// SPDX-License-Identifier: GPL-2.0 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com) /* * Synopsys DesignWare AXI DMA Controller driver. * * Author: Eugeniy Paltsev */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dw-axi-dmac.h" #include "../dmaengine.h" #include "../virt-dma.h" /* * The set of bus widths supported by the DMA controller. DW AXI DMAC supports * master data bus width up to 512 bits (for both AXI master interfaces), but * it depends on IP block configuration. */ #define AXI_DMA_BUSWIDTHS \ (DMA_SLAVE_BUSWIDTH_1_BYTE | \ DMA_SLAVE_BUSWIDTH_2_BYTES | \ DMA_SLAVE_BUSWIDTH_4_BYTES | \ DMA_SLAVE_BUSWIDTH_8_BYTES | \ DMA_SLAVE_BUSWIDTH_16_BYTES | \ DMA_SLAVE_BUSWIDTH_32_BYTES | \ DMA_SLAVE_BUSWIDTH_64_BYTES) #define AXI_DMA_FLAG_HAS_APB_REGS BIT(0) #define AXI_DMA_FLAG_HAS_RESETS BIT(1) #define AXI_DMA_FLAG_USE_CFG2 BIT(2) static inline void axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val) { iowrite32(val, chip->regs + reg); } static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg) { return ioread32(chip->regs + reg); } static inline void axi_dma_iowrite64(struct axi_dma_chip *chip, u32 reg, u64 val) { iowrite64(val, chip->regs + reg); } static inline u64 axi_dma_ioread64(struct axi_dma_chip *chip, u32 reg) { return ioread64(chip->regs + reg); } static inline void axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val) { iowrite32(val, chan->chan_regs + reg); } static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg) { return ioread32(chan->chan_regs + reg); } static inline void axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val) { /* * We split one 64 bit write for two 32 bit write as some HW doesn't * support 64 bit access. */ iowrite32(lower_32_bits(val), chan->chan_regs + reg); iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4); } static inline void axi_chan_config_write(struct axi_dma_chan *chan, struct axi_dma_chan_config *config) { u32 cfg_lo, cfg_hi; cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS | config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS); if (chan->chip->dw->hdata->reg_map_8_channels && !chan->chip->dw->hdata->use_cfg2) { cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS | config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS | config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS | config->src_per << CH_CFG_H_SRC_PER_POS | config->dst_per << CH_CFG_H_DST_PER_POS | config->prior << CH_CFG_H_PRIORITY_POS; } else { cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS | config->dst_per << CH_CFG2_L_DST_PER_POS; cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS | config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS | config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS | config->prior << CH_CFG2_H_PRIORITY_POS; } axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo); axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi); } static inline void axi_dma_disable(struct axi_dma_chip *chip) { u32 val; val = axi_dma_ioread32(chip, DMAC_CFG); val &= ~DMAC_EN_MASK; axi_dma_iowrite32(chip, DMAC_CFG, val); } static inline void axi_dma_enable(struct axi_dma_chip *chip) { u32 val; val = axi_dma_ioread32(chip, DMAC_CFG); val |= DMAC_EN_MASK; axi_dma_iowrite32(chip, DMAC_CFG, val); } static inline void axi_dma_irq_disable(struct axi_dma_chip *chip) { u32 val; val = axi_dma_ioread32(chip, DMAC_CFG); val &= ~INT_EN_MASK; axi_dma_iowrite32(chip, DMAC_CFG, val); } static inline void axi_dma_irq_enable(struct axi_dma_chip *chip) { u32 val; val = axi_dma_ioread32(chip, DMAC_CFG); val |= INT_EN_MASK; axi_dma_iowrite32(chip, DMAC_CFG, val); } static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask) { u32 val; if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) { axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE); } else { val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA); val &= ~irq_mask; axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val); } } static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask) { axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask); } static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask) { axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask); } static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask) { axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask); } static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan) { return axi_chan_ioread32(chan, CH_INTSTATUS); } static inline void axi_chan_disable(struct axi_dma_chan *chan) { u64 val; if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) { val = axi_dma_ioread64(chan->chip, DMAC_CHEN); if (chan->id >= DMAC_CHAN_16) { val &= ~((u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_EN_SHIFT + DMAC_CHAN_BLOCK_SHIFT)); val |= (u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_EN2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT); } else { val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT); val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT; } axi_dma_iowrite64(chan->chip, DMAC_CHEN, val); } else { val = axi_dma_ioread32(chan->chip, DMAC_CHEN); val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT); if (chan->chip->dw->hdata->reg_map_8_channels) val |= BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT; else val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT; axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val); } } static inline void axi_chan_enable(struct axi_dma_chan *chan) { u64 val; if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) { val = axi_dma_ioread64(chan->chip, DMAC_CHEN); if (chan->id >= DMAC_CHAN_16) { val |= (u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_EN_SHIFT + DMAC_CHAN_BLOCK_SHIFT) | (u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_EN2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT); } else { val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT | BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT; } axi_dma_iowrite64(chan->chip, DMAC_CHEN, val); } else { val = axi_dma_ioread32(chan->chip, DMAC_CHEN); if (chan->chip->dw->hdata->reg_map_8_channels) { val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT | BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT; } else { val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT | BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT; } axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val); } } static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan) { u64 val; if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) val = axi_dma_ioread64(chan->chip, DMAC_CHEN); else val = axi_dma_ioread32(chan->chip, DMAC_CHEN); if (chan->id >= DMAC_CHAN_16) return !!(val & ((u64)(BIT(chan->id) >> DMAC_CHAN_16) << DMAC_CHAN_BLOCK_SHIFT)); else return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT)); } static void axi_dma_hw_init(struct axi_dma_chip *chip) { int ret; u32 i; for (i = 0; i < chip->dw->hdata->nr_channels; i++) { axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL); axi_chan_disable(&chip->dw->chan[i]); } ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64)); if (ret) dev_warn(chip->dev, "Unable to set coherent mask\n"); } static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src, dma_addr_t dst, size_t len) { u32 max_width = chan->chip->dw->hdata->m_data_width; return __ffs(src | dst | len | BIT(max_width)); } static inline const char *axi_chan_name(struct axi_dma_chan *chan) { return dma_chan_name(&chan->vc.chan); } static struct axi_dma_desc *axi_desc_alloc(u32 num) { struct axi_dma_desc *desc; desc = kzalloc(sizeof(*desc), GFP_NOWAIT); if (!desc) return NULL; desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT); if (!desc->hw_desc) { kfree(desc); return NULL; } desc->nr_hw_descs = num; return desc; } static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan, dma_addr_t *addr) { struct axi_dma_lli *lli; dma_addr_t phys; lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys); if (unlikely(!lli)) { dev_err(chan2dev(chan), "%s: not enough descriptors available\n", axi_chan_name(chan)); return NULL; } atomic_inc(&chan->descs_allocated); *addr = phys; return lli; } static void axi_desc_put(struct axi_dma_desc *desc) { struct axi_dma_chan *chan = desc->chan; int count = desc->nr_hw_descs; struct axi_dma_hw_desc *hw_desc; int descs_put; for (descs_put = 0; descs_put < count; descs_put++) { hw_desc = &desc->hw_desc[descs_put]; dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp); } kfree(desc->hw_desc); kfree(desc); atomic_sub(descs_put, &chan->descs_allocated); dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n", axi_chan_name(chan), descs_put, atomic_read(&chan->descs_allocated)); } static void vchan_desc_put(struct virt_dma_desc *vdesc) { axi_desc_put(vd_to_axi_desc(vdesc)); } static enum dma_status dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); struct virt_dma_desc *vdesc; enum dma_status status; u32 completed_length; unsigned long flags; u32 completed_blocks; size_t bytes = 0; u32 length; u32 len; status = dma_cookie_status(dchan, cookie, txstate); if (status == DMA_COMPLETE || !txstate) return status; spin_lock_irqsave(&chan->vc.lock, flags); vdesc = vchan_find_desc(&chan->vc, cookie); if (vdesc) { length = vd_to_axi_desc(vdesc)->length; completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks; len = vd_to_axi_desc(vdesc)->hw_desc[0].len; completed_length = completed_blocks * len; bytes = length - completed_length; } spin_unlock_irqrestore(&chan->vc.lock, flags); dma_set_residue(txstate, bytes); return status; } static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr) { desc->lli->llp = cpu_to_le64(adr); } static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr) { axi_chan_iowrite64(chan, CH_LLP, adr); } static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set) { u32 offset = DMAC_APB_BYTE_WR_CH_EN; u32 reg_width, val; if (!chan->chip->apb_regs) { dev_dbg(chan->chip->dev, "apb_regs not initialized\n"); return; } reg_width = __ffs(chan->config.dst_addr_width); if (reg_width == DWAXIDMAC_TRANS_WIDTH_16) offset = DMAC_APB_HALFWORD_WR_CH_EN; val = ioread32(chan->chip->apb_regs + offset); if (set) val |= BIT(chan->id); else val &= ~BIT(chan->id); iowrite32(val, chan->chip->apb_regs + offset); } /* Called in chan locked context */ static void axi_chan_block_xfer_start(struct axi_dma_chan *chan, struct axi_dma_desc *first) { u32 priority = chan->chip->dw->hdata->priority[chan->id]; struct axi_dma_chan_config config = {}; u32 irq_mask; u8 lms = 0; /* Select AXI0 master for LLI fetching */ if (unlikely(axi_chan_is_hw_enable(chan))) { dev_err(chan2dev(chan), "%s is non-idle!\n", axi_chan_name(chan)); return; } axi_dma_enable(chan->chip); config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL; config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL; config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC; config.prior = priority; config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW; config.hs_sel_src = DWAXIDMAC_HS_SEL_HW; switch (chan->direction) { case DMA_MEM_TO_DEV: dw_axi_dma_set_byte_halfword(chan, true); config.tt_fc = chan->config.device_fc ? DWAXIDMAC_TT_FC_MEM_TO_PER_DST : DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC; if (chan->chip->apb_regs) config.dst_per = chan->id; else config.dst_per = chan->hw_handshake_num; break; case DMA_DEV_TO_MEM: config.tt_fc = chan->config.device_fc ? DWAXIDMAC_TT_FC_PER_TO_MEM_SRC : DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC; if (chan->chip->apb_regs) config.src_per = chan->id; else config.src_per = chan->hw_handshake_num; break; default: break; } axi_chan_config_write(chan, &config); write_chan_llp(chan, first->hw_desc[0].llp | lms); irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR; axi_chan_irq_sig_set(chan, irq_mask); /* Generate 'suspend' status but don't generate interrupt */ irq_mask |= DWAXIDMAC_IRQ_SUSPENDED; axi_chan_irq_set(chan, irq_mask); axi_chan_enable(chan); } static void axi_chan_start_first_queued(struct axi_dma_chan *chan) { struct axi_dma_desc *desc; struct virt_dma_desc *vd; vd = vchan_next_desc(&chan->vc); if (!vd) return; desc = vd_to_axi_desc(vd); dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan), vd->tx.cookie); axi_chan_block_xfer_start(chan, desc); } static void dma_chan_issue_pending(struct dma_chan *dchan) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); unsigned long flags; spin_lock_irqsave(&chan->vc.lock, flags); if (vchan_issue_pending(&chan->vc)) axi_chan_start_first_queued(chan); spin_unlock_irqrestore(&chan->vc.lock, flags); } static void dw_axi_dma_synchronize(struct dma_chan *dchan) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); vchan_synchronize(&chan->vc); } static int dma_chan_alloc_chan_resources(struct dma_chan *dchan) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); /* ASSERT: channel is idle */ if (axi_chan_is_hw_enable(chan)) { dev_err(chan2dev(chan), "%s is non-idle!\n", axi_chan_name(chan)); return -EBUSY; } /* LLI address must be aligned to a 64-byte boundary */ chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)), chan->chip->dev, sizeof(struct axi_dma_lli), 64, 0); if (!chan->desc_pool) { dev_err(chan2dev(chan), "No memory for descriptors\n"); return -ENOMEM; } dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan)); pm_runtime_get(chan->chip->dev); return 0; } static void dma_chan_free_chan_resources(struct dma_chan *dchan) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); /* ASSERT: channel is idle */ if (axi_chan_is_hw_enable(chan)) dev_err(dchan2dev(dchan), "%s is non-idle!\n", axi_chan_name(chan)); axi_chan_disable(chan); axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL); vchan_free_chan_resources(&chan->vc); dma_pool_destroy(chan->desc_pool); chan->desc_pool = NULL; dev_vdbg(dchan2dev(dchan), "%s: free resources, descriptor still allocated: %u\n", axi_chan_name(chan), atomic_read(&chan->descs_allocated)); pm_runtime_put(chan->chip->dev); } static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set) { struct axi_dma_chip *chip = chan->chip; unsigned long reg_value, val; if (!chip->apb_regs) { dev_err(chip->dev, "apb_regs not initialized\n"); return; } /* * An unused DMA channel has a default value of 0x3F. * Lock the DMA channel by assign a handshake number to the channel. * Unlock the DMA channel by assign 0x3F to the channel. */ if (set) val = chan->hw_handshake_num; else val = UNUSED_CHANNEL; reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0); /* Channel is already allocated, set handshake as per channel ID */ /* 64 bit write should handle for 8 channels */ reg_value &= ~(DMA_APB_HS_SEL_MASK << (chan->id * DMA_APB_HS_SEL_BIT_SIZE)); reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE)); lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0); return; } /* * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI * as 1, it understands that the current block is the final block in the * transfer and completes the DMA transfer operation at the end of current * block transfer. */ static void set_desc_last(struct axi_dma_hw_desc *desc) { u32 val; val = le32_to_cpu(desc->lli->ctl_hi); val |= CH_CTL_H_LLI_LAST; desc->lli->ctl_hi = cpu_to_le32(val); } static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr) { desc->lli->sar = cpu_to_le64(adr); } static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr) { desc->lli->dar = cpu_to_le64(adr); } static void set_desc_src_master(struct axi_dma_hw_desc *desc) { u32 val; /* Select AXI0 for source master */ val = le32_to_cpu(desc->lli->ctl_lo); val &= ~CH_CTL_L_SRC_MAST; desc->lli->ctl_lo = cpu_to_le32(val); } static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc, struct axi_dma_desc *desc) { u32 val; /* Select AXI1 for source master if available */ val = le32_to_cpu(hw_desc->lli->ctl_lo); if (desc->chan->chip->dw->hdata->nr_masters > 1) val |= CH_CTL_L_DST_MAST; else val &= ~CH_CTL_L_DST_MAST; hw_desc->lli->ctl_lo = cpu_to_le32(val); } static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan, struct axi_dma_hw_desc *hw_desc, dma_addr_t mem_addr, size_t len) { unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width); unsigned int reg_width; unsigned int mem_width; dma_addr_t device_addr; size_t axi_block_ts; size_t block_ts; u32 ctllo, ctlhi; u32 burst_len; axi_block_ts = chan->chip->dw->hdata->block_size[chan->id]; mem_width = __ffs(data_width | mem_addr | len); if (mem_width > DWAXIDMAC_TRANS_WIDTH_32) mem_width = DWAXIDMAC_TRANS_WIDTH_32; if (!IS_ALIGNED(mem_addr, 4)) { dev_err(chan->chip->dev, "invalid buffer alignment\n"); return -EINVAL; } switch (chan->direction) { case DMA_MEM_TO_DEV: reg_width = __ffs(chan->config.dst_addr_width); device_addr = chan->config.dst_addr; ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS | mem_width << CH_CTL_L_SRC_WIDTH_POS | DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS | DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS; block_ts = len >> mem_width; break; case DMA_DEV_TO_MEM: reg_width = __ffs(chan->config.src_addr_width); device_addr = chan->config.src_addr; ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS | mem_width << CH_CTL_L_DST_WIDTH_POS | DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS | DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS; block_ts = len >> reg_width; break; default: return -EINVAL; } if (block_ts > axi_block_ts) return -EINVAL; hw_desc->lli = axi_desc_get(chan, &hw_desc->llp); if (unlikely(!hw_desc->lli)) return -ENOMEM; ctlhi = CH_CTL_H_LLI_VALID; if (chan->chip->dw->hdata->restrict_axi_burst_len) { burst_len = chan->chip->dw->hdata->axi_rw_burst_len; ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN | burst_len << CH_CTL_H_ARLEN_POS | burst_len << CH_CTL_H_AWLEN_POS; } hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi); if (chan->direction == DMA_MEM_TO_DEV) { write_desc_sar(hw_desc, mem_addr); write_desc_dar(hw_desc, device_addr); } else { write_desc_sar(hw_desc, device_addr); write_desc_dar(hw_desc, mem_addr); } hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1); ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS | DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS; hw_desc->lli->ctl_lo = cpu_to_le32(ctllo); set_desc_src_master(hw_desc); hw_desc->len = len; return 0; } static size_t calculate_block_len(struct axi_dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, enum dma_transfer_direction direction) { u32 data_width, reg_width, mem_width; size_t axi_block_ts, block_len; axi_block_ts = chan->chip->dw->hdata->block_size[chan->id]; switch (direction) { case DMA_MEM_TO_DEV: data_width = BIT(chan->chip->dw->hdata->m_data_width); mem_width = __ffs(data_width | dma_addr | buf_len); if (mem_width > DWAXIDMAC_TRANS_WIDTH_32) mem_width = DWAXIDMAC_TRANS_WIDTH_32; block_len = axi_block_ts << mem_width; break; case DMA_DEV_TO_MEM: reg_width = __ffs(chan->config.src_addr_width); block_len = axi_block_ts << reg_width; break; default: block_len = 0; } return block_len; } static struct dma_async_tx_descriptor * dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); struct axi_dma_hw_desc *hw_desc = NULL; struct axi_dma_desc *desc = NULL; dma_addr_t src_addr = dma_addr; u32 num_periods, num_segments; size_t axi_block_len; u32 total_segments; u32 segment_len; unsigned int i; int status; u64 llp = 0; u8 lms = 0; /* Select AXI0 master for LLI fetching */ num_periods = buf_len / period_len; axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction); if (axi_block_len == 0) return NULL; num_segments = DIV_ROUND_UP(period_len, axi_block_len); segment_len = DIV_ROUND_UP(period_len, num_segments); total_segments = num_periods * num_segments; desc = axi_desc_alloc(total_segments); if (unlikely(!desc)) goto err_desc_get; chan->direction = direction; desc->chan = chan; chan->cyclic = true; desc->length = 0; desc->period_len = period_len; for (i = 0; i < total_segments; i++) { hw_desc = &desc->hw_desc[i]; status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr, segment_len); if (status < 0) goto err_desc_get; desc->length += hw_desc->len; /* Set end-of-link to the linked descriptor, so that cyclic * callback function can be triggered during interrupt. */ set_desc_last(hw_desc); src_addr += segment_len; } llp = desc->hw_desc[0].llp; /* Managed transfer list */ do { hw_desc = &desc->hw_desc[--total_segments]; write_desc_llp(hw_desc, llp | lms); llp = hw_desc->llp; } while (total_segments); dw_axi_dma_set_hw_channel(chan, true); return vchan_tx_prep(&chan->vc, &desc->vd, flags); err_desc_get: if (desc) axi_desc_put(desc); return NULL; } static struct dma_async_tx_descriptor * dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); struct axi_dma_hw_desc *hw_desc = NULL; struct axi_dma_desc *desc = NULL; u32 num_segments, segment_len; unsigned int loop = 0; struct scatterlist *sg; size_t axi_block_len; u32 len, num_sgs = 0; unsigned int i; dma_addr_t mem; int status; u64 llp = 0; u8 lms = 0; /* Select AXI0 master for LLI fetching */ if (unlikely(!is_slave_direction(direction) || !sg_len)) return NULL; mem = sg_dma_address(sgl); len = sg_dma_len(sgl); axi_block_len = calculate_block_len(chan, mem, len, direction); if (axi_block_len == 0) return NULL; for_each_sg(sgl, sg, sg_len, i) num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len); desc = axi_desc_alloc(num_sgs); if (unlikely(!desc)) goto err_desc_get; desc->chan = chan; desc->length = 0; chan->direction = direction; for_each_sg(sgl, sg, sg_len, i) { mem = sg_dma_address(sg); len = sg_dma_len(sg); num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len); segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments); do { hw_desc = &desc->hw_desc[loop++]; status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len); if (status < 0) goto err_desc_get; desc->length += hw_desc->len; len -= segment_len; mem += segment_len; } while (len >= segment_len); } /* Set end-of-link to the last link descriptor of list */ set_desc_last(&desc->hw_desc[num_sgs - 1]); /* Managed transfer list */ do { hw_desc = &desc->hw_desc[--num_sgs]; write_desc_llp(hw_desc, llp | lms); llp = hw_desc->llp; } while (num_sgs); dw_axi_dma_set_hw_channel(chan, true); return vchan_tx_prep(&chan->vc, &desc->vd, flags); err_desc_get: if (desc) axi_desc_put(desc); return NULL; } static struct dma_async_tx_descriptor * dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr, dma_addr_t src_adr, size_t len, unsigned long flags) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); size_t block_ts, max_block_ts, xfer_len; struct axi_dma_hw_desc *hw_desc = NULL; struct axi_dma_desc *desc = NULL; u32 xfer_width, reg, num; u64 llp = 0; u8 lms = 0; /* Select AXI0 master for LLI fetching */ dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx", axi_chan_name(chan), &src_adr, &dst_adr, len, flags); max_block_ts = chan->chip->dw->hdata->block_size[chan->id]; xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len); num = DIV_ROUND_UP(len, max_block_ts << xfer_width); desc = axi_desc_alloc(num); if (unlikely(!desc)) goto err_desc_get; desc->chan = chan; num = 0; desc->length = 0; while (len) { xfer_len = len; hw_desc = &desc->hw_desc[num]; /* * Take care for the alignment. * Actually source and destination widths can be different, but * make them same to be simpler. */ xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len); /* * block_ts indicates the total number of data of width * to be transferred in a DMA block transfer. * BLOCK_TS register should be set to block_ts - 1 */ block_ts = xfer_len >> xfer_width; if (block_ts > max_block_ts) { block_ts = max_block_ts; xfer_len = max_block_ts << xfer_width; } hw_desc->lli = axi_desc_get(chan, &hw_desc->llp); if (unlikely(!hw_desc->lli)) goto err_desc_get; write_desc_sar(hw_desc, src_adr); write_desc_dar(hw_desc, dst_adr); hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1); reg = CH_CTL_H_LLI_VALID; if (chan->chip->dw->hdata->restrict_axi_burst_len) { u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len; reg |= (CH_CTL_H_ARLEN_EN | burst_len << CH_CTL_H_ARLEN_POS | CH_CTL_H_AWLEN_EN | burst_len << CH_CTL_H_AWLEN_POS); } hw_desc->lli->ctl_hi = cpu_to_le32(reg); reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS | DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS | xfer_width << CH_CTL_L_DST_WIDTH_POS | xfer_width << CH_CTL_L_SRC_WIDTH_POS | DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS | DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS); hw_desc->lli->ctl_lo = cpu_to_le32(reg); set_desc_src_master(hw_desc); set_desc_dest_master(hw_desc, desc); hw_desc->len = xfer_len; desc->length += hw_desc->len; /* update the length and addresses for the next loop cycle */ len -= xfer_len; dst_adr += xfer_len; src_adr += xfer_len; num++; } /* Set end-of-link to the last link descriptor of list */ set_desc_last(&desc->hw_desc[num - 1]); /* Managed transfer list */ do { hw_desc = &desc->hw_desc[--num]; write_desc_llp(hw_desc, llp | lms); llp = hw_desc->llp; } while (num); return vchan_tx_prep(&chan->vc, &desc->vd, flags); err_desc_get: if (desc) axi_desc_put(desc); return NULL; } static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan, struct dma_slave_config *config) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); memcpy(&chan->config, config, sizeof(*config)); return 0; } static void axi_chan_dump_lli(struct axi_dma_chan *chan, struct axi_dma_hw_desc *desc) { if (!desc->lli) { dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n"); return; } dev_err(dchan2dev(&chan->vc.chan), "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x", le64_to_cpu(desc->lli->sar), le64_to_cpu(desc->lli->dar), le64_to_cpu(desc->lli->llp), le32_to_cpu(desc->lli->block_ts_lo), le32_to_cpu(desc->lli->ctl_hi), le32_to_cpu(desc->lli->ctl_lo)); } static void axi_chan_list_dump_lli(struct axi_dma_chan *chan, struct axi_dma_desc *desc_head) { int count = atomic_read(&chan->descs_allocated); int i; for (i = 0; i < count; i++) axi_chan_dump_lli(chan, &desc_head->hw_desc[i]); } static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status) { struct virt_dma_desc *vd; unsigned long flags; spin_lock_irqsave(&chan->vc.lock, flags); axi_chan_disable(chan); /* The bad descriptor currently is in the head of vc list */ vd = vchan_next_desc(&chan->vc); if (!vd) { dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n", axi_chan_name(chan)); goto out; } /* Remove the completed descriptor from issued list */ list_del(&vd->node); /* WARN about bad descriptor */ dev_err(chan2dev(chan), "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n", axi_chan_name(chan), vd->tx.cookie, status); axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd)); vchan_cookie_complete(vd); /* Try to restart the controller */ axi_chan_start_first_queued(chan); out: spin_unlock_irqrestore(&chan->vc.lock, flags); } static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan) { int count = atomic_read(&chan->descs_allocated); struct axi_dma_hw_desc *hw_desc; struct axi_dma_desc *desc; struct virt_dma_desc *vd; unsigned long flags; u64 llp; int i; spin_lock_irqsave(&chan->vc.lock, flags); if (unlikely(axi_chan_is_hw_enable(chan))) { dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n", axi_chan_name(chan)); axi_chan_disable(chan); } /* The completed descriptor currently is in the head of vc list */ vd = vchan_next_desc(&chan->vc); if (!vd) { dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n", axi_chan_name(chan)); goto out; } if (chan->cyclic) { desc = vd_to_axi_desc(vd); if (desc) { llp = lo_hi_readq(chan->chan_regs + CH_LLP); for (i = 0; i < count; i++) { hw_desc = &desc->hw_desc[i]; if (hw_desc->llp == llp) { axi_chan_irq_clear(chan, hw_desc->lli->status_lo); hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID; desc->completed_blocks = i; if (((hw_desc->len * (i + 1)) % desc->period_len) == 0) vchan_cyclic_callback(vd); break; } } axi_chan_enable(chan); } } else { /* Remove the completed descriptor from issued list before completing */ list_del(&vd->node); vchan_cookie_complete(vd); } out: spin_unlock_irqrestore(&chan->vc.lock, flags); } static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id) { struct axi_dma_chip *chip = dev_id; struct dw_axi_dma *dw = chip->dw; struct axi_dma_chan *chan; u32 status, i; /* Disable DMAC interrupts. We'll enable them after processing channels */ axi_dma_irq_disable(chip); /* Poll, clear and process every channel interrupt status */ for (i = 0; i < dw->hdata->nr_channels; i++) { chan = &dw->chan[i]; status = axi_chan_irq_read(chan); axi_chan_irq_clear(chan, status); dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n", axi_chan_name(chan), i, status); if (status & DWAXIDMAC_IRQ_ALL_ERR) axi_chan_handle_err(chan, status); else if (status & DWAXIDMAC_IRQ_DMA_TRF) axi_chan_block_xfer_complete(chan); } /* Re-enable interrupts */ axi_dma_irq_enable(chip); return IRQ_HANDLED; } static int dma_chan_terminate_all(struct dma_chan *dchan) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT; unsigned long flags; u32 val; int ret; LIST_HEAD(head); axi_chan_disable(chan); ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val, !(val & chan_active), 1000, 50000); if (ret == -ETIMEDOUT) dev_warn(dchan2dev(dchan), "%s failed to stop\n", axi_chan_name(chan)); if (chan->direction != DMA_MEM_TO_MEM) dw_axi_dma_set_hw_channel(chan, false); if (chan->direction == DMA_MEM_TO_DEV) dw_axi_dma_set_byte_halfword(chan, false); spin_lock_irqsave(&chan->vc.lock, flags); vchan_get_all_descriptors(&chan->vc, &head); chan->cyclic = false; spin_unlock_irqrestore(&chan->vc.lock, flags); vchan_dma_desc_free_list(&chan->vc, &head); dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan)); return 0; } static int dma_chan_pause(struct dma_chan *dchan) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); unsigned long flags; unsigned int timeout = 20; /* timeout iterations */ u64 val; spin_lock_irqsave(&chan->vc.lock, flags); if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) { val = axi_dma_ioread64(chan->chip, DMAC_CHSUSPREG); if (chan->id >= DMAC_CHAN_16) { val |= (u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_SUSP2_SHIFT + DMAC_CHAN_BLOCK_SHIFT) | (u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_SUSP2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT); } else { val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT | BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT; } axi_dma_iowrite64(chan->chip, DMAC_CHSUSPREG, val); } else { if (chan->chip->dw->hdata->reg_map_8_channels) { val = axi_dma_ioread32(chan->chip, DMAC_CHEN); val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT | BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT; axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val); } else { val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG); val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT | BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT; axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, (u32)val); } } do { if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED) break; udelay(2); } while (--timeout); axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED); chan->is_paused = true; spin_unlock_irqrestore(&chan->vc.lock, flags); return timeout ? 0 : -EAGAIN; } /* Called in chan locked context */ static inline void axi_chan_resume(struct axi_dma_chan *chan) { u64 val; if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) { val = axi_dma_ioread64(chan->chip, DMAC_CHSUSPREG); if (chan->id >= DMAC_CHAN_16) { val &= ~((u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_SUSP2_SHIFT + DMAC_CHAN_BLOCK_SHIFT)); val |= ((u64)(BIT(chan->id) >> DMAC_CHAN_16) << (DMAC_CHAN_SUSP2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT)); } else { val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT); val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT); } axi_dma_iowrite64(chan->chip, DMAC_CHSUSPREG, val); } else { if (chan->chip->dw->hdata->reg_map_8_channels) { val = axi_dma_ioread32(chan->chip, DMAC_CHEN); val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT); val |= (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT); axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val); } else { val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG); val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT); val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT); axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, (u32)val); } } chan->is_paused = false; } static int dma_chan_resume(struct dma_chan *dchan) { struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan); unsigned long flags; spin_lock_irqsave(&chan->vc.lock, flags); if (chan->is_paused) axi_chan_resume(chan); spin_unlock_irqrestore(&chan->vc.lock, flags); return 0; } static int axi_dma_suspend(struct axi_dma_chip *chip) { axi_dma_irq_disable(chip); axi_dma_disable(chip); clk_disable_unprepare(chip->core_clk); clk_disable_unprepare(chip->cfgr_clk); return 0; } static int axi_dma_resume(struct axi_dma_chip *chip) { int ret; ret = clk_prepare_enable(chip->cfgr_clk); if (ret < 0) return ret; ret = clk_prepare_enable(chip->core_clk); if (ret < 0) return ret; axi_dma_enable(chip); axi_dma_irq_enable(chip); return 0; } static int __maybe_unused axi_dma_runtime_suspend(struct device *dev) { struct axi_dma_chip *chip = dev_get_drvdata(dev); return axi_dma_suspend(chip); } static int __maybe_unused axi_dma_runtime_resume(struct device *dev) { struct axi_dma_chip *chip = dev_get_drvdata(dev); return axi_dma_resume(chip); } static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct dw_axi_dma *dw = ofdma->of_dma_data; struct axi_dma_chan *chan; struct dma_chan *dchan; dchan = dma_get_any_slave_channel(&dw->dma); if (!dchan) return NULL; chan = dchan_to_axi_dma_chan(dchan); chan->hw_handshake_num = dma_spec->args[0]; return dchan; } static int parse_device_properties(struct axi_dma_chip *chip) { struct device *dev = chip->dev; u32 tmp, carr[DMAC_MAX_CHANNELS]; int ret; ret = device_property_read_u32(dev, "dma-channels", &tmp); if (ret) return ret; if (tmp == 0 || tmp > DMAC_MAX_CHANNELS) return -EINVAL; chip->dw->hdata->nr_channels = tmp; if (tmp <= DMA_REG_MAP_CH_REF) chip->dw->hdata->reg_map_8_channels = true; ret = device_property_read_u32(dev, "snps,dma-masters", &tmp); if (ret) return ret; if (tmp == 0 || tmp > DMAC_MAX_MASTERS) return -EINVAL; chip->dw->hdata->nr_masters = tmp; ret = device_property_read_u32(dev, "snps,data-width", &tmp); if (ret) return ret; if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX) return -EINVAL; chip->dw->hdata->m_data_width = tmp; ret = device_property_read_u32_array(dev, "snps,block-size", carr, chip->dw->hdata->nr_channels); if (ret) return ret; for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) { if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE) return -EINVAL; chip->dw->hdata->block_size[tmp] = carr[tmp]; } ret = device_property_read_u32_array(dev, "snps,priority", carr, chip->dw->hdata->nr_channels); if (ret) return ret; /* Priority value must be programmed within [0:nr_channels-1] range */ for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) { if (carr[tmp] >= chip->dw->hdata->nr_channels) return -EINVAL; chip->dw->hdata->priority[tmp] = carr[tmp]; } /* axi-max-burst-len is optional property */ ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp); if (!ret) { if (tmp > DWAXIDMAC_ARWLEN_MAX + 1) return -EINVAL; if (tmp < DWAXIDMAC_ARWLEN_MIN + 1) return -EINVAL; chip->dw->hdata->restrict_axi_burst_len = true; chip->dw->hdata->axi_rw_burst_len = tmp; } return 0; } static int axi_req_irqs(struct platform_device *pdev, struct axi_dma_chip *chip) { int irq_count = platform_irq_count(pdev); int ret; for (int i = 0; i < irq_count; i++) { chip->irq[i] = platform_get_irq(pdev, i); if (chip->irq[i] < 0) return chip->irq[i]; ret = devm_request_irq(chip->dev, chip->irq[i], dw_axi_dma_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip); if (ret < 0) return ret; } return 0; } static int dw_probe(struct platform_device *pdev) { struct axi_dma_chip *chip; struct dw_axi_dma *dw; struct dw_axi_dma_hcfg *hdata; struct reset_control *resets; unsigned int flags; u32 i; int ret; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL); if (!dw) return -ENOMEM; hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL); if (!hdata) return -ENOMEM; chip->dw = dw; chip->dev = &pdev->dev; chip->dw->hdata = hdata; chip->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(chip->regs)) return PTR_ERR(chip->regs); flags = (uintptr_t)of_device_get_match_data(&pdev->dev); if (flags & AXI_DMA_FLAG_HAS_APB_REGS) { chip->apb_regs = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(chip->apb_regs)) return PTR_ERR(chip->apb_regs); } if (flags & AXI_DMA_FLAG_HAS_RESETS) { resets = devm_reset_control_array_get_exclusive(&pdev->dev); if (IS_ERR(resets)) return PTR_ERR(resets); ret = reset_control_deassert(resets); if (ret) return ret; } chip->dw->hdata->use_cfg2 = !!(flags & AXI_DMA_FLAG_USE_CFG2); chip->core_clk = devm_clk_get(chip->dev, "core-clk"); if (IS_ERR(chip->core_clk)) return PTR_ERR(chip->core_clk); chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk"); if (IS_ERR(chip->cfgr_clk)) return PTR_ERR(chip->cfgr_clk); ret = parse_device_properties(chip); if (ret) return ret; dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels, sizeof(*dw->chan), GFP_KERNEL); if (!dw->chan) return -ENOMEM; ret = axi_req_irqs(pdev, chip); if (ret) return ret; INIT_LIST_HEAD(&dw->dma.channels); for (i = 0; i < hdata->nr_channels; i++) { struct axi_dma_chan *chan = &dw->chan[i]; chan->chip = chip; chan->id = i; chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN; atomic_set(&chan->descs_allocated, 0); chan->vc.desc_free = vchan_desc_put; vchan_init(&chan->vc, &dw->dma); } /* Set capabilities */ dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask); dma_cap_set(DMA_SLAVE, dw->dma.cap_mask); dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask); /* DMA capabilities */ dw->dma.max_burst = hdata->axi_rw_burst_len; dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS; dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS; dw->dma.directions = BIT(DMA_MEM_TO_MEM); dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; dw->dma.dev = chip->dev; dw->dma.device_tx_status = dma_chan_tx_status; dw->dma.device_issue_pending = dma_chan_issue_pending; dw->dma.device_terminate_all = dma_chan_terminate_all; dw->dma.device_pause = dma_chan_pause; dw->dma.device_resume = dma_chan_resume; dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources; dw->dma.device_free_chan_resources = dma_chan_free_chan_resources; dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy; dw->dma.device_synchronize = dw_axi_dma_synchronize; dw->dma.device_config = dw_axi_dma_chan_slave_config; dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg; dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic; /* * Synopsis DesignWare AxiDMA datasheet mentioned Maximum * supported blocks is 1024. Device register width is 4 bytes. * Therefore, set constraint to 1024 * 4. */ dw->dma.dev->dma_parms = &dw->dma_parms; dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE); platform_set_drvdata(pdev, chip); pm_runtime_enable(chip->dev); /* * We can't just call pm_runtime_get here instead of * pm_runtime_get_noresume + axi_dma_resume because we need * driver to work also without Runtime PM. */ pm_runtime_get_noresume(chip->dev); ret = axi_dma_resume(chip); if (ret < 0) goto err_pm_disable; axi_dma_hw_init(chip); pm_runtime_put(chip->dev); ret = dmaenginem_async_device_register(&dw->dma); if (ret) goto err_pm_disable; /* Register with OF helpers for DMA lookups */ ret = of_dma_controller_register(pdev->dev.of_node, dw_axi_dma_of_xlate, dw); if (ret < 0) dev_warn(&pdev->dev, "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n"); dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n", dw->hdata->nr_channels); return 0; err_pm_disable: pm_runtime_disable(chip->dev); return ret; } static void dw_remove(struct platform_device *pdev) { struct axi_dma_chip *chip = platform_get_drvdata(pdev); struct dw_axi_dma *dw = chip->dw; struct axi_dma_chan *chan, *_chan; u32 i; /* Enable clk before accessing to registers */ clk_prepare_enable(chip->cfgr_clk); clk_prepare_enable(chip->core_clk); axi_dma_irq_disable(chip); for (i = 0; i < dw->hdata->nr_channels; i++) { axi_chan_disable(&chip->dw->chan[i]); axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL); } axi_dma_disable(chip); pm_runtime_disable(chip->dev); axi_dma_suspend(chip); for (i = 0; i < DMAC_MAX_CHANNELS; i++) if (chip->irq[i] > 0) devm_free_irq(chip->dev, chip->irq[i], chip); of_dma_controller_free(chip->dev->of_node); list_for_each_entry_safe(chan, _chan, &dw->dma.channels, vc.chan.device_node) { list_del(&chan->vc.chan.device_node); tasklet_kill(&chan->vc.task); } } static const struct dev_pm_ops dw_axi_dma_pm_ops = { SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL) }; static const struct of_device_id dw_dma_of_id_table[] = { { .compatible = "snps,axi-dma-1.01a" }, { .compatible = "intel,kmb-axi-dma", .data = (void *)AXI_DMA_FLAG_HAS_APB_REGS, }, { .compatible = "starfive,jh7110-axi-dma", .data = (void *)(AXI_DMA_FLAG_HAS_RESETS | AXI_DMA_FLAG_USE_CFG2), }, { .compatible = "starfive,jh8100-axi-dma", .data = (void *)AXI_DMA_FLAG_HAS_RESETS, }, {} }; MODULE_DEVICE_TABLE(of, dw_dma_of_id_table); static struct platform_driver dw_driver = { .probe = dw_probe, .remove = dw_remove, .driver = { .name = KBUILD_MODNAME, .of_match_table = dw_dma_of_id_table, .pm = &dw_axi_dma_pm_ops, }, }; module_platform_driver(dw_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver"); MODULE_AUTHOR("Eugeniy Paltsev ");