// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2018-2019 MediaTek Inc. /* * Driver for MediaTek Command-Queue DMA Controller * * Author: Shun-Chih Yu * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../virt-dma.h" #define MTK_CQDMA_USEC_POLL 10 #define MTK_CQDMA_TIMEOUT_POLL 1000 #define MTK_CQDMA_DMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) #define MTK_CQDMA_ALIGN_SIZE 1 /* The default number of virtual channel */ #define MTK_CQDMA_NR_VCHANS 32 /* The default number of physical channel */ #define MTK_CQDMA_NR_PCHANS 3 /* Registers for underlying dma manipulation */ #define MTK_CQDMA_INT_FLAG 0x0 #define MTK_CQDMA_INT_EN 0x4 #define MTK_CQDMA_EN 0x8 #define MTK_CQDMA_RESET 0xc #define MTK_CQDMA_FLUSH 0x14 #define MTK_CQDMA_SRC 0x1c #define MTK_CQDMA_DST 0x20 #define MTK_CQDMA_LEN1 0x24 #define MTK_CQDMA_LEN2 0x28 #define MTK_CQDMA_SRC2 0x60 #define MTK_CQDMA_DST2 0x64 /* Registers setting */ #define MTK_CQDMA_EN_BIT BIT(0) #define MTK_CQDMA_INT_FLAG_BIT BIT(0) #define MTK_CQDMA_INT_EN_BIT BIT(0) #define MTK_CQDMA_FLUSH_BIT BIT(0) #define MTK_CQDMA_WARM_RST_BIT BIT(0) #define MTK_CQDMA_HARD_RST_BIT BIT(1) #define MTK_CQDMA_MAX_LEN GENMASK(27, 0) #define MTK_CQDMA_ADDR_LIMIT GENMASK(31, 0) #define MTK_CQDMA_ADDR2_SHFIT (32) /** * struct mtk_cqdma_vdesc - The struct holding info describing virtual * descriptor (CVD) * @vd: An instance for struct virt_dma_desc * @len: The total data size device wants to move * @residue: The remaining data size device will move * @dest: The destination address device wants to move to * @src: The source address device wants to move from * @ch: The pointer to the corresponding dma channel * @node: The lise_head struct to build link-list for VDs * @parent: The pointer to the parent CVD */ struct mtk_cqdma_vdesc { struct virt_dma_desc vd; size_t len; size_t residue; dma_addr_t dest; dma_addr_t src; struct dma_chan *ch; struct list_head node; struct mtk_cqdma_vdesc *parent; }; /** * struct mtk_cqdma_pchan - The struct holding info describing physical * channel (PC) * @queue: Queue for the PDs issued to this PC * @base: The mapped register I/O base of this PC * @irq: The IRQ that this PC are using * @refcnt: Track how many VCs are using this PC * @tasklet: Tasklet for this PC * @lock: Lock protect agaisting multiple VCs access PC */ struct mtk_cqdma_pchan { struct list_head queue; void __iomem *base; u32 irq; refcount_t refcnt; struct tasklet_struct tasklet; /* lock to protect PC */ spinlock_t lock; }; /** * struct mtk_cqdma_vchan - The struct holding info describing virtual * channel (VC) * @vc: An instance for struct virt_dma_chan * @pc: The pointer to the underlying PC * @issue_completion: The wait for all issued descriptors completited * @issue_synchronize: Bool indicating channel synchronization starts */ struct mtk_cqdma_vchan { struct virt_dma_chan vc; struct mtk_cqdma_pchan *pc; struct completion issue_completion; bool issue_synchronize; }; /** * struct mtk_cqdma_device - The struct holding info describing CQDMA * device * @ddev: An instance for struct dma_device * @clk: The clock that device internal is using * @dma_requests: The number of VCs the device supports to * @dma_channels: The number of PCs the device supports to * @vc: The pointer to all available VCs * @pc: The pointer to all the underlying PCs */ struct mtk_cqdma_device { struct dma_device ddev; struct clk *clk; u32 dma_requests; u32 dma_channels; struct mtk_cqdma_vchan *vc; struct mtk_cqdma_pchan **pc; }; static struct mtk_cqdma_device *to_cqdma_dev(struct dma_chan *chan) { return container_of(chan->device, struct mtk_cqdma_device, ddev); } static struct mtk_cqdma_vchan *to_cqdma_vchan(struct dma_chan *chan) { return container_of(chan, struct mtk_cqdma_vchan, vc.chan); } static struct mtk_cqdma_vdesc *to_cqdma_vdesc(struct virt_dma_desc *vd) { return container_of(vd, struct mtk_cqdma_vdesc, vd); } static struct device *cqdma2dev(struct mtk_cqdma_device *cqdma) { return cqdma->ddev.dev; } static u32 mtk_dma_read(struct mtk_cqdma_pchan *pc, u32 reg) { return readl(pc->base + reg); } static void mtk_dma_write(struct mtk_cqdma_pchan *pc, u32 reg, u32 val) { writel_relaxed(val, pc->base + reg); } static void mtk_dma_rmw(struct mtk_cqdma_pchan *pc, u32 reg, u32 mask, u32 set) { u32 val; val = mtk_dma_read(pc, reg); val &= ~mask; val |= set; mtk_dma_write(pc, reg, val); } static void mtk_dma_set(struct mtk_cqdma_pchan *pc, u32 reg, u32 val) { mtk_dma_rmw(pc, reg, 0, val); } static void mtk_dma_clr(struct mtk_cqdma_pchan *pc, u32 reg, u32 val) { mtk_dma_rmw(pc, reg, val, 0); } static void mtk_cqdma_vdesc_free(struct virt_dma_desc *vd) { kfree(to_cqdma_vdesc(vd)); } static int mtk_cqdma_poll_engine_done(struct mtk_cqdma_pchan *pc, bool atomic) { u32 status = 0; if (!atomic) return readl_poll_timeout(pc->base + MTK_CQDMA_EN, status, !(status & MTK_CQDMA_EN_BIT), MTK_CQDMA_USEC_POLL, MTK_CQDMA_TIMEOUT_POLL); return readl_poll_timeout_atomic(pc->base + MTK_CQDMA_EN, status, !(status & MTK_CQDMA_EN_BIT), MTK_CQDMA_USEC_POLL, MTK_CQDMA_TIMEOUT_POLL); } static int mtk_cqdma_hard_reset(struct mtk_cqdma_pchan *pc) { mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT); mtk_dma_clr(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT); return mtk_cqdma_poll_engine_done(pc, true); } static void mtk_cqdma_start(struct mtk_cqdma_pchan *pc, struct mtk_cqdma_vdesc *cvd) { /* wait for the previous transaction done */ if (mtk_cqdma_poll_engine_done(pc, true) < 0) dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma wait transaction timeout\n"); /* warm reset the dma engine for the new transaction */ mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_WARM_RST_BIT); if (mtk_cqdma_poll_engine_done(pc, true) < 0) dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma warm reset timeout\n"); /* setup the source */ mtk_dma_set(pc, MTK_CQDMA_SRC, cvd->src & MTK_CQDMA_ADDR_LIMIT); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT mtk_dma_set(pc, MTK_CQDMA_SRC2, cvd->src >> MTK_CQDMA_ADDR2_SHFIT); #else mtk_dma_set(pc, MTK_CQDMA_SRC2, 0); #endif /* setup the destination */ mtk_dma_set(pc, MTK_CQDMA_DST, cvd->dest & MTK_CQDMA_ADDR_LIMIT); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT mtk_dma_set(pc, MTK_CQDMA_DST2, cvd->dest >> MTK_CQDMA_ADDR2_SHFIT); #else mtk_dma_set(pc, MTK_CQDMA_DST2, 0); #endif /* setup the length */ mtk_dma_set(pc, MTK_CQDMA_LEN1, cvd->len); /* start dma engine */ mtk_dma_set(pc, MTK_CQDMA_EN, MTK_CQDMA_EN_BIT); } static void mtk_cqdma_issue_vchan_pending(struct mtk_cqdma_vchan *cvc) { struct virt_dma_desc *vd, *vd2; struct mtk_cqdma_pchan *pc = cvc->pc; struct mtk_cqdma_vdesc *cvd; bool trigger_engine = false; lockdep_assert_held(&cvc->vc.lock); lockdep_assert_held(&pc->lock); list_for_each_entry_safe(vd, vd2, &cvc->vc.desc_issued, node) { /* need to trigger dma engine if PC's queue is empty */ if (list_empty(&pc->queue)) trigger_engine = true; cvd = to_cqdma_vdesc(vd); /* add VD into PC's queue */ list_add_tail(&cvd->node, &pc->queue); /* start the dma engine */ if (trigger_engine) mtk_cqdma_start(pc, cvd); /* remove VD from list desc_issued */ list_del(&vd->node); } } /* * return true if this VC is active, * meaning that there are VDs under processing by the PC */ static bool mtk_cqdma_is_vchan_active(struct mtk_cqdma_vchan *cvc) { struct mtk_cqdma_vdesc *cvd; list_for_each_entry(cvd, &cvc->pc->queue, node) if (cvc == to_cqdma_vchan(cvd->ch)) return true; return false; } /* * return the pointer of the CVD that is just consumed by the PC */ static struct mtk_cqdma_vdesc *mtk_cqdma_consume_work_queue(struct mtk_cqdma_pchan *pc) { struct mtk_cqdma_vchan *cvc; struct mtk_cqdma_vdesc *cvd, *ret = NULL; /* consume a CVD from PC's queue */ cvd = list_first_entry_or_null(&pc->queue, struct mtk_cqdma_vdesc, node); if (unlikely(!cvd || !cvd->parent)) return NULL; cvc = to_cqdma_vchan(cvd->ch); ret = cvd; /* update residue of the parent CVD */ cvd->parent->residue -= cvd->len; /* delete CVD from PC's queue */ list_del(&cvd->node); spin_lock(&cvc->vc.lock); /* check whether all the child CVDs completed */ if (!cvd->parent->residue) { /* add the parent VD into list desc_completed */ vchan_cookie_complete(&cvd->parent->vd); /* setup completion if this VC is under synchronization */ if (cvc->issue_synchronize && !mtk_cqdma_is_vchan_active(cvc)) { complete(&cvc->issue_completion); cvc->issue_synchronize = false; } } spin_unlock(&cvc->vc.lock); /* start transaction for next CVD in the queue */ cvd = list_first_entry_or_null(&pc->queue, struct mtk_cqdma_vdesc, node); if (cvd) mtk_cqdma_start(pc, cvd); return ret; } static void mtk_cqdma_tasklet_cb(struct tasklet_struct *t) { struct mtk_cqdma_pchan *pc = from_tasklet(pc, t, tasklet); struct mtk_cqdma_vdesc *cvd = NULL; unsigned long flags; spin_lock_irqsave(&pc->lock, flags); /* consume the queue */ cvd = mtk_cqdma_consume_work_queue(pc); spin_unlock_irqrestore(&pc->lock, flags); /* submit the next CVD */ if (cvd) { dma_run_dependencies(&cvd->vd.tx); /* * free child CVD after completion. * the parent CVD would be freed with desc_free by user. */ if (cvd->parent != cvd) kfree(cvd); } /* re-enable interrupt before leaving tasklet */ enable_irq(pc->irq); } static irqreturn_t mtk_cqdma_irq(int irq, void *devid) { struct mtk_cqdma_device *cqdma = devid; irqreturn_t ret = IRQ_NONE; bool schedule_tasklet = false; u32 i; /* clear interrupt flags for each PC */ for (i = 0; i < cqdma->dma_channels; ++i, schedule_tasklet = false) { spin_lock(&cqdma->pc[i]->lock); if (mtk_dma_read(cqdma->pc[i], MTK_CQDMA_INT_FLAG) & MTK_CQDMA_INT_FLAG_BIT) { /* clear interrupt */ mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_FLAG, MTK_CQDMA_INT_FLAG_BIT); schedule_tasklet = true; ret = IRQ_HANDLED; } spin_unlock(&cqdma->pc[i]->lock); if (schedule_tasklet) { /* disable interrupt */ disable_irq_nosync(cqdma->pc[i]->irq); /* schedule the tasklet to handle the transactions */ tasklet_schedule(&cqdma->pc[i]->tasklet); } } return ret; } static struct virt_dma_desc *mtk_cqdma_find_active_desc(struct dma_chan *c, dma_cookie_t cookie) { struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); struct virt_dma_desc *vd; unsigned long flags; spin_lock_irqsave(&cvc->pc->lock, flags); list_for_each_entry(vd, &cvc->pc->queue, node) if (vd->tx.cookie == cookie) { spin_unlock_irqrestore(&cvc->pc->lock, flags); return vd; } spin_unlock_irqrestore(&cvc->pc->lock, flags); list_for_each_entry(vd, &cvc->vc.desc_issued, node) if (vd->tx.cookie == cookie) return vd; return NULL; } static enum dma_status mtk_cqdma_tx_status(struct dma_chan *c, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); struct mtk_cqdma_vdesc *cvd; struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; size_t bytes = 0; ret = dma_cookie_status(c, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&cvc->vc.lock, flags); vd = mtk_cqdma_find_active_desc(c, cookie); spin_unlock_irqrestore(&cvc->vc.lock, flags); if (vd) { cvd = to_cqdma_vdesc(vd); bytes = cvd->residue; } dma_set_residue(txstate, bytes); return ret; } static void mtk_cqdma_issue_pending(struct dma_chan *c) { struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); unsigned long pc_flags; unsigned long vc_flags; /* acquire PC's lock before VS's lock for lock dependency in tasklet */ spin_lock_irqsave(&cvc->pc->lock, pc_flags); spin_lock_irqsave(&cvc->vc.lock, vc_flags); if (vchan_issue_pending(&cvc->vc)) mtk_cqdma_issue_vchan_pending(cvc); spin_unlock_irqrestore(&cvc->vc.lock, vc_flags); spin_unlock_irqrestore(&cvc->pc->lock, pc_flags); } static struct dma_async_tx_descriptor * mtk_cqdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct mtk_cqdma_vdesc **cvd; struct dma_async_tx_descriptor *tx = NULL, *prev_tx = NULL; size_t i, tlen, nr_vd; /* * In the case that trsanction length is larger than the * DMA engine supports, a single memcpy transaction needs * to be separated into several DMA transactions. * Each DMA transaction would be described by a CVD, * and the first one is referred as the parent CVD, * while the others are child CVDs. * The parent CVD's tx descriptor is the only tx descriptor * returned to the DMA user, and it should not be completed * until all the child CVDs completed. */ nr_vd = DIV_ROUND_UP(len, MTK_CQDMA_MAX_LEN); cvd = kcalloc(nr_vd, sizeof(*cvd), GFP_NOWAIT); if (!cvd) return NULL; for (i = 0; i < nr_vd; ++i) { cvd[i] = kzalloc(sizeof(*cvd[i]), GFP_NOWAIT); if (!cvd[i]) { for (; i > 0; --i) kfree(cvd[i - 1]); return NULL; } /* setup dma channel */ cvd[i]->ch = c; /* setup source, destination, and length */ tlen = (len > MTK_CQDMA_MAX_LEN) ? MTK_CQDMA_MAX_LEN : len; cvd[i]->len = tlen; cvd[i]->src = src; cvd[i]->dest = dest; /* setup tx descriptor */ tx = vchan_tx_prep(to_virt_chan(c), &cvd[i]->vd, flags); tx->next = NULL; if (!i) { cvd[0]->residue = len; } else { prev_tx->next = tx; cvd[i]->residue = tlen; } cvd[i]->parent = cvd[0]; /* update the src, dest, len, prev_tx for the next CVD */ src += tlen; dest += tlen; len -= tlen; prev_tx = tx; } return &cvd[0]->vd.tx; } static void mtk_cqdma_free_inactive_desc(struct dma_chan *c) { struct virt_dma_chan *vc = to_virt_chan(c); unsigned long flags; LIST_HEAD(head); /* * set desc_allocated, desc_submitted, * and desc_issued as the candicates to be freed */ spin_lock_irqsave(&vc->lock, flags); list_splice_tail_init(&vc->desc_allocated, &head); list_splice_tail_init(&vc->desc_submitted, &head); list_splice_tail_init(&vc->desc_issued, &head); spin_unlock_irqrestore(&vc->lock, flags); /* free descriptor lists */ vchan_dma_desc_free_list(vc, &head); } static void mtk_cqdma_free_active_desc(struct dma_chan *c) { struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); bool sync_needed = false; unsigned long pc_flags; unsigned long vc_flags; /* acquire PC's lock first due to lock dependency in dma ISR */ spin_lock_irqsave(&cvc->pc->lock, pc_flags); spin_lock_irqsave(&cvc->vc.lock, vc_flags); /* synchronization is required if this VC is active */ if (mtk_cqdma_is_vchan_active(cvc)) { cvc->issue_synchronize = true; sync_needed = true; } spin_unlock_irqrestore(&cvc->vc.lock, vc_flags); spin_unlock_irqrestore(&cvc->pc->lock, pc_flags); /* waiting for the completion of this VC */ if (sync_needed) wait_for_completion(&cvc->issue_completion); /* free all descriptors in list desc_completed */ vchan_synchronize(&cvc->vc); WARN_ONCE(!list_empty(&cvc->vc.desc_completed), "Desc pending still in list desc_completed\n"); } static int mtk_cqdma_terminate_all(struct dma_chan *c) { /* free descriptors not processed yet by hardware */ mtk_cqdma_free_inactive_desc(c); /* free descriptors being processed by hardware */ mtk_cqdma_free_active_desc(c); return 0; } static int mtk_cqdma_alloc_chan_resources(struct dma_chan *c) { struct mtk_cqdma_device *cqdma = to_cqdma_dev(c); struct mtk_cqdma_vchan *vc = to_cqdma_vchan(c); struct mtk_cqdma_pchan *pc = NULL; u32 i, min_refcnt = U32_MAX, refcnt; unsigned long flags; /* allocate PC with the minimum refcount */ for (i = 0; i < cqdma->dma_channels; ++i) { refcnt = refcount_read(&cqdma->pc[i]->refcnt); if (refcnt < min_refcnt) { pc = cqdma->pc[i]; min_refcnt = refcnt; } } if (!pc) return -ENOSPC; spin_lock_irqsave(&pc->lock, flags); if (!refcount_read(&pc->refcnt)) { /* allocate PC when the refcount is zero */ mtk_cqdma_hard_reset(pc); /* enable interrupt for this PC */ mtk_dma_set(pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT); /* * refcount_inc would complain increment on 0; use-after-free. * Thus, we need to explicitly set it as 1 initially. */ refcount_set(&pc->refcnt, 1); } else { refcount_inc(&pc->refcnt); } spin_unlock_irqrestore(&pc->lock, flags); vc->pc = pc; return 0; } static void mtk_cqdma_free_chan_resources(struct dma_chan *c) { struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); unsigned long flags; /* free all descriptors in all lists on the VC */ mtk_cqdma_terminate_all(c); spin_lock_irqsave(&cvc->pc->lock, flags); /* PC is not freed until there is no VC mapped to it */ if (refcount_dec_and_test(&cvc->pc->refcnt)) { /* start the flush operation and stop the engine */ mtk_dma_set(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT); /* wait for the completion of flush operation */ if (mtk_cqdma_poll_engine_done(cvc->pc, true) < 0) dev_err(cqdma2dev(to_cqdma_dev(c)), "cqdma flush timeout\n"); /* clear the flush bit and interrupt flag */ mtk_dma_clr(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT); mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_FLAG, MTK_CQDMA_INT_FLAG_BIT); /* disable interrupt for this PC */ mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT); } spin_unlock_irqrestore(&cvc->pc->lock, flags); } static int mtk_cqdma_hw_init(struct mtk_cqdma_device *cqdma) { unsigned long flags; int err; u32 i; pm_runtime_enable(cqdma2dev(cqdma)); pm_runtime_get_sync(cqdma2dev(cqdma)); err = clk_prepare_enable(cqdma->clk); if (err) { pm_runtime_put_sync(cqdma2dev(cqdma)); pm_runtime_disable(cqdma2dev(cqdma)); return err; } /* reset all PCs */ for (i = 0; i < cqdma->dma_channels; ++i) { spin_lock_irqsave(&cqdma->pc[i]->lock, flags); if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0) { dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n"); spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); clk_disable_unprepare(cqdma->clk); pm_runtime_put_sync(cqdma2dev(cqdma)); pm_runtime_disable(cqdma2dev(cqdma)); return -EINVAL; } spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); } return 0; } static void mtk_cqdma_hw_deinit(struct mtk_cqdma_device *cqdma) { unsigned long flags; u32 i; /* reset all PCs */ for (i = 0; i < cqdma->dma_channels; ++i) { spin_lock_irqsave(&cqdma->pc[i]->lock, flags); if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0) dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n"); spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); } clk_disable_unprepare(cqdma->clk); pm_runtime_put_sync(cqdma2dev(cqdma)); pm_runtime_disable(cqdma2dev(cqdma)); } static const struct of_device_id mtk_cqdma_match[] = { { .compatible = "mediatek,mt6765-cqdma" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mtk_cqdma_match); static int mtk_cqdma_probe(struct platform_device *pdev) { struct mtk_cqdma_device *cqdma; struct mtk_cqdma_vchan *vc; struct dma_device *dd; int err; u32 i; cqdma = devm_kzalloc(&pdev->dev, sizeof(*cqdma), GFP_KERNEL); if (!cqdma) return -ENOMEM; dd = &cqdma->ddev; cqdma->clk = devm_clk_get(&pdev->dev, "cqdma"); if (IS_ERR(cqdma->clk)) { dev_err(&pdev->dev, "No clock for %s\n", dev_name(&pdev->dev)); return PTR_ERR(cqdma->clk); } dma_cap_set(DMA_MEMCPY, dd->cap_mask); dd->copy_align = MTK_CQDMA_ALIGN_SIZE; dd->device_alloc_chan_resources = mtk_cqdma_alloc_chan_resources; dd->device_free_chan_resources = mtk_cqdma_free_chan_resources; dd->device_tx_status = mtk_cqdma_tx_status; dd->device_issue_pending = mtk_cqdma_issue_pending; dd->device_prep_dma_memcpy = mtk_cqdma_prep_dma_memcpy; dd->device_terminate_all = mtk_cqdma_terminate_all; dd->src_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS; dd->dst_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS; dd->directions = BIT(DMA_MEM_TO_MEM); dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; dd->dev = &pdev->dev; INIT_LIST_HEAD(&dd->channels); if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, "dma-requests", &cqdma->dma_requests)) { dev_info(&pdev->dev, "Using %u as missing dma-requests property\n", MTK_CQDMA_NR_VCHANS); cqdma->dma_requests = MTK_CQDMA_NR_VCHANS; } if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, "dma-channels", &cqdma->dma_channels)) { dev_info(&pdev->dev, "Using %u as missing dma-channels property\n", MTK_CQDMA_NR_PCHANS); cqdma->dma_channels = MTK_CQDMA_NR_PCHANS; } cqdma->pc = devm_kcalloc(&pdev->dev, cqdma->dma_channels, sizeof(*cqdma->pc), GFP_KERNEL); if (!cqdma->pc) return -ENOMEM; /* initialization for PCs */ for (i = 0; i < cqdma->dma_channels; ++i) { cqdma->pc[i] = devm_kcalloc(&pdev->dev, 1, sizeof(**cqdma->pc), GFP_KERNEL); if (!cqdma->pc[i]) return -ENOMEM; INIT_LIST_HEAD(&cqdma->pc[i]->queue); spin_lock_init(&cqdma->pc[i]->lock); refcount_set(&cqdma->pc[i]->refcnt, 0); cqdma->pc[i]->base = devm_platform_ioremap_resource(pdev, i); if (IS_ERR(cqdma->pc[i]->base)) return PTR_ERR(cqdma->pc[i]->base); /* allocate IRQ resource */ err = platform_get_irq(pdev, i); if (err < 0) return err; cqdma->pc[i]->irq = err; err = devm_request_irq(&pdev->dev, cqdma->pc[i]->irq, mtk_cqdma_irq, 0, dev_name(&pdev->dev), cqdma); if (err) { dev_err(&pdev->dev, "request_irq failed with err %d\n", err); return -EINVAL; } } /* allocate resource for VCs */ cqdma->vc = devm_kcalloc(&pdev->dev, cqdma->dma_requests, sizeof(*cqdma->vc), GFP_KERNEL); if (!cqdma->vc) return -ENOMEM; for (i = 0; i < cqdma->dma_requests; i++) { vc = &cqdma->vc[i]; vc->vc.desc_free = mtk_cqdma_vdesc_free; vchan_init(&vc->vc, dd); init_completion(&vc->issue_completion); } err = dma_async_device_register(dd); if (err) return err; err = of_dma_controller_register(pdev->dev.of_node, of_dma_xlate_by_chan_id, cqdma); if (err) { dev_err(&pdev->dev, "MediaTek CQDMA OF registration failed %d\n", err); goto err_unregister; } err = mtk_cqdma_hw_init(cqdma); if (err) { dev_err(&pdev->dev, "MediaTek CQDMA HW initialization failed %d\n", err); goto err_unregister; } platform_set_drvdata(pdev, cqdma); /* initialize tasklet for each PC */ for (i = 0; i < cqdma->dma_channels; ++i) tasklet_setup(&cqdma->pc[i]->tasklet, mtk_cqdma_tasklet_cb); dev_info(&pdev->dev, "MediaTek CQDMA driver registered\n"); return 0; err_unregister: dma_async_device_unregister(dd); return err; } static void mtk_cqdma_remove(struct platform_device *pdev) { struct mtk_cqdma_device *cqdma = platform_get_drvdata(pdev); struct mtk_cqdma_vchan *vc; unsigned long flags; int i; /* kill VC task */ for (i = 0; i < cqdma->dma_requests; i++) { vc = &cqdma->vc[i]; list_del(&vc->vc.chan.device_node); tasklet_kill(&vc->vc.task); } /* disable interrupt */ for (i = 0; i < cqdma->dma_channels; i++) { spin_lock_irqsave(&cqdma->pc[i]->lock, flags); mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT); spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); /* Waits for any pending IRQ handlers to complete */ synchronize_irq(cqdma->pc[i]->irq); tasklet_kill(&cqdma->pc[i]->tasklet); } /* disable hardware */ mtk_cqdma_hw_deinit(cqdma); dma_async_device_unregister(&cqdma->ddev); of_dma_controller_free(pdev->dev.of_node); } static struct platform_driver mtk_cqdma_driver = { .probe = mtk_cqdma_probe, .remove = mtk_cqdma_remove, .driver = { .name = KBUILD_MODNAME, .of_match_table = mtk_cqdma_match, }, }; module_platform_driver(mtk_cqdma_driver); MODULE_DESCRIPTION("MediaTek CQDMA Controller Driver"); MODULE_AUTHOR("Shun-Chih Yu "); MODULE_LICENSE("GPL v2");