap_bits_in_byte(u8 b) { #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */ #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5, right shift 2 */ #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4, right shift 1 */ #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */ #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4, left shift 2 */ #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6, left shift 1 */ u8 n1; u8 n2; /* Swap most significant nibble */ /* Right shift 4, bits 6 and 7 */ n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4)); /* Right shift 2, bits 3 and 5 */ n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2)); /* Right shift 1, bits 1-4 */ n1 = (n1 & R_SHIFT_1_MASK) >> 1; /* Swap least significant nibble */ /* Left shift 4, bits 0 and 1 */ n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4)); /* Left shift 2, bits 2 and 4 */ n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2)); /* Left shift 1, bits 3-6 */ n2 = (n2 & L_SHIFT_1_MASK) << 1; return n1 | n2; } /** * ux500_swizzle_key() - Shuffle around words and bits in the AES key * @in: key to swizzle * @out: swizzled key * @len: length of key, in bytes * * This "key swizzling procedure" is described in the examples in the * DB8500 design specification. There is no real description of why * the bits have been arranged like this in the hardware. */ static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len) { int i = 0; int bpw = sizeof(u32); int j; int index = 0; j = len - bpw; while (j >= 0) { for (i = 0; i < bpw; i++) { index = len - j - bpw + i; out[j + i] = ux500_swap_bits_in_byte(in[index]); } j -= bpw; } } static void stm32_cryp_hw_write_key(struct stm32_cryp *c) { unsigned int i; int r_id; if (is_des(c)) { stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0])); stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1])); return; } /* * On the Ux500 the AES key is considered as a single bit sequence * of 128, 192 or 256 bits length. It is written linearly into the * registers from K1L and down, and need to be processed to become * a proper big-endian bit sequence. */ if (is_aes(c) && c->caps->linear_aes_key) { u32 tmpkey[8]; ux500_swizzle_key((u8 *)c->ctx->key, (u8 *)tmpkey, c->ctx->keylen); r_id = c->caps->k1l; for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4) stm32_cryp_write(c, r_id, tmpkey[i]); return; } r_id = c->caps->k3r; for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4) stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1])); } static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp) { if (is_aes(cryp) && is_ecb(cryp)) return CR_AES_ECB; if (is_aes(cryp) && is_cbc(cryp)) return CR_AES_CBC; if (is_aes(cryp) && is_ctr(cryp)) return CR_AES_CTR; if (is_aes(cryp) && is_gcm(cryp)) return CR_AES_GCM; if (is_aes(cryp) && is_ccm(cryp)) return CR_AES_CCM; if (is_des(cryp) && is_ecb(cryp)) return CR_DES_ECB; if (is_des(cryp) && is_cbc(cryp)) return CR_DES_CBC; if (is_tdes(cryp) && is_ecb(cryp)) return CR_TDES_ECB; if (is_tdes(cryp) && is_cbc(cryp)) return CR_TDES_CBC; dev_err(cryp->dev, "Unknown mode\n"); return CR_AES_UNKNOWN; } static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp) { return is_encrypt(cryp) ? cryp->areq->cryptlen : cryp->areq->cryptlen - cryp->authsize; } static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg) { int ret; __be32 iv[4]; /* Phase 1 : init */ memcpy(iv, cryp->areq->iv, 12); iv[3] = cpu_to_be32(GCM_CTR_INIT); cryp->gcm_ctr = GCM_CTR_INIT; stm32_cryp_hw_write_iv(cryp, iv); stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN); /* Wait for end of processing */ ret = stm32_cryp_wait_enable(cryp); if (ret) { dev_err(cryp->dev, "Timeout (gcm init)\n"); return ret; } /* Prepare next phase */ if (cryp->areq->assoclen) { cfg |= CR_PH_HEADER; stm32_cryp_write(cryp, cryp->caps->cr, cfg); } else if (stm32_cryp_get_input_text_len(cryp)) { cfg |= CR_PH_PAYLOAD; stm32_cryp_write(cryp, cryp->caps->cr, cfg); } return 0; } static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp) { u32 cfg; int err; /* Check if whole header written */ if (!cryp->header_in) { /* Wait for completion */ err = stm32_cryp_wait_busy(cryp); if (err) { dev_err(cryp->dev, "Timeout (gcm/ccm header)\n"); stm32_cryp_write(cryp, cryp->caps->imsc, 0); stm32_cryp_finish_req(cryp, err); return; } if (stm32_cryp_get_input_text_len(cryp)) { /* Phase 3 : payload */ cfg = stm32_cryp_read(cryp, cryp->caps->cr); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); cfg &= ~CR_PH_MASK; cfg |= CR_PH_PAYLOAD | CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); } else { /* * Phase 4 : tag. * Nothing to read, nothing to write, caller have to * end request */ } } } static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp) { size_t written; size_t len; u32 alen = cryp->areq->assoclen; u32 block[AES_BLOCK_32] = {0}; u8 *b8 = (u8 *)block; if (alen <= 65280) { /* Write first u32 of B1 */ b8[0] = (alen >> 8) & 0xFF; b8[1] = alen & 0xFF; len = 2; } else { /* Build the two first u32 of B1 */ b8[0] = 0xFF; b8[1] = 0xFE; b8[2] = (alen & 0xFF000000) >> 24; b8[3] = (alen & 0x00FF0000) >> 16; b8[4] = (alen & 0x0000FF00) >> 8; b8[5] = alen & 0x000000FF; len = 6; } written = min_t(size_t, AES_BLOCK_SIZE - len, alen); scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0); writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32); cryp->header_in -= written; stm32_crypt_gcmccm_end_header(cryp); } static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg) { int ret; u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32]; u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32; __be32 *bd; u32 *d; unsigned int i, textlen; /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */ memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE); memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1); iv[AES_BLOCK_SIZE - 1] = 1; stm32_cryp_hw_write_iv(cryp, (__be32 *)iv); /* Build B0 */ memcpy(b0, iv, AES_BLOCK_SIZE); b0[0] |= (8 * ((cryp->authsize - 2) / 2)); if (cryp->areq->assoclen) b0[0] |= 0x40; textlen = stm32_cryp_get_input_text_len(cryp); b0[AES_BLOCK_SIZE - 2] = textlen >> 8; b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF; /* Enable HW */ stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN); /* Write B0 */ d = (u32 *)b0; bd = (__be32 *)b0; for (i = 0; i < AES_BLOCK_32; i++) { u32 xd = d[i]; if (!cryp->caps->padding_wa) xd = be32_to_cpu(bd[i]); stm32_cryp_write(cryp, cryp->caps->din, xd); } /* Wait for end of processing */ ret = stm32_cryp_wait_enable(cryp); if (ret) { dev_err(cryp->dev, "Timeout (ccm init)\n"); return ret; } /* Prepare next phase */ if (cryp->areq->assoclen) { cfg |= CR_PH_HEADER | CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* Write first (special) block (may move to next phase [payload]) */ stm32_cryp_write_ccm_first_header(cryp); } else if (stm32_cryp_get_input_text_len(cryp)) { cfg |= CR_PH_PAYLOAD; stm32_cryp_write(cryp, cryp->caps->cr, cfg); } return 0; } static int stm32_cryp_hw_init(struct stm32_cryp *cryp) { int ret; u32 cfg, hw_mode; pm_runtime_get_sync(cryp->dev); /* Disable interrupt */ stm32_cryp_write(cryp, cryp->caps->imsc, 0); /* Set configuration */ cfg = CR_DATA8 | CR_FFLUSH; switch (cryp->ctx->keylen) { case AES_KEYSIZE_128: cfg |= CR_KEY128; break; case AES_KEYSIZE_192: cfg |= CR_KEY192; break; default: case AES_KEYSIZE_256: cfg |= CR_KEY256; break; } hw_mode = stm32_cryp_get_hw_mode(cryp); if (hw_mode == CR_AES_UNKNOWN) return -EINVAL; /* AES ECB/CBC decrypt: run key preparation first */ if (is_decrypt(cryp) && ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) { /* Configure in key preparation mode */ if (cryp->caps->kp_mode) stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_AES_KP); else stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE); /* Set key only after full configuration done */ stm32_cryp_hw_write_key(cryp); /* Start prepare key */ stm32_cryp_enable(cryp); /* Wait for end of processing */ ret = stm32_cryp_wait_busy(cryp); if (ret) { dev_err(cryp->dev, "Timeout (key preparation)\n"); return ret; } cfg |= hw_mode | CR_DEC_NOT_ENC; /* Apply updated config (Decrypt + algo) and flush */ stm32_cryp_write(cryp, cryp->caps->cr, cfg); } else { cfg |= hw_mode; if (is_decrypt(cryp)) cfg |= CR_DEC_NOT_ENC; /* Apply config and flush */ stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* Set key only after configuration done */ stm32_cryp_hw_write_key(cryp); } switch (hw_mode) { case CR_AES_GCM: case CR_AES_CCM: /* Phase 1 : init */ if (hw_mode == CR_AES_CCM) ret = stm32_cryp_ccm_init(cryp, cfg); else ret = stm32_cryp_gcm_init(cryp, cfg); if (ret) return ret; break; case CR_DES_CBC: case CR_TDES_CBC: case CR_AES_CBC: case CR_AES_CTR: stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv); break; default: break; } /* Enable now */ stm32_cryp_enable(cryp); return 0; } static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err) { if (!err && (is_gcm(cryp) || is_ccm(cryp))) /* Phase 4 : output tag */ err = stm32_cryp_read_auth_tag(cryp); if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp)))) stm32_cryp_get_iv(cryp); pm_runtime_mark_last_busy(cryp->dev); pm_runtime_put_autosuspend(cryp->dev); if (is_gcm(cryp) || is_ccm(cryp)) crypto_finalize_aead_request(cryp->engine, cryp->areq, err); else crypto_finalize_skcipher_request(cryp->engine, cryp->req, err); } static void stm32_cryp_header_dma_callback(void *param) { struct stm32_cryp *cryp = (struct stm32_cryp *)param; int ret; u32 reg; dma_unmap_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE); reg = stm32_cryp_read(cryp, cryp->caps->dmacr); stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN)); kfree(cryp->header_sg); reg = stm32_cryp_read(cryp, cryp->caps->cr); if (cryp->header_in) { stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN); ret = stm32_cryp_wait_input(cryp); if (ret) { dev_err(cryp->dev, "input header ready timeout after dma\n"); stm32_cryp_finish_req(cryp, ret); return; } stm32_cryp_irq_write_gcmccm_header(cryp); WARN_ON(cryp->header_in); } if (stm32_cryp_get_input_text_len(cryp)) { /* Phase 3 : payload */ reg = stm32_cryp_read(cryp, cryp->caps->cr); stm32_cryp_write(cryp, cryp->caps->cr, reg & ~CR_CRYPEN); reg &= ~CR_PH_MASK; reg |= CR_PH_PAYLOAD | CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, reg); if (cryp->flags & FLG_IN_OUT_DMA) { ret = stm32_cryp_dma_start(cryp); if (ret) stm32_cryp_finish_req(cryp, ret); } else { stm32_cryp_it_start(cryp); } } else { /* * Phase 4 : tag. * Nothing to read, nothing to write => end request */ stm32_cryp_finish_req(cryp, 0); } } static void stm32_cryp_dma_callback(void *param) { struct stm32_cryp *cryp = (struct stm32_cryp *)param; int ret; u32 reg; complete(&cryp->dma_completion); /* completion to indicate no timeout */ dma_sync_sg_for_device(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE); if (cryp->in_sg != cryp->out_sg) dma_unmap_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE); dma_unmap_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE); reg = stm32_cryp_read(cryp, cryp->caps->dmacr); stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN)); reg = stm32_cryp_read(cryp, cryp->caps->cr); if (is_gcm(cryp) || is_ccm(cryp)) { kfree(cryp->in_sg); kfree(cryp->out_sg); } else { if (cryp->in_sg != cryp->req->src) kfree(cryp->in_sg); if (cryp->out_sg != cryp->req->dst) kfree(cryp->out_sg); } if (cryp->payload_in) { stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN); ret = stm32_cryp_wait_input(cryp); if (ret) { dev_err(cryp->dev, "input ready timeout after dma\n"); stm32_cryp_finish_req(cryp, ret); return; } stm32_cryp_irq_write_data(cryp); ret = stm32_cryp_wait_output(cryp); if (ret) { dev_err(cryp->dev, "output ready timeout after dma\n"); stm32_cryp_finish_req(cryp, ret); return; } stm32_cryp_irq_read_data(cryp); } stm32_cryp_finish_req(cryp, 0); } static int stm32_cryp_header_dma_start(struct stm32_cryp *cryp) { int ret; struct dma_async_tx_descriptor *tx_in; u32 reg; size_t align_size; ret = dma_map_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE); if (!ret) { dev_err(cryp->dev, "dma_map_sg() error\n"); return -ENOMEM; } dma_sync_sg_for_device(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE); tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->header_sg, cryp->header_sg_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx_in) { dev_err(cryp->dev, "IN prep_slave_sg() failed\n"); return -EINVAL; } tx_in->callback_param = cryp; tx_in->callback = stm32_cryp_header_dma_callback; /* Advance scatterwalk to not DMA'ed data */ align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize); scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2); cryp->header_in -= align_size; ret = dma_submit_error(dmaengine_submit(tx_in)); if (ret < 0) { dev_err(cryp->dev, "DMA in submit failed\n"); return ret; } dma_async_issue_pending(cryp->dma_lch_in); reg = stm32_cryp_read(cryp, cryp->caps->dmacr); stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DIEN); return 0; } static int stm32_cryp_dma_start(struct stm32_cryp *cryp) { int ret; size_t align_size; struct dma_async_tx_descriptor *tx_in, *tx_out; u32 reg; if (cryp->in_sg != cryp->out_sg) { ret = dma_map_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE); if (!ret) { dev_err(cryp->dev, "dma_map_sg() error\n"); return -ENOMEM; } } ret = dma_map_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE); if (!ret) { dev_err(cryp->dev, "dma_map_sg() error\n"); return -ENOMEM; } dma_sync_sg_for_device(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE); tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->in_sg, cryp->in_sg_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx_in) { dev_err(cryp->dev, "IN prep_slave_sg() failed\n"); return -EINVAL; } /* No callback necessary */ tx_in->callback_param = cryp; tx_in->callback = NULL; tx_out = dmaengine_prep_slave_sg(cryp->dma_lch_out, cryp->out_sg, cryp->out_sg_len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx_out) { dev_err(cryp->dev, "OUT prep_slave_sg() failed\n"); return -EINVAL; } reinit_completion(&cryp->dma_completion); tx_out->callback = stm32_cryp_dma_callback; tx_out->callback_param = cryp; /* Advance scatterwalk to not DMA'ed data */ align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize); scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2); cryp->payload_in -= align_size; ret = dma_submit_error(dmaengine_submit(tx_in)); if (ret < 0) { dev_err(cryp->dev, "DMA in submit failed\n"); return ret; } dma_async_issue_pending(cryp->dma_lch_in); /* Advance scatterwalk to not DMA'ed data */ scatterwalk_copychunks(NULL, &cryp->out_walk, align_size, 2); cryp->payload_out -= align_size; ret = dma_submit_error(dmaengine_submit(tx_out)); if (ret < 0) { dev_err(cryp->dev, "DMA out submit failed\n"); return ret; } dma_async_issue_pending(cryp->dma_lch_out); reg = stm32_cryp_read(cryp, cryp->caps->dmacr); stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DOEN | DMACR_DIEN); if (!wait_for_completion_timeout(&cryp->dma_completion, msecs_to_jiffies(1000))) { dev_err(cryp->dev, "DMA out timed out\n"); dmaengine_terminate_sync(cryp->dma_lch_out); return -ETIMEDOUT; } return 0; } static int stm32_cryp_it_start(struct stm32_cryp *cryp) { /* Enable interrupt and let the IRQ handler do everything */ stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT); return 0; } static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq); static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm) { crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx)); return 0; } static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq); static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm) { crypto_aead_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx)); return 0; } static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode) { struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx( crypto_skcipher_reqtfm(req)); struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req); struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx); if (!cryp) return -ENODEV; rctx->mode = mode; return crypto_transfer_skcipher_request_to_engine(cryp->engine, req); } static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode) { struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); struct stm32_cryp_reqctx *rctx = aead_request_ctx(req); struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx); if (!cryp) return -ENODEV; rctx->mode = mode; return crypto_transfer_aead_request_to_engine(cryp->engine, req); } static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm); memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; else return stm32_cryp_setkey(tfm, key, keylen); } static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { return verify_skcipher_des_key(tfm, key) ?: stm32_cryp_setkey(tfm, key, keylen); } static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { return verify_skcipher_des3_key(tfm, key) ?: stm32_cryp_setkey(tfm, key, keylen); } static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 8: case 12: case 13: case 14: case 15: case 16: break; default: return -EINVAL; } return 0; } static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } return 0; } static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req) { if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT); } static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req) { if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_AES | FLG_ECB); } static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req) { if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT); } static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req) { if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_AES | FLG_CBC); } static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req) { if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT); } static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req) { if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_AES | FLG_CTR); } static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req) { return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT); } static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req) { return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM); } static inline int crypto_ccm_check_iv(const u8 *iv) { /* 2 <= L <= 8, so 1 <= L' <= 7. */ if (iv[0] < 1 || iv[0] > 7) return -EINVAL; return 0; } static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req) { int err; err = crypto_ccm_check_iv(req->iv); if (err) return err; return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT); } static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req) { int err; err = crypto_ccm_check_iv(req->iv); if (err) return err; return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM); } static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT); } static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_DES | FLG_ECB); } static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT); } static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_DES | FLG_CBC); } static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT); } static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB); } static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT); } static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req) { if (req->cryptlen % DES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC); } static enum stm32_dma_mode stm32_cryp_dma_check_sg(struct scatterlist *test_sg, size_t len, size_t block_size) { struct scatterlist *sg; int i; if (len <= 16) return NO_DMA; /* Faster */ for_each_sg(test_sg, sg, sg_nents(test_sg), i) { if (!IS_ALIGNED(sg->length, block_size) && !sg_is_last(sg)) return NO_DMA; if (sg->offset % sizeof(u32)) return NO_DMA; if (sg_is_last(sg) && !IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) return DMA_NEED_SG_TRUNC; } return DMA_PLAIN_SG; } static enum stm32_dma_mode stm32_cryp_dma_check(struct stm32_cryp *cryp, struct scatterlist *in_sg, struct scatterlist *out_sg) { enum stm32_dma_mode ret = DMA_PLAIN_SG; if (!is_aes(cryp)) return NO_DMA; if (!cryp->dma_lch_in || !cryp->dma_lch_out) return NO_DMA; ret = stm32_cryp_dma_check_sg(in_sg, cryp->payload_in, AES_BLOCK_SIZE); if (ret == NO_DMA) return ret; ret = stm32_cryp_dma_check_sg(out_sg, cryp->payload_out, AES_BLOCK_SIZE); if (ret == NO_DMA) return ret; /* Check CTR counter overflow */ if (is_aes(cryp) && is_ctr(cryp)) { u32 c; __be32 iv3; memcpy(&iv3, &cryp->req->iv[3 * sizeof(u32)], sizeof(iv3)); c = be32_to_cpu(iv3); if ((c + cryp->payload_in) < cryp->payload_in) return NO_DMA; } /* Workaround */ if (is_aes(cryp) && is_ctr(cryp) && ret == DMA_NEED_SG_TRUNC) return NO_DMA; return ret; } static int stm32_cryp_truncate_sg(struct scatterlist **new_sg, size_t *new_sg_len, struct scatterlist *sg, off_t skip, size_t size) { struct scatterlist *cur; int alloc_sg_len; *new_sg_len = 0; if (!sg || !size) { *new_sg = NULL; return 0; } alloc_sg_len = sg_nents_for_len(sg, skip + size); if (alloc_sg_len < 0) return alloc_sg_len; /* We allocate to much sg entry, but it is easier */ *new_sg = kmalloc_array((size_t)alloc_sg_len, sizeof(struct scatterlist), GFP_KERNEL); if (!*new_sg) return -ENOMEM; sg_init_table(*new_sg, (unsigned int)alloc_sg_len); cur = *new_sg; while (sg && size) { unsigned int len = sg->length; unsigned int offset = sg->offset; if (skip > len) { skip -= len; sg = sg_next(sg); continue; } if (skip) { len -= skip; offset += skip; skip = 0; } if (size < len) len = size; if (len > 0) { (*new_sg_len)++; size -= len; sg_set_page(cur, sg_page(sg), len, offset); if (size == 0) sg_mark_end(cur); cur = sg_next(cur); } sg = sg_next(sg); } return 0; } static int stm32_cryp_cipher_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg, struct scatterlist *out_sg) { size_t align_size; int ret; cryp->dma_mode = stm32_cryp_dma_check(cryp, in_sg, out_sg); scatterwalk_start(&cryp->in_walk, in_sg); scatterwalk_start(&cryp->out_walk, out_sg); if (cryp->dma_mode == NO_DMA) { cryp->flags &= ~FLG_IN_OUT_DMA; if (is_ctr(cryp)) memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr)); } else if (cryp->dma_mode == DMA_NEED_SG_TRUNC) { cryp->flags |= FLG_IN_OUT_DMA; align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize); ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, 0, align_size); if (ret) return ret; ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, 0, align_size); if (ret) { kfree(cryp->in_sg); return ret; } } else { cryp->flags |= FLG_IN_OUT_DMA; cryp->in_sg = in_sg; cryp->out_sg = out_sg; ret = sg_nents_for_len(cryp->in_sg, cryp->payload_in); if (ret < 0) return ret; cryp->in_sg_len = (size_t)ret; ret = sg_nents_for_len(out_sg, cryp->payload_out); if (ret < 0) return ret; cryp->out_sg_len = (size_t)ret; } return 0; } static int stm32_cryp_aead_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg, struct scatterlist *out_sg) { size_t align_size; off_t skip; int ret, ret2; cryp->header_sg = NULL; cryp->in_sg = NULL; cryp->out_sg = NULL; if (!cryp->dma_lch_in || !cryp->dma_lch_out) { cryp->dma_mode = NO_DMA; cryp->flags &= ~(FLG_IN_OUT_DMA | FLG_HEADER_DMA); return 0; } /* CCM hw_init may have advanced in header */ skip = cryp->areq->assoclen - cryp->header_in; align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize); ret = stm32_cryp_truncate_sg(&cryp->header_sg, &cryp->header_sg_len, in_sg, skip, align_size); if (ret) return ret; ret = stm32_cryp_dma_check_sg(cryp->header_sg, align_size, AES_BLOCK_SIZE); if (ret == NO_DMA) { /* We cannot DMA the header */ kfree(cryp->header_sg); cryp->header_sg = NULL; cryp->flags &= ~FLG_HEADER_DMA; } else { cryp->flags |= FLG_HEADER_DMA; } /* Now skip all header to be at payload start */ skip = cryp->areq->assoclen; align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize); ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, skip, align_size); if (ret) { kfree(cryp->header_sg); return ret; } /* For out buffer align_size is same as in buffer */ ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, skip, align_size); if (ret) { kfree(cryp->header_sg); kfree(cryp->in_sg); return ret; } ret = stm32_cryp_dma_check_sg(cryp->in_sg, align_size, AES_BLOCK_SIZE); ret2 = stm32_cryp_dma_check_sg(cryp->out_sg, align_size, AES_BLOCK_SIZE); if (ret == NO_DMA || ret2 == NO_DMA) { kfree(cryp->in_sg); cryp->in_sg = NULL; kfree(cryp->out_sg); cryp->out_sg = NULL; cryp->flags &= ~FLG_IN_OUT_DMA; } else { cryp->flags |= FLG_IN_OUT_DMA; } return 0; } static int stm32_cryp_prepare_req(struct skcipher_request *req, struct aead_request *areq) { struct stm32_cryp_ctx *ctx; struct stm32_cryp *cryp; struct stm32_cryp_reqctx *rctx; struct scatterlist *in_sg, *out_sg; int ret; if (!req && !areq) return -EINVAL; ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) : crypto_aead_ctx(crypto_aead_reqtfm(areq)); cryp = ctx->cryp; rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq); rctx->mode &= FLG_MODE_MASK; cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode; cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE; cryp->ctx = ctx; if (req) { cryp->req = req; cryp->areq = NULL; cryp->header_in = 0; cryp->payload_in = req->cryptlen; cryp->payload_out = req->cryptlen; cryp->authsize = 0; in_sg = req->src; out_sg = req->dst; ret = stm32_cryp_cipher_prepare(cryp, in_sg, out_sg); if (ret) return ret; ret = stm32_cryp_hw_init(cryp); } else { /* * Length of input and output data: * Encryption case: * INPUT = AssocData || PlainText * <- assoclen -> <- cryptlen -> * * OUTPUT = AssocData || CipherText || AuthTag * <- assoclen -> <-- cryptlen --> <- authsize -> * * Decryption case: * INPUT = AssocData || CipherTex || AuthTag * <- assoclen ---> <---------- cryptlen ----------> * * OUTPUT = AssocData || PlainText * <- assoclen -> <- cryptlen - authsize -> */ cryp->areq = areq; cryp->req = NULL; cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq)); if (is_encrypt(cryp)) { cryp->payload_in = areq->cryptlen; cryp->header_in = areq->assoclen; cryp->payload_out = areq->cryptlen; } else { cryp->payload_in = areq->cryptlen - cryp->authsize; cryp->header_in = areq->assoclen; cryp->payload_out = cryp->payload_in; } in_sg = areq->src; out_sg = areq->dst; scatterwalk_start(&cryp->in_walk, in_sg); scatterwalk_start(&cryp->out_walk, out_sg); /* In output, jump after assoc data */ scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2); ret = stm32_cryp_hw_init(cryp); if (ret) return ret; ret = stm32_cryp_aead_prepare(cryp, in_sg, out_sg); } return ret; } static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq) { struct skcipher_request *req = container_of(areq, struct skcipher_request, base); struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx( crypto_skcipher_reqtfm(req)); struct stm32_cryp *cryp = ctx->cryp; int ret; if (!cryp) return -ENODEV; ret = stm32_cryp_prepare_req(req, NULL); if (ret) return ret; if (cryp->flags & FLG_IN_OUT_DMA) ret = stm32_cryp_dma_start(cryp); else ret = stm32_cryp_it_start(cryp); if (ret == -ETIMEDOUT) stm32_cryp_finish_req(cryp, ret); return ret; } static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq) { struct aead_request *req = container_of(areq, struct aead_request, base); struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); struct stm32_cryp *cryp = ctx->cryp; int err; if (!cryp) return -ENODEV; err = stm32_cryp_prepare_req(NULL, req); if (err) return err; if (!stm32_cryp_get_input_text_len(cryp) && !cryp->header_in && !(cryp->flags & FLG_HEADER_DMA)) { /* No input data to process: get tag and finish */ stm32_cryp_finish_req(cryp, 0); return 0; } if (cryp->flags & FLG_HEADER_DMA) return stm32_cryp_header_dma_start(cryp); if (!cryp->header_in && cryp->flags & FLG_IN_OUT_DMA) return stm32_cryp_dma_start(cryp); return stm32_cryp_it_start(cryp); } static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp) { u32 cfg, size_bit; unsigned int i; int ret = 0; /* Update Config */ cfg = stm32_cryp_read(cryp, cryp->caps->cr); cfg &= ~CR_PH_MASK; cfg |= CR_PH_FINAL; cfg &= ~CR_DEC_NOT_ENC; cfg |= CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); if (is_gcm(cryp)) { /* GCM: write aad and payload size (in bits) */ size_bit = cryp->areq->assoclen * 8; if (cryp->caps->swap_final) size_bit = (__force u32)cpu_to_be32(size_bit); stm32_cryp_write(cryp, cryp->caps->din, 0); stm32_cryp_write(cryp, cryp->caps->din, size_bit); size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen : cryp->areq->cryptlen - cryp->authsize; size_bit *= 8; if (cryp->caps->swap_final) size_bit = (__force u32)cpu_to_be32(size_bit); stm32_cryp_write(cryp, cryp->caps->din, 0); stm32_cryp_write(cryp, cryp->caps->din, size_bit); } else { /* CCM: write CTR0 */ u32 iv32[AES_BLOCK_32]; u8 *iv = (u8 *)iv32; __be32 *biv = (__be32 *)iv32; memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE); memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1); for (i = 0; i < AES_BLOCK_32; i++) { u32 xiv = iv32[i]; if (!cryp->caps->padding_wa) xiv = be32_to_cpu(biv[i]); stm32_cryp_write(cryp, cryp->caps->din, xiv); } } /* Wait for output data */ ret = stm32_cryp_wait_output(cryp); if (ret) { dev_err(cryp->dev, "Timeout (read tag)\n"); return ret; } if (is_encrypt(cryp)) { u32 out_tag[AES_BLOCK_32]; /* Get and write tag */ readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32); scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1); } else { /* Get and check tag */ u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32]; scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0); readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32); if (crypto_memneq(in_tag, out_tag, cryp->authsize)) ret = -EBADMSG; } /* Disable cryp */ cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); return ret; } static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp) { u32 cr; if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) { /* * In this case, we need to increment manually the ctr counter, * as HW doesn't handle the U32 carry. */ crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr)); cr = stm32_cryp_read(cryp, cryp->caps->cr); stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN); stm32_cryp_hw_write_iv(cryp, cryp->last_ctr); stm32_cryp_write(cryp, cryp->caps->cr, cr); } /* The IV registers are BE */ cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l)); cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r)); cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l)); cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r)); } static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp) { u32 block[AES_BLOCK_32]; readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32)); scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize, cryp->payload_out), 1); cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out); } static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp) { u32 block[AES_BLOCK_32] = {0}; scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize, cryp->payload_in), 0); writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32)); cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in); } static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp) { int err; u32 cfg, block[AES_BLOCK_32] = {0}; unsigned int i; /* 'Special workaround' procedure described in the datasheet */ /* a) disable ip */ stm32_cryp_write(cryp, cryp->caps->imsc, 0); cfg = stm32_cryp_read(cryp, cryp->caps->cr); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* b) Update IV1R */ stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2); /* c) change mode to CTR */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_CTR; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* a) enable IP */ cfg |= CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* b) pad and write the last block */ stm32_cryp_irq_write_block(cryp); /* wait end of process */ err = stm32_cryp_wait_output(cryp); if (err) { dev_err(cryp->dev, "Timeout (write gcm last data)\n"); return stm32_cryp_finish_req(cryp, err); } /* c) get and store encrypted data */ /* * Same code as stm32_cryp_irq_read_data(), but we want to store * block value */ readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32)); scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize, cryp->payload_out), 1); cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out); /* d) change mode back to AES GCM */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_GCM; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* e) change phase to Final */ cfg &= ~CR_PH_MASK; cfg |= CR_PH_FINAL; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* f) write padded data */ writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32); /* g) Empty fifo out */ err = stm32_cryp_wait_output(cryp); if (err) { dev_err(cryp->dev, "Timeout (write gcm padded data)\n"); return stm32_cryp_finish_req(cryp, err); } for (i = 0; i < AES_BLOCK_32; i++) stm32_cryp_read(cryp, cryp->caps->dout); /* h) run the he normal Final phase */ stm32_cryp_finish_req(cryp, 0); } static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp) { u32 cfg; /* disable ip, set NPBLB and reneable ip */ cfg = stm32_cryp_read(cryp, cryp->caps->cr); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT; cfg |= CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); } static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp) { int err = 0; u32 cfg, iv1tmp; u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32]; u32 block[AES_BLOCK_32] = {0}; unsigned int i; /* 'Special workaround' procedure described in the datasheet */ /* a) disable ip */ stm32_cryp_write(cryp, cryp->caps->imsc, 0); cfg = stm32_cryp_read(cryp, cryp->caps->cr); cfg &= ~CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* b) get IV1 from CRYP_CSGCMCCM7 */ iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4); /* c) Load CRYP_CSGCMCCMxR */ for (i = 0; i < ARRAY_SIZE(cstmp1); i++) cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4); /* d) Write IV1R */ stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp); /* e) change mode to CTR */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_CTR; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* a) enable IP */ cfg |= CR_CRYPEN; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* b) pad and write the last block */ stm32_cryp_irq_write_block(cryp); /* wait end of process */ err = stm32_cryp_wait_output(cryp); if (err) { dev_err(cryp->dev, "Timeout (write ccm padded data)\n"); return stm32_cryp_finish_req(cryp, err); } /* c) get and store decrypted data */ /* * Same code as stm32_cryp_irq_read_data(), but we want to store * block value */ readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32)); scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize, cryp->payload_out), 1); cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out); /* d) Load again CRYP_CSGCMCCMxR */ for (i = 0; i < ARRAY_SIZE(cstmp2); i++) cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4); /* e) change mode back to AES CCM */ cfg &= ~CR_ALGO_MASK; cfg |= CR_AES_CCM; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* f) change phase to header */ cfg &= ~CR_PH_MASK; cfg |= CR_PH_HEADER; stm32_cryp_write(cryp, cryp->caps->cr, cfg); /* g) XOR and write padded data */ for (i = 0; i < ARRAY_SIZE(block); i++) { block[i] ^= cstmp1[i]; block[i] ^= cstmp2[i]; stm32_cryp_write(cryp, cryp->caps->din, block[i]); } /* h) wait for completion */ err = stm32_cryp_wait_busy(cryp); if (err) dev_err(cryp->dev, "Timeout (write ccm padded data)\n"); /* i) run the he normal Final phase */ stm32_cryp_finish_req(cryp, err); } static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp) { if (unlikely(!cryp->payload_in)) { dev_warn(cryp->dev, "No more data to process\n"); return; } if (unlikely(cryp->payload_in < AES_BLOCK_SIZE && (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) && is_encrypt(cryp))) { /* Padding for AES GCM encryption */ if (cryp->caps->padding_wa) { /* Special case 1 */ stm32_cryp_irq_write_gcm_padded_data(cryp); return; } /* Setting padding bytes (NBBLB) */ stm32_cryp_irq_set_npblb(cryp); } if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) && (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) && is_decrypt(cryp))) { /* Padding for AES CCM decryption */ if (cryp->caps->padding_wa) { /* Special case 2 */ stm32_cryp_irq_write_ccm_padded_data(cryp); return; } /* Setting padding bytes (NBBLB) */ stm32_cryp_irq_set_npblb(cryp); } if (is_aes(cryp) && is_ctr(cryp)) stm32_cryp_check_ctr_counter(cryp); stm32_cryp_irq_write_block(cryp); } static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp) { u32 block[AES_BLOCK_32] = {0}; size_t written; written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in); scatterwalk_copychunks(block, &cryp->in_walk, written, 0); writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32); cryp->header_in -= written; stm32_crypt_gcmccm_end_header(cryp); } static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg) { struct stm32_cryp *cryp = arg; u32 ph; u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc); if (cryp->irq_status & MISR_OUT) /* Output FIFO IRQ: read data */ stm32_cryp_irq_read_data(cryp); if (cryp->irq_status & MISR_IN) { if (is_gcm(cryp) || is_ccm(cryp)) { ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK; if (unlikely(ph == CR_PH_HEADER)) /* Write Header */ stm32_cryp_irq_write_gcmccm_header(cryp); else /* Input FIFO IRQ: write data */ stm32_cryp_irq_write_data(cryp); if (is_gcm(cryp)) cryp->gcm_ctr++; } else { /* Input FIFO IRQ: write data */ stm32_cryp_irq_write_data(cryp); } } /* Mask useless interrupts */ if (!cryp->payload_in && !cryp->header_in) it_mask &= ~IMSCR_IN; if (!cryp->payload_out) it_mask &= ~IMSCR_OUT; stm32_cryp_write(cryp, cryp->caps->imsc, it_mask); if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out) { local_bh_disable(); stm32_cryp_finish_req(cryp, 0); local_bh_enable(); } return IRQ_HANDLED; } static irqreturn_t stm32_cryp_irq(int irq, void *arg) { struct stm32_cryp *cryp = arg; cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis); return IRQ_WAKE_THREAD; } static int stm32_cryp_dma_init(struct stm32_cryp *cryp) { struct dma_slave_config dma_conf; struct dma_chan *chan; int ret; memset(&dma_conf, 0, sizeof(dma_conf)); dma_conf.direction = DMA_MEM_TO_DEV; dma_conf.dst_addr = cryp->phys_base + cryp->caps->din; dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_conf.dst_maxburst = CRYP_DMA_BURST_REG; dma_conf.device_fc = false; chan = dma_request_chan(cryp->dev, "in"); if (IS_ERR(chan)) return PTR_ERR(chan); cryp->dma_lch_in = chan; ret = dmaengine_slave_config(cryp->dma_lch_in, &dma_conf); if (ret) { dma_release_channel(cryp->dma_lch_in); cryp->dma_lch_in = NULL; dev_err(cryp->dev, "Couldn't configure DMA in slave.\n"); return ret; } memset(&dma_conf, 0, sizeof(dma_conf)); dma_conf.direction = DMA_DEV_TO_MEM; dma_conf.src_addr = cryp->phys_base + cryp->caps->dout; dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_conf.src_maxburst = CRYP_DMA_BURST_REG; dma_conf.device_fc = false; chan = dma_request_chan(cryp->dev, "out"); if (IS_ERR(chan)) { dma_release_channel(cryp->dma_lch_in); cryp->dma_lch_in = NULL; return PTR_ERR(chan); } cryp->dma_lch_out = chan; ret = dmaengine_slave_config(cryp->dma_lch_out, &dma_conf); if (ret) { dma_release_channel(cryp->dma_lch_out); cryp->dma_lch_out = NULL; dev_err(cryp->dev, "Couldn't configure DMA out slave.\n"); dma_release_channel(cryp->dma_lch_in); cryp->dma_lch_in = NULL; return ret; } init_completion(&cryp->dma_completion); return 0; } static struct skcipher_engine_alg crypto_algs[] = { { .base = { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "stm32-ecb-aes", .base.cra_priority = 300, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = stm32_cryp_init_tfm, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = stm32_cryp_aes_setkey, .encrypt = stm32_cryp_aes_ecb_encrypt, .decrypt = stm32_cryp_aes_ecb_decrypt, }, .op = { .do_one_request = stm32_cryp_cipher_one_req, }, }, { .base = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "stm32-cbc-aes", .base.cra_priority = 300, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = stm32_cryp_init_tfm, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = stm32_cryp_aes_setkey, .encrypt = stm32_cryp_aes_cbc_encrypt, .decrypt = stm32_cryp_aes_cbc_decrypt, }, .op = { .do_one_request = stm32_cryp_cipher_one_req, }, }, { .base = { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "stm32-ctr-aes", .base.cra_priority = 300, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = stm32_cryp_init_tfm, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = stm32_cryp_aes_setkey, .encrypt = stm32_cryp_aes_ctr_encrypt, .decrypt = stm32_cryp_aes_ctr_decrypt, }, .op = { .do_one_request = stm32_cryp_cipher_one_req, }, }, { .base = { .base.cra_name = "ecb(des)", .base.cra_driver_name = "stm32-ecb-des", .base.cra_priority = 300, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = DES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = stm32_cryp_init_tfm, .min_keysize = DES_BLOCK_SIZE, .max_keysize = DES_BLOCK_SIZE, .setkey = stm32_cryp_des_setkey, .encrypt = stm32_cryp_des_ecb_encrypt, .decrypt = stm32_cryp_des_ecb_decrypt, }, .op = { .do_one_request = stm32_cryp_cipher_one_req, }, }, { .base = { .base.cra_name = "cbc(des)", .base.cra_driver_name = "stm32-cbc-des", .base.cra_priority = 300, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = DES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = stm32_cryp_init_tfm, .min_keysize = DES_BLOCK_SIZE, .max_keysize = DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = stm32_cryp_des_setkey, .encrypt = stm32_cryp_des_cbc_encrypt, .decrypt = stm32_cryp_des_cbc_decrypt, }, .op = { .do_one_request = stm32_cryp_cipher_one_req, }, }, { .base = { .base.cra_name = "ecb(des3_ede)", .base.cra_driver_name = "stm32-ecb-des3", .base.cra_priority = 300, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = DES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = stm32_cryp_init_tfm, .min_keysize = 3 * DES_BLOCK_SIZE, .max_keysize = 3 * DES_BLOCK_SIZE, .setkey = stm32_cryp_tdes_setkey, .encrypt = stm32_cryp_tdes_ecb_encrypt, .decrypt = stm32_cryp_tdes_ecb_decrypt, }, .op = { .do_one_request = stm32_cryp_cipher_one_req, }, }, { .base = { .base.cra_name = "cbc(des3_ede)", .base.cra_driver_name = "stm32-cbc-des3", .base.cra_priority = 300, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = DES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = stm32_cryp_init_tfm, .min_keysize = 3 * DES_BLOCK_SIZE, .max_keysize = 3 * DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = stm32_cryp_tdes_setkey, .encrypt = stm32_cryp_tdes_cbc_encrypt, .decrypt = stm32_cryp_tdes_cbc_decrypt, }, .op = { .do_one_request = stm32_cryp_cipher_one_req, }, }, }; static struct aead_engine_alg aead_algs[] = { { .base.setkey = stm32_cryp_aes_aead_setkey, .base.setauthsize = stm32_cryp_aes_gcm_setauthsize, .base.encrypt = stm32_cryp_aes_gcm_encrypt, .base.decrypt = stm32_cryp_aes_gcm_decrypt, .base.init = stm32_cryp_aes_aead_init, .base.ivsize = 12, .base.maxauthsize = AES_BLOCK_SIZE, .base.base = { .cra_name = "gcm(aes)", .cra_driver_name = "stm32-gcm-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .op = { .do_one_request = stm32_cryp_aead_one_req, }, }, { .base.setkey = stm32_cryp_aes_aead_setkey, .base.setauthsize = stm32_cryp_aes_ccm_setauthsize, .base.encrypt = stm32_cryp_aes_ccm_encrypt, .base.decrypt = stm32_cryp_aes_ccm_decrypt, .base.init = stm32_cryp_aes_aead_init, .base.ivsize = AES_BLOCK_SIZE, .base.maxauthsize = AES_BLOCK_SIZE, .base.base = { .cra_name = "ccm(aes)", .cra_driver_name = "stm32-ccm-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct stm32_cryp_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .op = { .do_one_request = stm32_cryp_aead_one_req, }, }, }; static const struct stm32_cryp_caps ux500_data = { .aeads_support = false, .linear_aes_key = true, .kp_mode = false, .iv_protection = true, .swap_final = true, .padding_wa = true, .cr = UX500_CRYP_CR, .sr = UX500_CRYP_SR, .din = UX500_CRYP_DIN, .dout = UX500_CRYP_DOUT, .dmacr = UX500_CRYP_DMACR, .imsc = UX500_CRYP_IMSC, .mis = UX500_CRYP_MIS, .k1l = UX500_CRYP_K1L, .k1r = UX500_CRYP_K1R, .k3r = UX500_CRYP_K3R, .iv0l = UX500_CRYP_IV0L, .iv0r = UX500_CRYP_IV0R, .iv1l = UX500_CRYP_IV1L, .iv1r = UX500_CRYP_IV1R, }; static const struct stm32_cryp_caps f7_data = { .aeads_support = true, .linear_aes_key = false, .kp_mode = true, .iv_protection = false, .swap_final = true, .padding_wa = true, .cr = CRYP_CR, .sr = CRYP_SR, .din = CRYP_DIN, .dout = CRYP_DOUT, .dmacr = CRYP_DMACR, .imsc = CRYP_IMSCR, .mis = CRYP_MISR, .k1l = CRYP_K1LR, .k1r = CRYP_K1RR, .k3r = CRYP_K3RR, .iv0l = CRYP_IV0LR, .iv0r = CRYP_IV0RR, .iv1l = CRYP_IV1LR, .iv1r = CRYP_IV1RR, }; static const struct stm32_cryp_caps mp1_data = { .aeads_support = true, .linear_aes_key = false, .kp_mode = true, .iv_protection = false, .swap_final = false, .padding_wa = false, .cr = CRYP_CR, .sr = CRYP_SR, .din = CRYP_DIN, .dout = CRYP_DOUT, .dmacr = CRYP_DMACR, .imsc = CRYP_IMSCR, .mis = CRYP_MISR, .k1l = CRYP_K1LR, .k1r = CRYP_K1RR, .k3r = CRYP_K3RR, .iv0l = CRYP_IV0LR, .iv0r = CRYP_IV0RR, .iv1l = CRYP_IV1LR, .iv1r = CRYP_IV1RR, }; static const struct of_device_id stm32_dt_ids[] = { { .compatible = "stericsson,ux500-cryp", .data = &ux500_data}, { .compatible = "st,stm32f756-cryp", .data = &f7_data}, { .compatible = "st,stm32mp1-cryp", .data = &mp1_data}, {}, }; MODULE_DEVICE_TABLE(of, stm32_dt_ids); static int stm32_cryp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stm32_cryp *cryp; struct reset_control *rst; int irq, ret; cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL); if (!cryp) return -ENOMEM; cryp->caps = of_device_get_match_data(dev); if (!cryp->caps) return -ENODEV; cryp->dev = dev; cryp->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(cryp->regs)) return PTR_ERR(cryp->regs); cryp->phys_base = platform_get_resource(pdev, IORESOURCE_MEM, 0)->start; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq, stm32_cryp_irq_thread, IRQF_ONESHOT, dev_name(dev), cryp); if (ret) { dev_err(dev, "Cannot grab IRQ\n"); return ret; } cryp->clk = devm_clk_get(dev, NULL); if (IS_ERR(cryp->clk)) { dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n"); return PTR_ERR(cryp->clk); } ret = clk_prepare_enable(cryp->clk); if (ret) { dev_err(cryp->dev, "Failed to enable clock\n"); return ret; } pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); rst = devm_reset_control_get(dev, NULL); if (IS_ERR(rst)) { ret = PTR_ERR(rst); if (ret == -EPROBE_DEFER) goto err_rst; } else { reset_control_assert(rst); udelay(2); reset_control_deassert(rst); } platform_set_drvdata(pdev, cryp); ret = stm32_cryp_dma_init(cryp); switch (ret) { case 0: break; case -ENODEV: dev_dbg(dev, "DMA mode not available\n"); break; default: goto err_dma; } spin_lock(&cryp_list.lock); list_add(&cryp->list, &cryp_list.dev_list); spin_unlock(&cryp_list.lock); /* Initialize crypto engine */ cryp->engine = crypto_engine_alloc_init(dev, 1); if (!cryp->engine) { dev_err(dev, "Could not init crypto engine\n"); ret = -ENOMEM; goto err_engine1; } ret = crypto_engine_start(cryp->engine); if (ret) { dev_err(dev, "Could not start crypto engine\n"); goto err_engine2; } ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs)); if (ret) { dev_err(dev, "Could not register algs\n"); goto err_algs; } if (cryp->caps->aeads_support) { ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs)); if (ret) goto err_aead_algs; } dev_info(dev, "Initialized\n"); pm_runtime_put_sync(dev); return 0; err_aead_algs: crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs)); err_algs: err_engine2: crypto_engine_exit(cryp->engine); err_engine1: spin_lock(&cryp_list.lock); list_del(&cryp->list); spin_unlock(&cryp_list.lock); if (cryp->dma_lch_in) dma_release_channel(cryp->dma_lch_in); if (cryp->dma_lch_out) dma_release_channel(cryp->dma_lch_out); err_dma: err_rst: pm_runtime_disable(dev); pm_runtime_put_noidle(dev); clk_disable_unprepare(cryp->clk); return ret; } static void stm32_cryp_remove(struct platform_device *pdev) { struct stm32_cryp *cryp = platform_get_drvdata(pdev); int ret; ret = pm_runtime_get_sync(cryp->dev); if (cryp->caps->aeads_support) crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs)); crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs)); crypto_engine_exit(cryp->engine); spin_lock(&cryp_list.lock); list_del(&cryp->list); spin_unlock(&cryp_list.lock); if (cryp->dma_lch_in) dma_release_channel(cryp->dma_lch_in); if (cryp->dma_lch_out) dma_release_channel(cryp->dma_lch_out); pm_runtime_disable(cryp->dev); pm_runtime_put_noidle(cryp->dev); if (ret >= 0) clk_disable_unprepare(cryp->clk); } #ifdef CONFIG_PM static int stm32_cryp_runtime_suspend(struct device *dev) { struct stm32_cryp *cryp = dev_get_drvdata(dev); clk_disable_unprepare(cryp->clk); return 0; } static int stm32_cryp_runtime_resume(struct device *dev) { struct stm32_cryp *cryp = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(cryp->clk); if (ret) { dev_err(cryp->dev, "Failed to prepare_enable clock\n"); return ret; } return 0; } #endif static const struct dev_pm_ops stm32_cryp_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend, stm32_cryp_runtime_resume, NULL) }; static struct platform_driver stm32_cryp_driver = { .probe = stm32_cryp_probe, .remove = stm32_cryp_remove, .driver = { .name = DRIVER_NAME, .pm = &stm32_cryp_pm_ops, .of_match_table = stm32_dt_ids, }, }; module_platform_driver(stm32_cryp_driver); MODULE_AUTHOR("Fabien Dessenne "); MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver"); MODULE_LICENSE("GPL");