// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2016-2018 Intel Corporation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include "dax-private.h" #include "bus.h" static int check_vma(struct dev_dax *dev_dax, struct vm_area_struct *vma, const char *func) { struct device *dev = &dev_dax->dev; unsigned long mask; if (!dax_alive(dev_dax->dax_dev)) return -ENXIO; /* prevent private mappings from being established */ if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) { dev_info_ratelimited(dev, "%s: %s: fail, attempted private mapping\n", current->comm, func); return -EINVAL; } mask = dev_dax->align - 1; if (vma->vm_start & mask || vma->vm_end & mask) { dev_info_ratelimited(dev, "%s: %s: fail, unaligned vma (%#lx - %#lx, %#lx)\n", current->comm, func, vma->vm_start, vma->vm_end, mask); return -EINVAL; } if (!vma_is_dax(vma)) { dev_info_ratelimited(dev, "%s: %s: fail, vma is not DAX capable\n", current->comm, func); return -EINVAL; } return 0; } /* see "strong" declaration in tools/testing/nvdimm/dax-dev.c */ __weak phys_addr_t dax_pgoff_to_phys(struct dev_dax *dev_dax, pgoff_t pgoff, unsigned long size) { int i; for (i = 0; i < dev_dax->nr_range; i++) { struct dev_dax_range *dax_range = &dev_dax->ranges[i]; struct range *range = &dax_range->range; unsigned long long pgoff_end; phys_addr_t phys; pgoff_end = dax_range->pgoff + PHYS_PFN(range_len(range)) - 1; if (pgoff < dax_range->pgoff || pgoff > pgoff_end) continue; phys = PFN_PHYS(pgoff - dax_range->pgoff) + range->start; if (phys + size - 1 <= range->end) return phys; break; } return -1; } static void dax_set_mapping(struct vm_fault *vmf, pfn_t pfn, unsigned long fault_size) { unsigned long i, nr_pages = fault_size / PAGE_SIZE; struct file *filp = vmf->vma->vm_file; struct dev_dax *dev_dax = filp->private_data; pgoff_t pgoff; /* mapping is only set on the head */ if (dev_dax->pgmap->vmemmap_shift) nr_pages = 1; pgoff = linear_page_index(vmf->vma, ALIGN_DOWN(vmf->address, fault_size)); for (i = 0; i < nr_pages; i++) { struct page *page = pfn_to_page(pfn_t_to_pfn(pfn) + i); page = compound_head(page); if (page->mapping) continue; page->mapping = filp->f_mapping; page->index = pgoff + i; } } static vm_fault_t __dev_dax_pte_fault(struct dev_dax *dev_dax, struct vm_fault *vmf) { struct device *dev = &dev_dax->dev; phys_addr_t phys; pfn_t pfn; unsigned int fault_size = PAGE_SIZE; if (check_vma(dev_dax, vmf->vma, __func__)) return VM_FAULT_SIGBUS; if (dev_dax->align > PAGE_SIZE) { dev_dbg(dev, "alignment (%#x) > fault size (%#x)\n", dev_dax->align, fault_size); return VM_FAULT_SIGBUS; } if (fault_size != dev_dax->align) return VM_FAULT_SIGBUS; phys = dax_pgoff_to_phys(dev_dax, vmf->pgoff, PAGE_SIZE); if (phys == -1) { dev_dbg(dev, "pgoff_to_phys(%#lx) failed\n", vmf->pgoff); return VM_FAULT_SIGBUS; } pfn = phys_to_pfn_t(phys, PFN_DEV|PFN_MAP); dax_set_mapping(vmf, pfn, fault_size); return vmf_insert_mixed(vmf->vma, vmf->address, pfn); } static vm_fault_t __dev_dax_pmd_fault(struct dev_dax *dev_dax, struct vm_fault *vmf) { unsigned long pmd_addr = vmf->address & PMD_MASK; struct device *dev = &dev_dax->dev; phys_addr_t phys; pgoff_t pgoff; pfn_t pfn; unsigned int fault_size = PMD_SIZE; if (check_vma(dev_dax, vmf->vma, __func__)) return VM_FAULT_SIGBUS; if (dev_dax->align > PMD_SIZE) { dev_dbg(dev, "alignment (%#x) > fault size (%#x)\n", dev_dax->align, fault_size); return VM_FAULT_SIGBUS; } if (fault_size < dev_dax->align) return VM_FAULT_SIGBUS; else if (fault_size > dev_dax->align) return VM_FAULT_FALLBACK; /* if we are outside of the VMA */ if (pmd_addr < vmf->vma->vm_start || (pmd_addr + PMD_SIZE) > vmf->vma->vm_end) return VM_FAULT_SIGBUS; pgoff = linear_page_index(vmf->vma, pmd_addr); phys = dax_pgoff_to_phys(dev_dax, pgoff, PMD_SIZE); if (phys == -1) { dev_dbg(dev, "pgoff_to_phys(%#lx) failed\n", pgoff); return VM_FAULT_SIGBUS; } pfn = phys_to_pfn_t(phys, PFN_DEV|PFN_MAP); dax_set_mapping(vmf, pfn, fault_size); return vmf_insert_pfn_pmd(vmf, pfn, vmf->flags & FAULT_FLAG_WRITE); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static vm_fault_t __dev_dax_pud_fault(struct dev_dax *dev_dax, struct vm_fault *vmf) { unsigned long pud_addr = vmf->address & PUD_MASK; struct device *dev = &dev_dax->dev; phys_addr_t phys; pgoff_t pgoff; pfn_t pfn; unsigned int fault_size = PUD_SIZE; if (check_vma(dev_dax, vmf->vma, __func__)) return VM_FAULT_SIGBUS; if (dev_dax->align > PUD_SIZE) { dev_dbg(dev, "alignment (%#x) > fault size (%#x)\n", dev_dax->align, fault_size); return VM_FAULT_SIGBUS; } if (fault_size < dev_dax->align) return VM_FAULT_SIGBUS; else if (fault_size > dev_dax->align) return VM_FAULT_FALLBACK; /* if we are outside of the VMA */ if (pud_addr < vmf->vma->vm_start || (pud_addr + PUD_SIZE) > vmf->vma->vm_end) return VM_FAULT_SIGBUS; pgoff = linear_page_index(vmf->vma, pud_addr); phys = dax_pgoff_to_phys(dev_dax, pgoff, PUD_SIZE); if (phys == -1) { dev_dbg(dev, "pgoff_to_phys(%#lx) failed\n", pgoff); return VM_FAULT_SIGBUS; } pfn = phys_to_pfn_t(phys, PFN_DEV|PFN_MAP); dax_set_mapping(vmf, pfn, fault_size); return vmf_insert_pfn_pud(vmf, pfn, vmf->flags & FAULT_FLAG_WRITE); } #else static vm_fault_t __dev_dax_pud_fault(struct dev_dax *dev_dax, struct vm_fault *vmf) { return VM_FAULT_FALLBACK; } #endif /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ static vm_fault_t dev_dax_huge_fault(struct vm_fault *vmf, unsigned int order) { struct file *filp = vmf->vma->vm_file; vm_fault_t rc = VM_FAULT_SIGBUS; int id; struct dev_dax *dev_dax = filp->private_data; dev_dbg(&dev_dax->dev, "%s: op=%s addr=%#lx order=%d\n", current->comm, (vmf->flags & FAULT_FLAG_WRITE) ? "write" : "read", vmf->address & ~((1UL << (order + PAGE_SHIFT)) - 1), order); id = dax_read_lock(); if (order == 0) rc = __dev_dax_pte_fault(dev_dax, vmf); else if (order == PMD_ORDER) rc = __dev_dax_pmd_fault(dev_dax, vmf); else if (order == PUD_ORDER) rc = __dev_dax_pud_fault(dev_dax, vmf); else rc = VM_FAULT_SIGBUS; dax_read_unlock(id); return rc; } static vm_fault_t dev_dax_fault(struct vm_fault *vmf) { return dev_dax_huge_fault(vmf, 0); } static int dev_dax_may_split(struct vm_area_struct *vma, unsigned long addr) { struct file *filp = vma->vm_file; struct dev_dax *dev_dax = filp->private_data; if (!IS_ALIGNED(addr, dev_dax->align)) return -EINVAL; return 0; } static unsigned long dev_dax_pagesize(struct vm_area_struct *vma) { struct file *filp = vma->vm_file; struct dev_dax *dev_dax = filp->private_data; return dev_dax->align; } static const struct vm_operations_struct dax_vm_ops = { .fault = dev_dax_fault, .huge_fault = dev_dax_huge_fault, .may_split = dev_dax_may_split, .pagesize = dev_dax_pagesize, }; static int dax_mmap(struct file *filp, struct vm_area_struct *vma) { struct dev_dax *dev_dax = filp->private_data; int rc, id; dev_dbg(&dev_dax->dev, "trace\n"); /* * We lock to check dax_dev liveness and will re-check at * fault time. */ id = dax_read_lock(); rc = check_vma(dev_dax, vma, __func__); dax_read_unlock(id); if (rc) return rc; vma->vm_ops = &dax_vm_ops; vm_flags_set(vma, VM_HUGEPAGE); return 0; } /* return an unmapped area aligned to the dax region specified alignment */ static unsigned long dax_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long off, off_end, off_align, len_align, addr_align, align; struct dev_dax *dev_dax = filp ? filp->private_data : NULL; if (!dev_dax || addr) goto out; align = dev_dax->align; off = pgoff << PAGE_SHIFT; off_end = off + len; off_align = round_up(off, align); if ((off_end <= off_align) || ((off_end - off_align) < align)) goto out; len_align = len + align; if ((off + len_align) < off) goto out; addr_align = mm_get_unmapped_area(current->mm, filp, addr, len_align, pgoff, flags); if (!IS_ERR_VALUE(addr_align)) { addr_align += (off - addr_align) & (align - 1); return addr_align; } out: return mm_get_unmapped_area(current->mm, filp, addr, len, pgoff, flags); } static const struct address_space_operations dev_dax_aops = { .dirty_folio = noop_dirty_folio, }; static int dax_open(struct inode *inode, struct file *filp) { struct dax_device *dax_dev = inode_dax(inode); struct inode *__dax_inode = dax_inode(dax_dev); struct dev_dax *dev_dax = dax_get_private(dax_dev); dev_dbg(&dev_dax->dev, "trace\n"); inode->i_mapping = __dax_inode->i_mapping; inode->i_mapping->host = __dax_inode; inode->i_mapping->a_ops = &dev_dax_aops; filp->f_mapping = inode->i_mapping; filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); filp->f_sb_err = file_sample_sb_err(filp); filp->private_data = dev_dax; inode->i_flags = S_DAX; return 0; } static int dax_release(struct inode *inode, struct file *filp) { struct dev_dax *dev_dax = filp->private_data; dev_dbg(&dev_dax->dev, "trace\n"); return 0; } static const struct file_operations dax_fops = { .llseek = noop_llseek, .owner = THIS_MODULE, .open = dax_open, .release = dax_release, .get_unmapped_area = dax_get_unmapped_area, .mmap = dax_mmap, .fop_flags = FOP_MMAP_SYNC, }; static void dev_dax_cdev_del(void *cdev) { cdev_del(cdev); } static void dev_dax_kill(void *dev_dax) { kill_dev_dax(dev_dax); } static int dev_dax_probe(struct dev_dax *dev_dax) { struct dax_device *dax_dev = dev_dax->dax_dev; struct device *dev = &dev_dax->dev; struct dev_pagemap *pgmap; struct inode *inode; struct cdev *cdev; void *addr; int rc, i; if (static_dev_dax(dev_dax)) { if (dev_dax->nr_range > 1) { dev_warn(dev, "static pgmap / multi-range device conflict\n"); return -EINVAL; } pgmap = dev_dax->pgmap; } else { if (dev_dax->pgmap) { dev_warn(dev, "dynamic-dax with pre-populated page map\n"); return -EINVAL; } pgmap = devm_kzalloc(dev, struct_size(pgmap, ranges, dev_dax->nr_range - 1), GFP_KERNEL); if (!pgmap) return -ENOMEM; pgmap->nr_range = dev_dax->nr_range; dev_dax->pgmap = pgmap; for (i = 0; i < dev_dax->nr_range; i++) { struct range *range = &dev_dax->ranges[i].range; pgmap->ranges[i] = *range; } } for (i = 0; i < dev_dax->nr_range; i++) { struct range *range = &dev_dax->ranges[i].range; if (!devm_request_mem_region(dev, range->start, range_len(range), dev_name(dev))) { dev_warn(dev, "mapping%d: %#llx-%#llx could not reserve range\n", i, range->start, range->end); return -EBUSY; } } pgmap->type = MEMORY_DEVICE_GENERIC; if (dev_dax->align > PAGE_SIZE) pgmap->vmemmap_shift = order_base_2(dev_dax->align >> PAGE_SHIFT); addr = devm_memremap_pages(dev, pgmap); if (IS_ERR(addr)) return PTR_ERR(addr); inode = dax_inode(dax_dev); cdev = inode->i_cdev; cdev_init(cdev, &dax_fops); cdev->owner = dev->driver->owner; cdev_set_parent(cdev, &dev->kobj); rc = cdev_add(cdev, dev->devt, 1); if (rc) return rc; rc = devm_add_action_or_reset(dev, dev_dax_cdev_del, cdev); if (rc) return rc; run_dax(dax_dev); return devm_add_action_or_reset(dev, dev_dax_kill, dev_dax); } static struct dax_device_driver device_dax_driver = { .probe = dev_dax_probe, .type = DAXDRV_DEVICE_TYPE, }; static int __init dax_init(void) { return dax_driver_register(&device_dax_driver); } static void __exit dax_exit(void) { dax_driver_unregister(&device_dax_driver); } MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Device DAX: direct access device driver"); MODULE_LICENSE("GPL v2"); module_init(dax_init); module_exit(dax_exit); MODULE_ALIAS_DAX_DEVICE(0);